JPH0522841B2 - - Google Patents

Info

Publication number
JPH0522841B2
JPH0522841B2 JP59102047A JP10204784A JPH0522841B2 JP H0522841 B2 JPH0522841 B2 JP H0522841B2 JP 59102047 A JP59102047 A JP 59102047A JP 10204784 A JP10204784 A JP 10204784A JP H0522841 B2 JPH0522841 B2 JP H0522841B2
Authority
JP
Japan
Prior art keywords
radiation
defect
image
steel pipe
reference gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59102047A
Other languages
Japanese (ja)
Other versions
JPS60244843A (en
Inventor
Hideki Teraoka
Akio Aoki
Toshio Fujita
Toyokichi Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP59102047A priority Critical patent/JPS60244843A/en
Publication of JPS60244843A publication Critical patent/JPS60244843A/en
Publication of JPH0522841B2 publication Critical patent/JPH0522841B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/18Investigating the presence of flaws defects or foreign matter

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は放射線透過試験機に係わり、特に被検
査体内に存在する欠陥の位置および寸法を精度良
く検出するために用いる放射線透過試験機用ゲー
ジに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a radiographic testing machine, and more particularly to a gauge for a radiographic testing machine used to accurately detect the position and size of a defect existing within an inspected body. .

[発明の技術的背景] 被検査体の内部に存在する欠陥の位置および寸
法を被検査体を切断せずに測定する非破壊検査装
置の一つとして、放射線の透過性を利用した放射
線透過試験機がある。このような放射線透過試験
機でもつて、鋼板等の接続部に含まれる表面と平
行した欠陥の厚み方向の位置および寸法を測定す
る場合、通常、第1図aに示すように、鋼板1の
欠陥2が存在すると推定される位置の下側表面
に、例えばタングステン、鉛等の重金属製のワイ
ヤー等の放射線フイルムマーカー3を貼付け、こ
の放射線フイルムマーカー3の下側に放射線感光
材としての放射線フイルム4を配置する。そし
て、放射線フイルムマーカー3を含む中心線5に
対して予め定められた所定の傾斜角θでもつて、
放射線源6からX線等の放射線7を鋼板1に照射
する。その結果、放射線フイルム4には第1図b
に示すように放射線フイルムマーカー3の像8と
欠陥2の像9が生じる。
[Technical Background of the Invention] Radiographic testing that utilizes the transparency of radiation is used as a non-destructive inspection device that measures the position and dimensions of defects existing inside an inspected object without cutting the inspected object. There is a chance. Even with such a radiographic testing machine, when measuring the position and dimension in the thickness direction of a defect parallel to the surface included in a joint part of a steel plate, etc., the defect in the steel plate 1 is usually detected as shown in Fig. 1a. A radiographic film marker 3 such as a wire made of heavy metal such as tungsten or lead is pasted on the lower surface of the position where it is estimated that the radioactive film 2 is present, and a radiographic film 4 as a radiation-sensitive material is attached to the lower side of the radiographic film marker 3. Place. Even at a predetermined inclination angle θ with respect to the center line 5 including the radiation film marker 3,
A radiation source 6 irradiates the steel plate 1 with radiation 7 such as X-rays. As a result, the radiation film 4 is shown in Figure 1b.
An image 8 of the radiation film marker 3 and an image 9 of the defect 2 are generated as shown in FIG.

次に、第2図aに示すように放射線源6を中心
線5に対して第1図aと反対側に移動して鋼板1
に放射線7を照射する。その結果、放射線フイル
ム4には第2図bに示すように欠陥2の像9が放
射線フイルムマーカー3の像8に対して第1図b
と反対側位置に生じる。しかして第3図に示すよ
うに、放射線源6の移動距離をD、放射線源6か
ら放射線フイルム4までの距離をF、第1図b、
第2図bの放射線フイルム4上の欠陥2の像9の
移動距離をdとすると、簡単な幾何学的考察によ
つて鋼板1内の欠陥2の下側表面からの距離(深
さ)hは式にて求まる。
Next, as shown in FIG. 2a, the radiation source 6 is moved to the opposite side of the center line 5 from FIG.
irradiate with radiation 7. As a result, the image 9 of the defect 2 on the radiation film 4 as shown in FIG.
occurs in the opposite position. As shown in FIG. 3, the moving distance of the radiation source 6 is D, the distance from the radiation source 6 to the radiation film 4 is F, and FIG.
If the moving distance of the image 9 of the defect 2 on the radiation film 4 in FIG. is determined by the formula.

h=dF/(D+d) …… また、欠陥2が鋼板1の厚み方向に存在する場
合、第4図aに示すように、放射線6から放射線
7を鋼板1に対して所定の傾斜角θでもつて照射
すると、放射線フイルム4上には第4図bに示す
ように、欠陥2の高さ方向の幅Hに対応して長さ
Wの欠陥2の像10が生じる。この場合、放射線
源6と鋼板1との間の距離が十分大きいとする
と、鋼板1内の欠陥2の実際の幅Hは近似的に
式にて求まる。
h=dF/(D+d)...In addition, when the defect 2 exists in the thickness direction of the steel plate 1, as shown in Fig. 4a, the radiation 6 to the radiation 7 are arranged at a predetermined angle of inclination θ with respect to the steel plate 1. Upon irradiation, an image 10 of the defect 2 having a length W corresponding to the width H of the defect 2 in the height direction is generated on the radiation film 4, as shown in FIG. 4b. In this case, assuming that the distance between the radiation source 6 and the steel plate 1 is sufficiently large, the actual width H of the defect 2 in the steel plate 1 can be approximately determined by the formula.

H≒W/tanθ …… [背景技術の問題点] しかしながら、上記のように構成された放射線
透過試験機においては次のような問題があつた。
すなわち、第1図に示すように、鋼板1内の欠陥
2の位置(下表面からの距離)hを式のように
放射線減6の移動距離D、放射線フイルム4まで
の距離F、2枚の放射線フイルム4から求めた欠
陥2の像9の移動距離dから算出する方法である
と、欠陥位置の測定精度はこれ等各距離D,F,
dの測定精度に依存する。しかし、上記各距離を
精度良く測定することは多大の労力を要し、また
実際には非常に困難であるので、第1図に示す測
定方法は現実的でない。
H≒W/tanθ... [Problems with Background Art] However, the radiation transmission tester configured as described above has the following problems.
That is, as shown in FIG. 1, the position (distance from the lower surface) h of the defect 2 in the steel plate 1 is expressed as follows: the moving distance D of the radiation reduction 6, the distance F to the radiation film 4, and the distance between the two sheets. According to the method of calculating from the movement distance d of the image 9 of the defect 2 obtained from the radiation film 4, the measurement accuracy of the defect position is determined by each distance D, F,
It depends on the measurement accuracy of d. However, since measuring each of the distances with high accuracy requires a great deal of effort and is actually very difficult, the measuring method shown in FIG. 1 is not practical.

また、第4図に示す鋼板1内の欠陥2の高さ方
向の幅Hを測定する方法においても、欠陥2が第
4図に示すように正確に鋼板1の厚み方向を向い
ている場合は問題ないが、例えば鋼板1の接続部
において溶け込み不足等が生じたときのように欠
陥2の方向が斜め方向を向いていた場合、放射線
フイルム4上には第5図に示すように、斜め方向
の欠陥2による像11が生じる。この場合どの方
向に欠陥2の像11の寸法測定を実施して良いの
かが判断できないので、この測定方法も実用的で
ない。
Also, in the method of measuring the width H in the height direction of the defect 2 in the steel plate 1 shown in FIG. 4, if the defect 2 is exactly oriented in the thickness direction of the steel plate 1 as shown in FIG. There is no problem, but if the direction of the defect 2 is diagonal, for example when insufficient penetration occurs at the joint of the steel plate 1, the radiation film 4 will have a diagonal direction as shown in FIG. An image 11 due to the defect 2 is generated. In this case, it is not possible to determine in which direction the dimensions of the image 11 of the defect 2 should be measured, so this measurement method is also not practical.

特に、第6図に示すように被検査体が鋼板でな
くて、円筒状の鋼管12のよう表面が曲面に形成
されている場合、第4図と同様に鋼管12に対し
て所定の傾斜角θでもつて、放射線源6から放射
線7を照射すると、第7図a,bに示すように鋼
管12の環状の接続部分に沿つて複数の欠陥13
a,13bが存在する場合、放射線フイルム4に
生じる欠陥13a,13bの像14a,14bは
第7図cに示すように、その欠陥13a,13b
が存在する周方向位置によつて、像の形状が大き
く変化する。これらの像14a,14bから鋼管
12内に存在する欠陥13a,13bの正確な位
置と寸法を算出することは非常に困難である。ま
た、被検査体が鋼管12のように円筒状でなく
て、規則性が無く任意の形状をしている場合、放
射線フイルム4上の像から欠陥の位置、寸法を算
出することはほぼ不可能である。
In particular, when the object to be inspected is not a steel plate but has a curved surface such as a cylindrical steel pipe 12, as shown in FIG. θ, when radiation 7 is irradiated from the radiation source 6, a plurality of defects 13 are formed along the annular connecting portion of the steel pipe 12, as shown in FIGS. 7a and 7b.
When defects 13a and 13b exist, images 14a and 14b of defects 13a and 13b occurring on the radiation film 4 are as shown in FIG. 7c.
The shape of the image changes greatly depending on the circumferential position where it exists. It is very difficult to calculate the exact positions and dimensions of the defects 13a, 13b existing in the steel pipe 12 from these images 14a, 14b. Furthermore, if the object to be inspected is not cylindrical like the steel pipe 12 but has an arbitrary shape with no regularity, it is almost impossible to calculate the position and size of the defect from the image on the radiation film 4. It is.

[発明の目的] 本発明はこのような事情に基づいてなされたも
のであり、その目的とするところは、鋼管等のよ
うに表面がたとえ曲面に形成された被検査体であ
つたとしも、内部に存在する欠陥の位置および寸
法を精度良くかつ簡単に測定可能とする放射線透
過試験機用基準ゲージを提供することにある。
[Objective of the Invention] The present invention has been made based on the above circumstances, and its purpose is to detect an object to be inspected, even if the surface is formed into a curved surface, such as a steel pipe. It is an object of the present invention to provide a reference gauge for a radiographic testing machine that enables accurate and easy measurement of the position and size of internal defects.

[発明の概要] 本発明の放射線透過試験機用基準ゲージは、放
射線透過試験機の被検査体と放射線感光材との間
に介挿されるもので、可撓性を有した板状支持物
体内に、この板状支持物体の厚み方向に複数の第
1の重金属製棒状マーカーを埋設するとともに上
記厚み方向に対して直角方向に複数の第2の重金
属製棒状マーカーを埋設したものである。
[Summary of the Invention] The reference gauge for a radiation transmission testing machine of the present invention is inserted between an object to be inspected and a radiation-sensitive material in a radiation transmission testing machine, and is inserted into a flexible plate-shaped support object. A plurality of first bar-shaped heavy metal markers are embedded in the thickness direction of this plate-shaped support object, and a plurality of second bar-shaped heavy metal markers are embedded in a direction perpendicular to the thickness direction.

[発明の実施例] 以下本発明の一実施例を図面を用いて説明す
る。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to the drawings.

第8図aは実施例に係わる放射線透過試験機用
基準ゲージの一部を示す平面図であり、同図bは
立面図である。図中21は幅A、厚みBの矩形状
断面を有した帯状支持物体であり、この帯状支持
物体21は可撓性を有するゴム磁石で形成されて
いる。そして、帯状支持物体21内の長手方向
に、この帯状支持物体21を厚み方向に貫通する
長さBの放射線を吸収する重金属で棒状に形成さ
れた第1のマーカー22が、相互に等間隔Cを有
して複数個埋設されている。また、同じく長手方
向に、上記厚み方向と直交する方向、すなわち幅
方向に第1のマーカー22と同一物質の第2のマ
ーカー23が、同じく相互に等間隔Cを有して複
数個埋設されている。なお、第2のマーカー23
の長さEは帯状支持物体21の幅Aより短く設定
されている。なお、上記長さは位置検出用に5個
おきに長さEより長い値E′に設定されている。そ
して、実施例の放射線透過試験機用基準ゲージ
(以下基準ゲージと略記する)24の上記各寸法
は例えば、A=15mm、B=5mm、C=20mm、E=
6mm、E′=10mmに設定されている。
FIG. 8a is a plan view showing a part of the reference gauge for a radiographic testing machine according to the embodiment, and FIG. 8b is an elevational view. In the figure, reference numeral 21 denotes a band-shaped supporting object having a rectangular cross section with a width A and a thickness B, and this band-shaped supporting object 21 is made of a flexible rubber magnet. Then, in the longitudinal direction of the band-shaped support object 21, first markers 22 formed in a rod shape made of heavy metal that absorb radiation having a length B that penetrates the band-shaped support object 21 in the thickness direction are arranged at regular intervals C. A number of them are buried. Further, in the same longitudinal direction, a plurality of second markers 23 made of the same material as the first marker 22 are buried at equal intervals C in a direction perpendicular to the thickness direction, that is, in the width direction. There is. Note that the second marker 23
The length E is set shorter than the width A of the strip-shaped support object 21. Note that the above-mentioned length is set to a value E' that is longer than the length E every fifth for position detection. The above-mentioned dimensions of the reference gauge (hereinafter abbreviated as reference gauge) 24 for the radiographic testing machine of the embodiment are, for example, A=15 mm, B=5 mm, C=20 mm, E=
6mm, and E'=10mm.

上記基準ゲージ24は、放射線透過試練機でも
つて鋼管の接続部に存在する欠陥の位置および寸
法を測定する場合第9図a,bに示すように使用
される。すなわち、鋼管12の環状の接続部25
内部に溶け込む不足による内周面から外周へ向か
う環状欠陥26が存在する場合、実施例の帯状の
基準ゲージ24を環状の接続部25に隣接した鋼
管12外周面に取付けられる。なお、帯状支持物
体21はゴム磁石で形成されているので鋼管12
に容易に取付けることが可能である。さらに、接
続部25を挟んで基準ゲージ24と反対側にこの
基準ゲージ24と同一形状のゴム磁石で形成され
たスペーサ27が取付けられている。そして、基
準ゲージ24およびスペーサ27の外周面に放射
線フイルム4が取付けられている。なお、スペー
サ27は放射線フイルム4の位置を鋼管12の外
周面に対して平行に保持するものである。この状
態においては、基準ゲージ24の各第1のマーカ
ー22の方向は鋼管12の半径方向に一致し、各
第2のマーカー23の方向は軸方向と一致する。
The reference gauge 24 is used as shown in FIGS. 9a and 9b when measuring the position and size of a defect existing in a joint of a steel pipe using a radiographic testing machine. That is, the annular connecting portion 25 of the steel pipe 12
If there is an annular defect 26 extending from the inner circumferential surface toward the outer circumference due to insufficient penetration into the interior, the band-shaped reference gauge 24 of the embodiment is attached to the outer circumferential surface of the steel pipe 12 adjacent to the annular connecting portion 25. Note that since the band-shaped support object 21 is made of a rubber magnet, the steel pipe 12
It can be easily installed on. Further, a spacer 27 made of a rubber magnet and having the same shape as the reference gauge 24 is attached on the opposite side of the reference gauge 24 with the connecting portion 25 in between. A radiation film 4 is attached to the outer peripheral surfaces of the reference gauge 24 and the spacer 27. Note that the spacer 27 maintains the position of the radiation film 4 parallel to the outer peripheral surface of the steel pipe 12. In this state, the direction of each first marker 22 of the reference gauge 24 coincides with the radial direction of the steel pipe 12, and the direction of each second marker 23 coincides with the axial direction.

そして、第6図と同様に鋼管12に対して放射
線源6から傾斜角θの放射線7を照射すると、放
射線フイルム4上には、第10図に示すように、
環状欠陥26の外側境界線の像28と、内側境界
線(鋼管12の内周面位置)の像29と、各第1
のマーカー22の各像30および各第2のマーカ
ー23の各像31が生じる。放射線7は第9図a
に示すように鋼管12の周方向に傾斜していない
く、かつ第2のマーカー23は軸方向に配列され
ているので、放射線フイルム4の第2のマーカー
23の各像31は鋼管12の軸線32と平行にな
る。一方各第1のマーカー22は鋼管12の周方
向に配列されているので、各第1のマーカー22
の各像30の方向θ1および長さB1は第7図に示
したようにその周方向位置(角度)によつて異な
る。しかし、実際の第1のマーカー22の長さB
および方向は既知であるので、この位置Fにおけ
る環状欠陥26の実際の寸法(深さ)Lを簡単に
求めることが可能である。すなわち、位置Fから
この位置における第1のマーカー22の像30の
平行線と内側境界線の像29との交点Gまでの距
離が環状欠陥26の放射線フイルム4上の寸法
(深さ)L1となる。したがつて、実際の寸法Lは
簡単な比例計算によつてて式にて求まる。
Then, when the radiation source 6 irradiates the steel pipe 12 with the radiation 7 at the angle of inclination θ in the same manner as shown in FIG. 6, on the radiation film 4, as shown in FIG.
An image 28 of the outer boundary line of the annular defect 26, an image 29 of the inner boundary line (inner peripheral surface position of the steel pipe 12), and each first
Each image 30 of each marker 22 and each image 31 of each second marker 23 are generated. Radiation 7 is shown in Figure 9a
As shown in FIG. 2, the steel pipe 12 is not inclined in the circumferential direction, and the second markers 23 are arranged in the axial direction, so each image 31 of the second marker 23 on the radiation film 4 is aligned with the axis of the steel pipe 12. It becomes parallel to 32. On the other hand, since each first marker 22 is arranged in the circumferential direction of the steel pipe 12, each first marker 22
The direction θ 1 and length B 1 of each image 30 differ depending on its circumferential position (angle) as shown in FIG. However, the actual length B of the first marker 22
Since the direction and direction are known, it is possible to easily determine the actual dimension (depth) L of the annular defect 26 at this position F. That is, the distance from the position F to the intersection G of the parallel line of the image 30 of the first marker 22 and the image 29 of the inner boundary line at this position is the dimension (depth) of the annular defect 26 on the radiation film 4 L 1 becomes. Therefore, the actual dimension L can be determined by a simple proportional calculation.

L=L1B/B1 …… なお、実際の環状欠陥26における位置Gの鋼
管12上の周方向位置は、第2のマーカー23の
像31の位置確認によつて、容易に求めることが
可能である。
L=L 1 B/B 1 ... Note that the circumferential position of position G on the steel pipe 12 in the actual annular defect 26 can be easily determined by confirming the position of the image 31 of the second marker 23. It is possible.

このように、予め定められた方向および長さの
第1および第2のマーカー22,23を埋設した
基準ゲージ24を環状の接続部25に隣接した鋼
管12の外周面に磁石の吸着力でもつて取付け、
この基準ゲージ24の各第1および第2のマーカ
ー22,23を接続部25内の周方向に存在する
環状欠陥26とともに同一放射線フイルム4上に
感光させている。そして、実際の第1および第2
のマーカー22,23の位置、方向、寸法と放射
線フイルム4上の像30,31の位置、方向、寸
法との関係を求め、その関係を用いて放射線フイ
ルム上の環状欠陥26の像から実際の鋼管12の
上の位置、寸法を算出するようにしている。した
がつて、これらの算出手順は上述したように簡単
な比例計算で実施できるので、環状欠陥26のよ
うに複雑な形状の欠陥であつても、その位置、寸
法を正確にかつ簡単に計測することが可能であ
る。
In this way, the reference gauge 24 in which the first and second markers 22 and 23 are embedded in a predetermined direction and length is attached to the outer circumferential surface of the steel pipe 12 adjacent to the annular connecting portion 25 by the attraction force of the magnet. installation,
The first and second markers 22 and 23 of this reference gauge 24 are exposed on the same radiation film 4 together with the annular defect 26 existing in the circumferential direction within the connecting portion 25. And the actual first and second
The relationship between the positions, directions, and dimensions of the markers 22, 23 and the positions, directions, and dimensions of the images 30, 31 on the radiation film 4 is determined, and using that relationship, the actual image is determined from the image of the annular defect 26 on the radiation film 4. The position and dimensions on the steel pipe 12 are calculated. Therefore, these calculation procedures can be performed by simple proportional calculations as described above, so even if the defect has a complex shape like the annular defect 26, its position and dimensions can be measured accurately and easily. Is possible.

また、従来の第1図、第2図に示す試験機のよ
うに各距離D,d,Fを正確に測定する必要な
い。また、第4図に示すように傾斜角θを正確に
測定する必要もない。したがつて、測定に要する
時間を短縮でき、測定作業能率を向上できる。
Further, unlike the conventional testing machines shown in FIGS. 1 and 2, it is not necessary to accurately measure the distances D, d, and F. Furthermore, there is no need to accurately measure the inclination angle θ as shown in FIG. Therefore, the time required for measurement can be shortened and measurement work efficiency can be improved.

また一回の測定に放射線フイルム4の使用枚数
は1枚のみであるので測定に要する経費を低減す
ることも可能である。
Further, since only one radiation film 4 is used for one measurement, it is also possible to reduce the cost required for measurement.

なお、本発明は上述した実施例に限定されるも
のではない。実施例においては本発明の基準ゲー
ジを鋼管12の接続部25内に存在する環状欠陥
26の検出に用いたが、表面が曲面に形成された
他の被検査体に適用することも可能である。
Note that the present invention is not limited to the embodiments described above. In the examples, the reference gauge of the present invention was used to detect the annular defect 26 existing in the joint 25 of the steel pipe 12, but it can also be applied to other objects to be inspected that have curved surfaces. .

[発明の効果] 以上説明したように本発明によれば、互いに直
交する複数の第1および第2のマーカーを埋設し
た放射線透過試験機用基準ゲージを用いることに
よつて、鋼管等のように表面がたとえ曲面に形成
された被検査体であつたとしても、内部に存在す
る欠陥の位置および寸法を精度良くかつ簡単に測
定できる。
[Effects of the Invention] As explained above, according to the present invention, by using a reference gauge for a radiographic testing machine in which a plurality of first and second markers that are perpendicular to each other are embedded, it is possible to Even if the surface of the object to be inspected is formed into a curved surface, the position and size of defects existing inside the object can be precisely and easily measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は従来の放射線透過試験機で
欠陥を測定する時の測定手順を示す図、第4図お
よび第5図も従来の放射線透過試験機で欠陥を測
定する時の測定手順を示す図、第6図および第7
図は従来の放射線透過試験機における鋼管の欠陥
測定を説明するための図、第8図aは本発明の一
実施例の放射線透過試験機用基準ゲージの一部を
示す平面図、同図bは同基準ゲージを示す立面
図、第9図は同基準ゲージを用いた放射線透過試
験機を示す図、第10図は放射線フイルムを示す
図である。 1……鋼板、2,13a,13b……欠陥、4
……放射線フイルム、6……放射線源、7……放
射線、8,9,10,11,14a,14b,2
8,29,30,31……像、12……鋼管、2
1……帯状支持物体、22……第1のマーカー、
23……第2のマーカー、24……基準ゲージ、
25……接続部、26……環状欠陥、27……ス
ペーサ。
Figures 1 to 3 are diagrams showing the measurement procedure when measuring defects using a conventional radiographic testing machine, and Figures 4 and 5 are also diagrams showing the measuring procedure when measuring defects using a conventional radiographic testing machine. Figures 6 and 7 showing
The figure is a diagram for explaining defect measurement of steel pipes using a conventional radiographic testing machine, Figure 8a is a plan view showing a part of a reference gauge for a radiographic testing machine according to an embodiment of the present invention, and Figure 8b 9 is an elevational view showing the reference gauge, FIG. 9 is a diagram showing a radiation transmission tester using the same reference gauge, and FIG. 10 is a diagram showing a radiation film. 1... Steel plate, 2, 13a, 13b... Defect, 4
...Radiation film, 6...Radiation source, 7...Radiation, 8, 9, 10, 11, 14a, 14b, 2
8, 29, 30, 31...Statue, 12...Steel pipe, 2
1... Band-shaped support object, 22... First marker,
23...Second marker, 24...Reference gauge,
25... Connection portion, 26... Annular defect, 27... Spacer.

Claims (1)

【特許請求の範囲】[Claims] 1 被検査体を放射線発生源と放射線感光材との
間に介挿して前記被検査体内に存在する欠陥を検
出する放射線透過試験機において、前記被検査体
と前記放射線感光材との間に介挿され、可撓性を
有した板状支持物体と、この板状支持物体内の厚
み方向に埋設された複数の第1の重金属製棒状マ
ーカーと、前記板状支持物体内の前記厚み方向に
対して直角方向に埋設された複数の第2の重金属
製棒状マーカーとで構成されたことを特徴とする
放射線透過試験機用基準ゲージ。
1. In a radiation transmission testing machine that detects defects existing in the inspected object by inserting an object to be inspected between a radiation source and a radiation-sensitive material, a flexible plate-shaped support object, a plurality of first heavy metal bar-shaped markers embedded in the thickness direction of the plate-shaped support object; A reference gauge for a radiographic testing machine, comprising a plurality of second heavy metal rod-shaped markers embedded in a direction perpendicular to the reference gauge.
JP59102047A 1984-05-21 1984-05-21 Reference gauge for radiographic testing machine Granted JPS60244843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59102047A JPS60244843A (en) 1984-05-21 1984-05-21 Reference gauge for radiographic testing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59102047A JPS60244843A (en) 1984-05-21 1984-05-21 Reference gauge for radiographic testing machine

Publications (2)

Publication Number Publication Date
JPS60244843A JPS60244843A (en) 1985-12-04
JPH0522841B2 true JPH0522841B2 (en) 1993-03-30

Family

ID=14316852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59102047A Granted JPS60244843A (en) 1984-05-21 1984-05-21 Reference gauge for radiographic testing machine

Country Status (1)

Country Link
JP (1) JPS60244843A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO308630B1 (en) * 1996-09-19 2000-10-02 Norske Stats Oljeselskap Pipeline inspection system

Also Published As

Publication number Publication date
JPS60244843A (en) 1985-12-04

Similar Documents

Publication Publication Date Title
US5161413A (en) Apparatus and method for guided inspection of an object
GB1586581A (en) Pipeline inspection equipment
BR112019001624B1 (en) METHOD FOR DETERMINING GEOMETRIC PARAMETERS AND/OR STATE OF OBJECTIVE MATERIAL UNDER RADIOGRAPHY STUDY
JPH0522841B2 (en)
US9354205B2 (en) Method and sensor mount for measuring seam peaking in pipes by means of ultrasonic inspection
KR102067531B1 (en) Residual Stress Measurement Apparatus for Tubular Type Electric Power Transmission Tower
JP3199417B2 (en) Standard specimen for non-destructive inspection of piping
JP2594835B2 (en) A method of extracting the thinned part of a double-walled pipe made of dissimilar materials and measuring the thickness of the thinned part
CN100495002C (en) Defect depth detecting method based on ray real-time imaging
JPS6161086A (en) Probing method for radiation absorbing body in structure
CN112326799A (en) Method for applying phased array technology to pressure pipeline regular inspection and grading
US10408615B2 (en) Method of inspecting a degraded area of a metal structure covered by a composite repair and method of measuring a remaining wall thickness of a composite structure
JP6170473B2 (en) Thinning inspection method for part of buried structure
JPH01110251A (en) Evaluation of integrity for one-side weld part
Allard et al. Pipeline external corrosion analysis using a 3D laser scanner
RU203109U1 (en) A universal sample for increasing the accuracy of measurements by ultrasonic thickness gauges and developing the skills of specialists in identifying corrosion defects of the inner surface of gas pipelines
Harara Corrosion evaluation and wall thickness measurement on large-diameter pipes by tangential radiography using a Co-60 gamma-ray source
JP3792322B2 (en) Method for estimating pipe thinning depth
Harara Pit-depth measurement on large diameter pipes by tangential radiography using a Co-60 gamma-ray source
WO2023223002A1 (en) Metal oxidation determining apparatus
RU2653955C1 (en) Method for determining voltage supply and coordinates in heat-affected zones of pipelines by the method for measuring velocity of passage of ultrasonic wave
KR200346952Y1 (en) Source-film fixing equipment for radiography to pipe-line
JP3147272B2 (en) Defect height measurement method for ultrasonic flaw detector
JPH0357432B2 (en)
PIRON et al. Innovation in 3D scanning technology and software is pushing the limits of complex corrosion and mechanical damage assessment on pipelines.