JPH03148006A - Thickness measuring method of duplex pipe of different materials - Google Patents

Thickness measuring method of duplex pipe of different materials

Info

Publication number
JPH03148006A
JPH03148006A JP1287466A JP28746689A JPH03148006A JP H03148006 A JPH03148006 A JP H03148006A JP 1287466 A JP1287466 A JP 1287466A JP 28746689 A JP28746689 A JP 28746689A JP H03148006 A JPH03148006 A JP H03148006A
Authority
JP
Japan
Prior art keywords
tube
pipe
wall thickness
different materials
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1287466A
Other languages
Japanese (ja)
Other versions
JP2594835B2 (en
Inventor
Tetsuzo Harada
原田 鉄造
Toshimitsu Araki
俊光 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP1287466A priority Critical patent/JP2594835B2/en
Publication of JPH03148006A publication Critical patent/JPH03148006A/en
Application granted granted Critical
Publication of JP2594835B2 publication Critical patent/JP2594835B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To conduct measurement at the installing spot by irradiating the surface of a duplex pipe which is made of different materials with radioactive rays and the thickness of which is to be measured to detect a measuring part, and then irradiating the wall of the measuring part of the pipe with radioactive rays to detect the thickness. CONSTITUTION:Radioactive rays 8 are projected to the face of an inner tube 5 of a duplex pipe 6 from a focus 7 obtained by the near focusing method. A film 9 photographed by X rays passing through the surface of the tube has dark and bright parts in density, reflecting the thickness of the inner tube 5. Since the thickness of the inner tube 5 where the X rays pass is different from the thickness (distance L) from the center of the pipe 6, the density distribution is operated with a suitable correction through mathematic treatments, whereby a part where the tube is worn down is detected. Then, after the worn part is shifted sideways in parallel to the film 9 from the center of the pipe 6, radioactive rays 8 are irradiated to the wall of the tube from the focus 7 according to the far focusing method. Accordingly, an image of the worn part is received on the film 9. The density change of the image during the photography is measured to detect the degree of the wear, thereby presum ing the time while the function of the pipe 6 can be maintained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 開示技術は、外側管を鋼管、内側管をセラミックス管と
する異材質等の外側管と、内側管を相互に異材質製とす
る複重管の外側管、又は、内側管の少なくともいづれか
一方の稼動等による経時的な損耗による肉厚変化現象を
測定する技術分野に属する。
[Detailed Description of the Invention] <Industrial Application Field> The disclosed technology is a double-layer structure in which an outer tube is made of different materials such as a steel tube and an inner tube is made of a ceramic tube, and an inner tube is made of different materials. It belongs to the technical field of measuring wall thickness change phenomena due to wear and tear over time due to operation of at least one of the outer tube and the inner tube.

〈要旨の概要〉 而して、この出願の発明は上述の如く、外側管を炭素鋼
製とし、内側管をセラミックス製等とした外側管と内側
管が相互に異材質製である複重管の該外側管と内側管の
少くともいづれか一方の稼動等による経時的な損耗によ
る肉厚の変化現象をX線等の放射線の照射により計測し
て稼動継続可能時間等を測定する異材質製複重管の肉厚
測定方法に関する発明であり、特に、まず、対象とする
当該複重管に対しX線等の放射線を近焦点方式等により
その管面に照射してその裏側に線接触等させてセットし
たフィルムに受像させてその撮影の濃淡の濃度分布を計
測して肉厚計測部位を検出し、次に当該肉厚計測部位の
検出部位の管壁に対しX線や、ガンマ−線等を照射させ
て該管壁に対し肉厚を計測し、その撮影の濃淡の分布計
測により、又は、目視により、或は、撮影の電気的な分
析計測等により、更には基準となる製造初期等の真円状
態の複重管の標準濃度分布との比較により継続可動可能
時間等を判定する異材質製複重管の肉厚測定方法に係る
発明である。
<Summary of the gist> As mentioned above, the invention of this application provides a double-walled pipe in which the outer pipe is made of carbon steel, the inner pipe is made of ceramics, etc., and the outer pipe and the inner pipe are made of different materials. A reproduction made of different materials in which the change in wall thickness due to wear and tear over time due to operation of at least one of the outer tube and the inner tube is measured by irradiation with radiation such as X-rays to determine the continuous operation time, etc. This invention relates to a method for measuring the wall thickness of a double pipe, and in particular, first, radiation such as X-rays is irradiated onto the surface of the target double pipe using a near-focus method, etc., and the back side is brought into line contact, etc. The wall thickness measurement area is detected by measuring the density distribution of the density of the photographed film, and then X-rays, gamma rays, etc. The wall thickness of the tube wall is measured by irradiating the tube wall, and by measuring the density distribution of the image, by visual inspection, or by electrical analysis measurement of the image, or even at the initial stage of manufacturing, etc., which serves as a standard. This invention relates to a method for measuring the wall thickness of a duplex tube made of different materials, which determines the continuous operating time, etc. by comparing it with the standard concentration distribution of a duplex tube in a perfectly circular state.

〈従来技術〉 周知の如く、配管は単に流体輸送用ばかりでなく、近時
情報伝達用や建築構造物用の強度部材等多くの方面に用
いられるようになって極めて重要な役割を果しており、
そのうちでも流体輸送用等の始源的な用い方においては
、例えば、油井管や原子カプラント配管等耐熱性、耐圧
性、耐蝕性、耐摩耗性等複数の機能を同時に有する用途
に供せられるものが多く、これらの用途に対処する配管
は1種類の材質で全ての要求に応え得る配管が作成出来
ず、したがって、例えば、外側管を炭素鋼製にし、内側
管をステンレス製にして緊結させた異材質等の複重管が
用いられるようになってきている。
<Prior Art> As is well known, piping plays an extremely important role, as it has come to be used not only for fluid transportation, but also for information transmission, strength members for building structures, etc.
Among these, in the original use such as for fluid transportation, for example, oil country tubular goods and atomic couplant piping, etc., which have multiple functions at the same time such as heat resistance, pressure resistance, corrosion resistance, and wear resistance. In many cases, it is not possible to create piping for these applications that can meet all the requirements using one type of material. Therefore, for example, the outer tube is made of carbon steel and the inner tube is made of stainless steel, which are tied together. Double pipes made of different materials are increasingly being used.

而して、一般に在来態様の異材質製の複重管は外側管、
内側管共に種々の都合から金属製のものが多かったが、
近時、上記耐熱性、耐圧性、耐蝕性に加えて耐摩耗性等
の機能が要求されるようになると、例えば、内側管をセ
ラミックス製にするような複重管が案出されて実用に供
させるようになり、かかる複重管の材質や製造時、或は
、据付現場までの輸送等のコスト高や製造管理等の煩瑣
な種々の問題から一旦据付られると相当年月に亘り交換
などすることが出来ない事情があり、したかって、稼動
中における経年的な外側管や内側管の損耗状態を監視し
、その機能が使用状態に耐えられなくなる時点を管理す
る必要が生じてきている。
Therefore, in general, the conventional double pipe made of different materials has an outer pipe,
Many of the inner tubes were made of metal for various reasons, but
Recently, in addition to the above-mentioned heat resistance, pressure resistance, and corrosion resistance, functions such as wear resistance have become required, and for example, double-walled pipes in which the inner pipe is made of ceramic have been devised and put into practical use. Due to various problems such as the material of the double pipes, the manufacturing process, the high cost of transportation to the installation site, and the complicated manufacturing management, once the pipes are installed, they have to be replaced for many years. Therefore, it has become necessary to monitor the state of wear and tear of the outer tube and inner tube over time during operation, and to control the point at which their function can no longer withstand the conditions of use.

〈発明が解決しようとする課題〉 而して、先述従来態様の金属製等の複重管に対する経年
的なその損耗の監視体制は例えば超音波探傷法等の技術
が開発されて、超音波探触子を外側管の外側にセットし
て超音波により損耗の程度を計測してその稼動機能の経
年的寿命を測定する等の技術が開発されているが、かか
る損耗の程度を測定する技術を上記内側管がセラミック
ス製等であるような異材質等の複重管に用いることは測
定手段の性質等からして不可能であり、少くとも有効性
に限界がある問題があった。
<Problems to be Solved by the Invention> However, the above-mentioned conventional system for monitoring the wear and tear of metal or other double pipes over time has been improved by the development of technologies such as ultrasonic flaw detection. Techniques have been developed in which a probe is set on the outside of the outer tube and the degree of wear and tear is measured using ultrasonic waves to measure the aging life of the operating function. Due to the nature of the measuring means, it is impossible to use this method in double-walled tubes made of different materials, such as the inner tube made of ceramics, etc., and there is at least a problem in that the effectiveness is limited.

蓋し、超音波による測定では外側管の外側からの超音波
の投入では該超音波がセラミックス等の内側管を透過出
来ず、又、外側管と内側管の間に介装されている、例え
ば、モルタルやセメント、或は、接着剤等の中間層に対
する屈折反射変化、或は、透過率変化等により投入超音
波が内側管まで透過出来ず、測定が物理的に不能であっ
たり、又、内側管の内側からの計測や測定を行おうとす
れば、該内側管が細径であったり、曲管であったりする
場合には実使用が不可能であるという欠点があった。
In measurement using ultrasonic waves, the ultrasonic waves cannot pass through the inner tube made of ceramics or the like when the ultrasonic waves are applied from the outside of the outer tube. , due to changes in refraction and reflection of the intermediate layer such as mortar, cement, or adhesive, or changes in transmittance, the input ultrasonic waves may not be able to pass through to the inner tube, making measurement physically impossible, or If an attempt is made to measure or measure from the inside of the inner tube, there is a drawback that practical use is impossible if the inner tube has a small diameter or is curved.

例えば、第3図に示す様な、前後のフランジ1、2 (
a、 b)を両端に有する外側管3が炭素鋼製の外管で
あり、これに対しセメント等の中間層4を介して内側管
としてセラミック製の内管5が設けられている配管6に
対し、超音波探傷法によってその肉厚計測を行った結果
は次の第1表に示す通りであり、これで分る様に、当該
計測は外側管としての外管3のみの肉厚計測であって中
間層4は勿論のこと、内側管としてのセラミック管5の
肉厚計測は行い得なかったものである。
For example, as shown in Fig. 3, the front and rear flanges 1 and 2 (
The outer pipe 3 having a and b) at both ends is an outer pipe made of carbon steel, and the pipe 6 is provided with an inner pipe 5 made of ceramic as an inner pipe via an intermediate layer 4 such as cement. On the other hand, the results of measuring the wall thickness using the ultrasonic flaw detection method are shown in Table 1 below, and as can be seen, the measurement was only for the outer tube 3 as the outer tube. Therefore, it was not possible to measure the wall thickness of not only the intermediate layer 4 but also the ceramic tube 5 as the inner tube.

第1表 したがって、今後共析素材や材料革命により外側管と内
側管が相互に異材質製である二重管等の複重管に対して
は超音波投入による肉厚測定は不可能であるという問題
があった。
Table 1: Therefore, due to eutectoid materials and material revolutions in the future, it will not be possible to measure the wall thickness using ultrasonic waves for duplex pipes such as double pipes where the outer and inner pipes are made of different materials. There was a problem.

これに対処するに異材質の外側管、内側管に対してもそ
の透過率に差こそあれ、確実に透過するX線等の放射線
を照射する方法等によりその肉厚を計測して探傷法する
等の技術が研究され、例えば、特開昭57−96208
号公報発明や特開昭62−277542号公報発明等が
開発されてはいるが、前者においては透過X線の強弱を
画像処理システムによりイメージインテンシファイヤ等
を介して電気信号に変換して処理することにより配管の
内径を計測する測定であるがために、システム的に極め
て機構や回路が複雑であり、操作に熟練を要し、処理操
作が極めて煩瑣であるという難点があった。
To deal with this, flaw detection is performed by measuring the wall thickness of the outer and inner tubes made of different materials by irradiating them with radiation such as X-rays, which can reliably pass through the tubes, although there may be differences in their transmittance. For example, Japanese Patent Application Laid-open No. 57-96208
The invention disclosed in No. 2003 and the invention disclosed in Japanese Patent Application Laid-open No. 62-277542 have been developed, but in the former, the intensity of transmitted X-rays is converted into an electrical signal by an image processing system via an image intensifier, etc., and processed. Since this method measures the inner diameter of the piping, the system has extremely complex mechanisms and circuits, requires skill to operate, and has the drawbacks that the processing operations are extremely complicated.

又、後者においては肉厚の既知なモニター管を試験管と
して当該対象の配管に外接させ、当該外接部をX線透過
撮影によりフィルムの写真濃度の比較を行うために、当
該対象とする複重管は勿論のこと、試験管の肉厚をも極
めて高精度に測定せねばならず、現場試験等としては適
さない不具合があり、又、熟練をも要し、その準備や後
処理に煩瑣な手続を要するという不都合さがあった。
In addition, in the latter case, a monitor tube with a known wall thickness is used as a test tube to circumscribe the target piping, and the circumscribed part is X-ray transmitted to compare the photographic density of the film. Not only the tube, but also the wall thickness of the test tube must be measured with extremely high precision, and there are defects that make it unsuitable for on-site testing, etc. Also, it requires skill, and the preparation and post-processing are complicated. There was the inconvenience of having to go through a procedure.

〈発明の目的〉 この出願の発明の目的は、上述従来技術に基づく外側管
と内側管が相互に異材質製である二重管等の複重管の外
側管と内側管の少くとも一方の肉厚が経時的な稼動によ
って損耗を生じたりする場合には、その肉厚を測定して
機能維持的な経年稼動の可能性を予測推定する肉厚測定
の問題点を解決すべき技術的課題とし、肉厚計測をX線
等の放射線を用い、そのフィルム等に於ける倣形の濃度
を計測することにより、経時的損耗の程度を計測し、且
つ、配管機能の寿命を測定することが出来るようにし、
而も、配管としての材質的な機能を充分に保持すること
が出来るようにして各種産業に於ける配管技術利用分野
に益する優れた異材質製複重管の肉厚測定方法を提供せ
んとするものである。
<Object of the Invention> The object of the invention of this application is to provide at least one of the outer pipe and the inner pipe of a double pipe such as a double pipe in which the outer pipe and the inner pipe are made of different materials based on the above-mentioned prior art. If the wall thickness is subject to wear and tear due to operation over time, a technical issue to be solved is to measure the wall thickness to predict and estimate the possibility of functional maintenance over time. By using radiation such as X-rays to measure the wall thickness and measuring the density of the pattern on the film, it is possible to measure the degree of wear over time and the life of the piping function. make it possible,
However, we would like to provide an excellent method for measuring the wall thickness of double pipes made of different materials, which can sufficiently maintain the material function as pipes and be useful in the field of piping technology used in various industries. It is something to do.

く課題を解決するための手段・作用〉 上述目的に沿い先述特許請求の範囲を要旨とするこの出
願の発明の構成は前述課題を解決するために、−旦現場
等に据付配管された内側管がセラミックス製であり、外
側管が金属製等の二重管等の異材質製の複重管の経時的
に容易に取外し交換等が出来ない状態にあける所望タイ
ミングでの肉厚変化を計測測定して損耗等の探傷を行い
、機能維持的経年的稼動の可能性を推定するに際し、X
線等の放射線を当該複重管の管面に近焦点方式等により
照射して肉厚の損耗部位を検出し、次いで該損耗部位の
壁面部に対し遠焦点方式等にて該放射線を照射してその
肉厚を計測し、この際管面や管壁に対する計測は照射さ
れる放射線をフィルム等に受像し、その撮影の濃淡を目
視、或は、電気的に計測し、場合によっては基準となる
真円複重管の標準濃度分布状態とその濃度分布を比較し
て探傷すると共に当該複重管の経年的な機能維持程度を
推定することが出来るようにした技術的手段を講じたも
のである。
In order to solve the above-mentioned problems, the structure of the invention of this application, which is based on the above-mentioned claims, is to solve the above-mentioned problems. Measure the change in wall thickness at the desired timing of opening a double-walled pipe made of a different material, such as a double-walled pipe where the inner tube is made of ceramics and the outer tube is made of metal, etc., so that it cannot be easily removed or replaced over time. X
A damaged part of the wall thickness is detected by irradiating the tube surface of the duplex pipe with radiation such as a line using a near-focus method, etc., and then the radiation is irradiated onto the wall surface of the damaged part using a far-focus method, etc. At this time, the tube surface and tube wall are measured by capturing the irradiated radiation on a film, etc., and measuring the density of the image visually or electrically. This technology uses technical means to detect flaws by comparing the concentration distribution with the standard concentration distribution state of a true circular double pipe, and to estimate the degree of functional maintenance of the double pipe over time. be.

〈実施例〉 次に、この出願の発明の実施例を第3図を援用し、第1
乃至6図に従って説明すれば、以下の通りである。
<Example> Next, an example of the invention of this application is shown in FIG. 1 with reference to FIG.
The explanation will be as follows with reference to FIGS. 6 to 6.

第1.2図に示す実施例はこの出願の発明の基本的態様
であり、第3.4図に示す二重管としての複重管6は直
管状の所定長さのユニット管であり、その外側管として
の外管3は炭素鋼製であり、0 その内側にはセメントの中間層4を介してセラミックス
製の内側管としての内管5が内装されて一体化され、例
えば、原子カプラント配管等に供されて外管3が耐熱性
、耐圧性を司どるようにされ、一方、内管5が耐摩耗性
、耐蝕性を司どるようにされ、前後のフランジ1.2 
(a、b)を介して所定長の配管として据付られている
ものであってその一股部Cのセラミックス製の内管5の
経時的な稼動による損耗を放射線としてのX線により計
測して当該計測時の経年的機能維持の長さを推定して所
定に対処出来るようにするものである。
The embodiment shown in Fig. 1.2 is a basic aspect of the invention of this application, and the double pipe 6 as a double pipe shown in Fig. 3.4 is a straight unit pipe of a predetermined length. The outer tube 3 as an outer tube is made of carbon steel, and an inner tube 5 as an inner tube made of ceramics is installed inside the inner tube 3 through an intermediate layer 4 of cement and is integrated with the inner tube 3, for example, an atomic couplant. The outer tube 3 is used for piping, etc., and controls heat resistance and pressure resistance, while the inner tube 5 controls wear resistance and corrosion resistance, and the front and rear flanges 1.2
It is installed as a pipe of a predetermined length through (a, b), and the wear and tear due to operation over time of the inner pipe 5 made of ceramics at the fork part C is measured using X-rays as radiation. The purpose of this is to estimate the length of maintenance of function over time at the time of the measurement, so that predetermined measures can be taken.

而して、図示しない適宜の放射線発生照射装置の焦点1
を近焦点方式にしてその放射線8を照射し、フィルム9
を複重管6(外管3)に線接触的に架設して設け、照射
された放射線としてのX線を受像させてその撮影の濃度
分布を計測することにより測定を行うものであるが、第
1段階として第1図に示す様に、近焦点方式による焦点
7からの放射線8の照射を所定の絞りを介して内管5の
管面に対して行い、該管面を透過するX線のフイ1 ルム9に於ける撮影2は当該内側管5の肉厚により濃度
の濃淡が形成され、当該部位に於いてX線の透過する内
管5の肉厚は複重管6の中心からの肉厚(距離L)とは
異なるために、適宜の数学的な処理により(基礎的な数
学的手段で可能である。
Thus, the focal point 1 of an appropriate radiation generation irradiation device (not shown)
The radiation 8 is irradiated using a near focus method, and the film 9 is
The measurement is performed by installing the X-ray in line contact with the double tube 6 (outer tube 3), receiving the irradiated X-rays, and measuring the density distribution of the image. As a first step, as shown in FIG. 1, radiation 8 is irradiated from a focal point 7 using a near-focus method onto the tube surface of the inner tube 5 through a predetermined aperture, and the X-rays that pass through the tube surface are In the photographing 2 in the film 9, gradations of density are formed depending on the thickness of the inner tube 5, and the thickness of the inner tube 5 through which X-rays pass through the area is different from the center of the double tube 6. Since the wall thickness (distance L) is different from the wall thickness (distance L), this can be done by appropriate mathematical processing (using basic mathematical means).

)適宜に補正してその濃度分布を計測し、配管稼動によ
る経時的な損耗や減肉を計測測定して当該損耗部位を検
出し、次いで、第2図に示す様に、当該損耗検出部位を
複重管6の中心からフィルム9に平行な横部分に位置せ
しめて姿勢変位させ、焦点1から遠焦点方式により放射
線として放射線8を肉厚部、即ち管壁部を介して照射し
、損耗の生じている肉厚をフィルム9上に受像させてそ
の撮影の濃度変化を計測して損耗の程度を測定し、蓄積
されたデータ等により当該測定タイミング以降における
複重管としての機能維持時間を推定する。
) Measure the concentration distribution with appropriate correction, measure wear and thinning over time due to pipe operation, detect the wear area, and then detect the wear detection area as shown in Figure 2. The double tube 6 is positioned in the horizontal part parallel to the film 9 from the center and its posture is changed, and the radiation 8 is irradiated from the focal point 1 by the far focus method through the thick part, that is, the tube wall, to prevent wear and tear. The developed wall thickness is imaged on the film 9 and the change in density of the image is measured to determine the degree of wear and tear, and from the accumulated data etc., the time required to maintain the function as a double tube after the measurement timing is estimated. do.

而して、上述態様は複重管6が直管の場合の態様である
が第5図に示す様に、曲管6′の場合にはフィルム9′
は曲管状態に平面姿勢を湾曲させ2 て線接触させて測定を行う。
The above embodiment is for the case where the double pipe 6 is a straight pipe, but as shown in FIG. 5, in the case of a curved pipe 6', the film 9'
Measurement is performed by bending the planar posture to a curved pipe state and making line contact.

このようにして得られたデータは第6図に示す様な特性
グラフの特徴となり、これを利用して内側管としての内
管5の肉厚が測定される。
The data obtained in this way becomes a feature of a characteristic graph as shown in FIG. 6, and this is used to measure the wall thickness of the inner tube 5 as the inner tube.

而して、上述基本実施例の態様に則して第3図に示す7
ランジ付きの複重管6の両端の7ランジ1.2 (a、
b)、及び、−股部Cの測定位置について放射線として
のX線の近焦点方式による該X線の照射を介してその肉
厚計測した結果は次の第2表に示す通りである。
Accordingly, in accordance with the aspect of the basic embodiment described above, 7 shown in FIG.
7 langes 1.2 (a,
b) and - The thickness of the measurement position of the crotch C was measured by irradiating X-rays using the near-focus method, and the results are shown in Table 2 below.

以下余白 第2表 表3X線による肉厚計測結果 3− 当該第2表のデータに示す様に、この出願の発明のX線
の放射線を照射してその肉厚計測による測定は、外側管
としての外管3は勿論のこと、その中間層の中間材4は
言うに及ばず、勿論内側管としてのセラミックスの内管
5に対しても肉厚計測が行われ、内側管のみしか肉厚計
測が行われ得4 なかった前記第1表の従来技術のデータとはその測定効
果が異なり、而も、外側管の外管3に対するデータは超
音波投入による場合とほとんどその精度が変らないこと
が分かり、したがって、この点から外側管の外管、及び
、中間層、並びに、内側管に対する計測データの測定の
信頼性が高いことが分かる。
Below is a margin Table 2 Table 3 Wall thickness measurement results using X-rays 3 - As shown in the data in Table 2, the wall thickness measurement by irradiating X-ray radiation according to the invention of this application is as follows: Of course, the wall thickness is measured not only for the outer tube 3, but also for the intermediate material 4 of the intermediate layer, and of course for the ceramic inner tube 5 as the inner tube. The measurement effect is different from the data of the prior art shown in Table 1 above, in which the measurement was not performed, and the accuracy of the data for the outer tube 3 is almost the same as that obtained by applying ultrasonic waves. Therefore, from this point, it can be seen that the reliability of measuring the measurement data for the outer tube, the intermediate layer, and the inner tube is high.

そして、これらのデータの濃度分布を、例えば、製造直
後の真円状の同一複重管の外側管、内側管についてのX
線を介しての肉厚計測による測定データと比較してその
濃度分布の比較により蓄積された機能維持データによっ
て測定以後の機能維持状態としての複重管6の寿命を測
定し、所定の複重管交換や保守点検整備等のタイミング
を推定することが出来、不測の事態を防止し、快適経済
効果の基に配管維持を図ることが出来る。
Then, the concentration distribution of these data is calculated, for example, by
The service life of the double layered pipe 6 is measured as a state of function maintenance after measurement using the function maintenance data accumulated by comparing the concentration distribution with the measurement data obtained by measuring the wall thickness through the wire. It is possible to estimate the timing of pipe replacement, maintenance, inspection, etc., prevent unexpected situations, and maintain pipes based on comfort and economic benefits.

尚、この出願の発明の実施態様は上述実施例に限るもの
でないことは勿論であり、例えば、近焦点方式により照
射される放射線のフィルムに対する受像の撮影の濃度分
布状態の計測による測定は5 外見的な目視によるほかに、当該フィルムの撮影の濃度
分布状態をイメージセンサ等を介して電気的に解析分析
データ化してデジタル表示したり、CRT上に表示した
り、所定の判定基準をデイスプレー表示したりする等種
々の態様が採用可能である。
It should be noted that the embodiments of the invention of this application are, of course, not limited to the above-mentioned embodiments. For example, measurement by measuring the density distribution state of a received image on a film of radiation irradiated by a near-focus method is as follows. In addition to visual inspection, the density distribution state of the photographed film can be electrically analyzed and analyzed using an image sensor, etc., and displayed digitally, displayed on a CRT, or displayed according to predetermined criteria on a display. Various aspects can be adopted, such as.

又、放射線はX線に限らず、ガンマ−線等の放射線でも
良いことも勿論のことである。
Furthermore, it goes without saying that the radiation is not limited to X-rays, but may also be radiation such as gamma rays.

そして、複重管の肉厚測定は内側管に対してばかりでな
く、外側管や中間層に対しても行え、又、それらの全て
に対しても行うことが出来ることも勿論のことである。
Furthermore, wall thickness measurements of double-walled pipes can be performed not only on the inner pipe, but also on the outer pipe and the intermediate layer, and of course, can be performed on all of them. .

そして、複重管の異材質はセラミックスばかりでなくプ
ラスチックやその他の新素材に対しても適用出来ること
も勿論のことである。
It goes without saying that the different materials for double-walled pipes can be applied not only to ceramics but also to plastics and other new materials.

〈発明の効果〉 以上、この出願の発明によれば、基本的に外側管が鋼管
で耐熱性、耐圧性等を司どり、内側管がセラミックス類
であって耐摩耗性や耐蝕性を司どる二重管等の外側管と
内側管が相互に異材質であ6 る複重管の経時的な稼動による損耗等を介しての肉厚変
化が当該複重管としての機能維持状態での経年的痔命を
測定したい場合に、X線等の放射線を近焦点方式等を用
いてその肉厚計測を行ってその以後の機能維持時間を推
定することが出来、不測の事態に備えることが出来ると
いう効果があるばかりでなく、当該照射するX線等の放
射線のフィルムに於ける受像による撮影の濃度分布を直
接的に計測測定することが出来るために、複雑な計測装
置や回路等を必要とせず、配管の現場据付状態のままで
現場での計測、測定をすることが出来、極めて操作性が
良く、又、コスト的にも安くすることが出来るという効
果が秦される。
<Effects of the Invention> As described above, according to the invention of this application, the outer tube is basically a steel tube that controls heat resistance, pressure resistance, etc., and the inner tube is made of ceramics and controls wear resistance and corrosion resistance. The outer and inner tubes of a double-walled pipe, etc., are made of different materials.6 Changes in wall thickness due to wear and tear due to operation over time of a double-walled pipe, etc., cause aging while maintaining its function as a double-walled pipe. When you want to measure the health of a hemorrhoid, you can measure its wall thickness using a near-focus method using radiation such as X-rays, and estimate the subsequent functional maintenance time, allowing you to prepare for unexpected situations. Not only does it have the effect of First, it is possible to carry out on-site measurements while the piping is installed on-site, and has the advantage of being extremely easy to operate and being cost-effective.

而して、この出願の発明においては、近焦点方式による
X線等の放射線照射を複重管の管面に対してまず行って
内側管等の損耗状態の発生部分を検出し、次いで当該検
出部位の管壁部分に対する放射線の照射を行って正確に
内側管等の肉厚をフィルムの受像の囮彰の濃度分布計測
により測定することが出来、したがって、内側管等の損
耗発生7 部分のみならず、その凹みや窪み状態等のスポット的、
線的な状態を定性、定量的に確実に把握することが出来
、当該状態での複重管の機能維持年数等の寿命測定が確
実に行えるという優れた効果が秦される。
Therefore, in the invention of this application, radiation such as X-rays is first irradiated to the tube surface of the double tube using a near-focus method to detect a worn portion of the inner tube, etc. It is possible to accurately measure the wall thickness of the inner tube, etc. by irradiating radiation to the tube wall portion of the site by measuring the density distribution of the decoy light of the image received on the film. Spot-like conditions such as dents and hollows,
The excellent effect is that the linear state can be reliably grasped qualitatively and quantitatively, and the life span, such as the number of years the double pipe can maintain its function under the relevant state, can be reliably measured.

このような複重管の内側管等の損耗状態の定性的な位置
と計量的な損耗状態の計測による検出が当該複重管の機
能測定に確実にプラスするという効果がある。
Detection of the qualitative position and quantitative measurement of the worn state of the inner tube of a double pipe as described above has the effect of reliably adding to the function measurement of the double pipe.

又、この出願の発明の肉厚測定方法は特別な計測装置等
を用いず、人為的な経験的な作業で行えるために複雑に
入り組んだプラント配管等に対しても現場測定が容易に
行えるという効果もある。
In addition, the wall thickness measuring method of the invention of this application does not require any special measuring equipment, and can be carried out by human experience, making it easy to perform on-site measurements even for complex plant piping. It's also effective.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの出願の発明の詳細な説明図であり、第1.2
図は原理的態様の実施例図であり、第1図は管面に対す
るX照射の近焦点方式による縦断面図、第2図は複重管
の部分切截斜視図、第3図は同管壁に対する肉厚計測の
X線の照射断面図、第4図は複重管の直管状態の側面図
、第5図は曲8 管状前の側面図、 第6図は計測測定のグラフ図で ある。 3・・・外管 5・・・内管 6・・・複重管 8・・・放射線 9・・・フィルム 9
The drawings are detailed explanatory diagrams of the invention of this application, and are shown in Section 1.2.
The drawings are examples of the principle mode. Fig. 1 is a longitudinal cross-sectional view of the tube surface using a near-focus method of X irradiation, Fig. 2 is a partially cutaway perspective view of a double tube, and Fig. 3 is the same tube. A cross-sectional view of the X-ray irradiation for wall thickness measurement, Figure 4 is a side view of the double pipe in a straight state, Figure 5 is a side view of the front of the curved 8 tube, and Figure 6 is a graph of the measurement. be. 3...Outer tube 5...Inner tube 6...Double tube 8...Radiation 9...Film 9

Claims (6)

【特許請求の範囲】[Claims] (1)外側管と内側管とが相互に異材質から成る複重管
の該外側管と内側管の少くともいづれか一方の肉厚を放
射線照射による撮影から測定する方法において、まず肉
厚を計測する管面部分に放射線を照射して肉厚計測部位
を検出し、次いで当該検出部位の管壁に対して放射線を
照射して肉厚を計測するようにしたことを特徴とする異
材質製複重管の肉厚測定方法。
(1) In a method of measuring the wall thickness of at least one of the outer tube and the inner tube of a double-walled tube in which the outer tube and the inner tube are made of different materials, first, the wall thickness is measured. 2. A method of manufacturing different materials characterized by irradiating a tube surface portion with radiation to detect a wall thickness measurement site, and then irradiating a tube wall at the detection site with radiation to measure the wall thickness. How to measure the wall thickness of heavy pipes.
(2)上記放射線の照射を近焦点方式により行うように
したことを特徴とする特許請求の範囲第1項記載の異材
質製複重管の肉厚測定方法。
(2) The method for measuring the wall thickness of a double pipe made of different materials according to claim 1, characterized in that the radiation irradiation is performed by a near-focus method.
(3)上記測定をフィルム受像により行うようにしたこ
とを特徴とする特許請求の範囲第1項記載の異材質製複
重管の肉厚測定方法。
(3) A method for measuring the wall thickness of a double pipe made of different materials as set forth in claim 1, characterized in that the measurement is carried out by film image reception.
(4)上記放射線をX線として行うようにしたことを特
徴とする特許請求の範囲第1項記載の異材質製複重管の
肉厚測定方法。
(4) A method for measuring the wall thickness of a double pipe made of different materials as set forth in claim 1, characterized in that the radiation is performed as an X-ray.
(5)上記測定をフィルムの平面像の濃度分布計測によ
り行うようにしたことを特徴とする特許請求の範囲第1
項記載の異材質製複重管の肉厚測定方法。
(5) Claim 1, characterized in that the above measurement is performed by measuring the density distribution of a plane image of the film.
Method for measuring the wall thickness of double pipes made of different materials as described in .
(6)上記測定を基準真円複重管の標準濃度分布との比
較により行うようにしたことを特徴とする特許請求の範
囲第1項記載の異材質製複重管の肉厚測定方法。
(6) The method for measuring the wall thickness of a double-walled pipe made of different materials as set forth in claim 1, characterized in that the measurement is carried out by comparison with a standard concentration distribution of a reference perfect circular double-walled pipe.
JP1287466A 1989-11-06 1989-11-06 A method of extracting the thinned part of a double-walled pipe made of dissimilar materials and measuring the thickness of the thinned part Expired - Lifetime JP2594835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1287466A JP2594835B2 (en) 1989-11-06 1989-11-06 A method of extracting the thinned part of a double-walled pipe made of dissimilar materials and measuring the thickness of the thinned part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1287466A JP2594835B2 (en) 1989-11-06 1989-11-06 A method of extracting the thinned part of a double-walled pipe made of dissimilar materials and measuring the thickness of the thinned part

Publications (2)

Publication Number Publication Date
JPH03148006A true JPH03148006A (en) 1991-06-24
JP2594835B2 JP2594835B2 (en) 1997-03-26

Family

ID=17717705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1287466A Expired - Lifetime JP2594835B2 (en) 1989-11-06 1989-11-06 A method of extracting the thinned part of a double-walled pipe made of dissimilar materials and measuring the thickness of the thinned part

Country Status (1)

Country Link
JP (1) JP2594835B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004093443A (en) * 2002-09-02 2004-03-25 Katsuhiko Ogiso Measuring method for dimension of multilayer structured vessel
DE19846885B4 (en) * 1998-10-13 2005-03-17 Advanced Mobile Imaging Gmbh Method for radiographic measurement of a physical object
JP2011112484A (en) * 2009-11-26 2011-06-09 Kyushu Univ Device and method for determining quality of composite container
JP2012176412A (en) * 2011-02-25 2012-09-13 Hitachi-Ge Nuclear Energy Ltd Heat-treating method
US9267636B2 (en) 2010-05-07 2016-02-23 1876255 Ontario Limited Protective liner with wear detection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54114263A (en) * 1978-02-27 1979-09-06 Nippon Steel Corp Measuring method of wall thickness of steel pipes by radiations
JPS63269008A (en) * 1987-04-27 1988-11-07 Shimizu Constr Co Ltd Method and apparatus for measuring thickness of two-layer structural material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54114263A (en) * 1978-02-27 1979-09-06 Nippon Steel Corp Measuring method of wall thickness of steel pipes by radiations
JPS63269008A (en) * 1987-04-27 1988-11-07 Shimizu Constr Co Ltd Method and apparatus for measuring thickness of two-layer structural material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19846885B4 (en) * 1998-10-13 2005-03-17 Advanced Mobile Imaging Gmbh Method for radiographic measurement of a physical object
JP2004093443A (en) * 2002-09-02 2004-03-25 Katsuhiko Ogiso Measuring method for dimension of multilayer structured vessel
JP2011112484A (en) * 2009-11-26 2011-06-09 Kyushu Univ Device and method for determining quality of composite container
US9267636B2 (en) 2010-05-07 2016-02-23 1876255 Ontario Limited Protective liner with wear detection
JP2012176412A (en) * 2011-02-25 2012-09-13 Hitachi-Ge Nuclear Energy Ltd Heat-treating method

Also Published As

Publication number Publication date
JP2594835B2 (en) 1997-03-26

Similar Documents

Publication Publication Date Title
US6925145B2 (en) High speed digital radiographic inspection of piping
US5864601A (en) Method and apparatus for inspecting pipes using a digitized radiograph
CA3031891A1 (en) Method to determine geometrical parameters and/or material state of an object under study by radiography
JPH03148006A (en) Thickness measuring method of duplex pipe of different materials
Siryabe et al. X-ray digital detector array radiology to infer sagging depths in welded assemblies
JP2653532B2 (en) Surface defect inspection equipment
JPH07119593B2 (en) Pipe diagnosis method by comparing X-ray radiographic density
JPS58117445A (en) Steel pipe detecting method by radiation penetration
JP3199417B2 (en) Standard specimen for non-destructive inspection of piping
JP3632898B2 (en) Method for determining the usefulness of existing metal pipes using a radiographic inspection method, and a specimen used for carrying out this method
Harara Corrosion evaluation and wall thickness measurement on large-diameter pipes by tangential radiography using a Co-60 gamma-ray source
RU2304766C1 (en) Method of non-destructing inspection of object&#39;s condition
JP7221419B2 (en) Inspection system, judgment processing device, and inspection method
JPS6232347A (en) Non-destructive testing method for deterioration of material
Harara Pit-depth measurement on large diameter pipes by tangential radiography using a Co-60 gamma-ray source
JP4088455B2 (en) Method and apparatus for measuring thickness of multi-layer material
Thiele et al. Radiographic Inspection of Weldigns by Digital Sensors
JP2888367B2 (en) Measuring method of thickness of deposits in pipe
Spanner Effectiveness of Substituting Ultrasonic Testing for Radiographic Testing for Repair/Replacement
Marais Defect assessment by means of non-destructive testing
Palaniappan et al. The role of non-destructive examination in improving the quality for pipeline and pressure vessels—case studies
Sood et al. NDE Welds Inspection Qualifications for Pipework and Pipelines
CN116952992A (en) Method for inspecting metal seal ring
Taiyus et al. Instant radiography: a computerized support system for industrial radiographers
JP2002207015A (en) Method and apparatus for measuring thickness of each member constituting double-layered structure by x-rays