JP2615064B2 - Material inspection method by X-ray diffraction method - Google Patents

Material inspection method by X-ray diffraction method

Info

Publication number
JP2615064B2
JP2615064B2 JP62212919A JP21291987A JP2615064B2 JP 2615064 B2 JP2615064 B2 JP 2615064B2 JP 62212919 A JP62212919 A JP 62212919A JP 21291987 A JP21291987 A JP 21291987A JP 2615064 B2 JP2615064 B2 JP 2615064B2
Authority
JP
Japan
Prior art keywords
value
curve
intensity curve
line separation
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62212919A
Other languages
Japanese (ja)
Other versions
JPS6457156A (en
Inventor
徹 後藤
隆 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62212919A priority Critical patent/JP2615064B2/en
Publication of JPS6457156A publication Critical patent/JPS6457156A/en
Application granted granted Critical
Publication of JP2615064B2 publication Critical patent/JP2615064B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、材質調査で用いられるX線回折法による材
質検査方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a material inspection method by an X-ray diffraction method used in a material inspection.

〔従来の技術〕[Conventional technology]

従来の現場向のX線応力測定装置は第9図、及び第10
図に示すように、X線管球3が回動式の取付台26に取付
けられ同取付台26の端部に円弧ギャー27が取付けられそ
の上をX線検出器25が移動するよう取付けられている。
又X線管球3及びX線検出器25にはそれぞれ平行スリッ
ト28,29が配設されている。
Conventional on-site X-ray stress measuring devices are shown in Figs.
As shown in the figure, the X-ray tube 3 is mounted on a rotatable mounting base 26, an arc gear 27 is mounted on the end of the mounting base 26, and the X-ray detector 25 is mounted thereon so as to move. ing.
The X-ray tube 3 and the X-ray detector 25 are provided with parallel slits 28 and 29, respectively.

更に、上記取付台26及びX線検出器25の駆動装置、同
駆動装置コントローラ、及びX線発生装置等(図示省
略)が設けられている。
Further, a drive device for the mounting base 26 and the X-ray detector 25, a drive device controller for the same, an X-ray generator, and the like (not shown) are provided.

X線はX線管球3より平行スリット28を経て上記取付
台26により被検査体の所定の位置Rに所定の入射角度で
照射される。一方その反射波は上記検出器25が円弧ギャ
ー27を移動することにより平行スリット29を経て任意の
反射角で検出される。このようにしてX線回折の強度曲
線(X線回折曲線)が得られる。同回折曲線の半価値、
すなわち、第5図に示すように山の1/2高さ部の幅を求
め、その測定値をもとに被検査部の材質評価を行うこと
が行われている。例えば、硬さの推定は第6図に示すよ
うに、Cの含有量をパラメータにしてロックウエル硬さ
(HRC)と半価値(度)との関係を示す既存のデータが
えられているので、測定された半価値から上記被検査部
分のロックウエル硬さを求めることができた。
X-rays are emitted from the X-ray tube 3 through the parallel slit 28 to the mounting table 26 at a predetermined position R of the object to be inspected at a predetermined incident angle. On the other hand, the reflected wave is detected at an arbitrary reflection angle through the parallel slit 29 when the detector 25 moves along the arc gear 27. Thus, an X-ray diffraction intensity curve (X-ray diffraction curve) is obtained. Half value of the diffraction curve,
That is, as shown in FIG. 5, the width of a half-height portion of a mountain is obtained, and the material of the inspected portion is evaluated based on the measured value. For example, the estimation of the hardness as shown in FIG. 6, the existing data showing the relationship between Rockwell hardness with a content of C in the parameters (H R C) and half-value (degrees) is e Therefore, the Rockwell hardness of the inspected portion could be determined from the measured half value.

一方、材質の差をより明確に出す為に、2重線分離を
行うことが提案されている。2重線分離とは、X線源と
して用いる特性X線が本質的に2重線となっており、測
定で得られる回折曲線は第7図(a)に示すような曲
線,すなわち、同図(b)の実線で示すような山形曲線
が2つ(図では他の1つを省略)重なったものである
が、それを分離して1つの山にすることである。しかし
ながら、本法を実用化した例は極めて少ない。その理由
は、2重線分離法が必ずしも妥当な答を出さない為であ
る。しかしながら、2重線分離を行うことは、原理的に
材質の差をより明確に出す方法として有効であることは
明らかである。それを第8図により説明する。
On the other hand, it has been proposed to perform double line separation to more clearly show the difference in material. The double ray separation means that characteristic X-rays used as an X-ray source are essentially double rays, and the diffraction curve obtained by the measurement is a curve as shown in FIG. Although two mountain-shaped curves (the other one is omitted in the figure) as shown by the solid line in (b) overlap, this is to separate them into one mountain. However, there are very few examples where this method has been put to practical use. The reason is that the double line separation method does not always give a valid answer. However, it is clear that performing double line separation is effective in principle as a method for making the difference in material clearer. This will be described with reference to FIG.

第8図は、材質差により回折曲線幅が変化した場合
に、第8図(a)回折曲線そのままの半価幅変化と第8
図(b)2重線分離後の単線の半価幅変化の違いを示し
たものである。その変化量を同図(a)においてはΔd1
+Δd2,同図(b)においては2Δd1であるとすると、
検出能は、全体幅との比で表わせるから、d2重線>d単
線により, が常に成立する。よって、材質差をより明確に出す方法
として、2重線分離の有効なことが理解できる。
FIG. 8 (a) shows a half-width change of the diffraction curve as it is and FIG.
FIG. 6B shows the difference in the half-value width change of the single line after the double line separation. The amount of change is Δd 1 in FIG.
+ Δd 2 , and 2Δd 1 in FIG.
Detectability from expressed by a ratio of the total width, d 2 doublets> by d single wire, Always holds. Therefore, it can be understood that the double line separation is effective as a method for more clearly showing the material difference.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来の検査システムには次のような問題点があっ
た。
The above conventional inspection system has the following problems.

(1) 2重線分離を行っても、それが妥当な分離結果
であるかどうかが不明である。妥当性を確認せずに、分
離結果から半価幅を測定し、それを測定パラメータに用
いると大きい誤差が出る。
(1) Even if double line separation is performed, it is unknown whether it is a proper separation result. If the half width is measured from the separation result without using a validity check, and it is used as a measurement parameter, a large error is generated.

(2) 妥当性の確認法がない。(2) There is no method for confirming validity.

(3) 妥当性が確認出来ても、測定装置として具体的
な次の測定アクションをとる方法が不明である。
(3) Even if the validity can be confirmed, it is unknown how to take the next specific measurement action as a measuring device.

(4) 測定装置は複雑な機構を有しかつ大型である。(4) The measuring device has a complicated mechanism and is large.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明は上記問題点を解決するため次の方法をとる。
すなわち、X線回折の強度曲線の形状を解析して硬さ材
質を検査する方法において、 (1) 上記強度曲線から2重線分離を行う場合、2重
線分離処理の妥当性判別法として、K値、すなわち、2
重線分離後の一方の強度曲線に対する他方の強度曲線の
対応点の強度比、を変数とする後記(1)式に示す誤差
関係曲線に極小値があれば妥当とし、なければ妥当でな
いと判定する。
The present invention employs the following method to solve the above problems.
That is, in the method of analyzing the shape of the intensity curve of the X-ray diffraction and inspecting the hardness material, (1) When performing double line separation from the intensity curve, as a method for determining the validity of the double line separation process, K value, that is, 2
If there is a minimum value in the error relation curve shown by the following equation (1) using the intensity ratio of the corresponding point of the other intensity curve to the one intensity curve after the multiple line separation as a variable, it is determined to be valid if not, I do.

(2) 妥当の場合は、2重線分離後の強度曲線から半
価値を求め、次に予め求められた検査対象物の使用同種
材料の半価値と硬さの関係から硬さを求める。
(2) If appropriate, a half value is obtained from the intensity curve after the double line separation, and then hardness is obtained from a relationship between the half value and the hardness of the same kind of material used for the inspection object determined in advance.

(3) 上記で、妥当性が否の場合、その測定を無効と
し、対象物のX線照射域を変えて、再測定が行われるよ
うフイドバックする。
(3) In the case where the above is not valid, the measurement is invalidated, and the X-ray irradiation area of the object is changed, and feedback is performed so that re-measurement is performed.

〔作 用〕(Operation)

2重線分離後の1つの強度曲線を仮定してK値を変数
とする曲線と、測定からえられた強度曲線との間の誤差
関係曲線を求め、極小値の有無が調べられる。極小値が
あれば、上記の2重線分離処理は妥当であると判定され
る。妥当の場合は、2重線分離後の強度曲線から半価値
が求められ、次に予め求められた検査対象物の使用同種
材料の半価値と硬さの関係から硬さが求められる。
Assuming one intensity curve after double line separation, an error relation curve between a curve using the K value as a variable and an intensity curve obtained from the measurement is determined, and the presence or absence of a minimum value is checked. If there is a minimum value, the above-described double line separation processing is determined to be appropriate. If appropriate, the half value is determined from the intensity curve after the double line separation, and then the hardness is determined from the relationship between the half value and the hardness of the same kind of material used for the test object that has been determined in advance.

極小値がない場合は、その測定を無効として、もう一
度対象物のX線照射域を変えて、再測定が行われる。
If there is no minimum value, the measurement is invalidated, the X-ray irradiation area of the object is changed again, and the measurement is performed again.

なお、上記の2重線分離処理の妥当性判別法より妥当
として得られたK値が予め定められた基準値のどこにあ
るかにより、得られた材質検査結果の信頼性が数値的に
判定される。
The reliability of the obtained material inspection result is numerically determined based on where the K value obtained as valid by the validity determination method of the above-described double line separation processing is within a predetermined reference value. You.

このようにして、従来のものより感度及び精度の高い
材質検査が可能となる。
In this way, a material inspection with higher sensitivity and accuracy than the conventional one can be performed.

〔実施例〕〔Example〕

本発明の一実施例としてタービンロータの長期使用に
伴なう材質変化を評価する方法について第1図ないし第
4図により説明する。タービンロータにおいて材質変化
の生じやすい個所の1つとして外周溝底部がある。外周
溝底部は小曲率部であるためその測定にはシンプルなX
線回折装置の使用が不可欠である。
As one embodiment of the present invention, a method for evaluating a change in material of a turbine rotor over a long period of use will be described with reference to FIGS. One of the places in the turbine rotor where the material change is likely to occur is the outer circumferential groove bottom. Since the bottom of the outer circumferential groove is a small curvature, a simple X
The use of a line diffractometer is essential.

第1図に示すように、X線管駆動装置6、同X線管駆
動装置6には、X線を照射するピンホールスリット4を
有するX線管3とPSPC(Position Sencitive Proportio
nal Counter)検出器5とが配設されている。一方、上
記X線駆動装置6は駆動装置コントローラ8に、X線管
3はX線発生装置10に、PSPC検出器はマルチチャンネル
アナライザ9にそれぞれ接続されている。更に駆動装置
コントローラ、X線発生装置、及びマルチチャンネルア
ナライザ9はコンピュータ11に接続されている。
As shown in FIG. 1, the X-ray tube driving device 6 has an X-ray tube 3 having a pinhole slit 4 for irradiating X-rays and a PSPC (Position Sencitive Proportio).
nal Counter) detector 5 is provided. On the other hand, the X-ray driving device 6 is connected to a driving device controller 8, the X-ray tube 3 is connected to an X-ray generating device 10, and the PSPC detector is connected to a multi-channel analyzer 9. Further, the drive controller, the X-ray generator, and the multi-channel analyzer 9 are connected to the computer 11.

なお、本実施例の装置は、第1表に対比して示すよう
に従来の装置よりもシンプルな構成になっている。
The device of the present embodiment has a simpler configuration than the conventional device as shown in Table 1.

以上の構成において、タービンロータ1の溝底部を測
定する方法について第2図(検査システムのフローチャ
ート)を参照しながら説明する。
A method of measuring the groove bottom of the turbine rotor 1 in the above configuration will be described with reference to FIG. 2 (flowchart of the inspection system).

溝底部に弦状の測定面2を作る。次に X線管3からのX線をシングルピンホールスリット
4に通し局所的に照射しPSPC検出器5によりX線回折強
度曲線が測定される。
A chord-shaped measurement surface 2 is formed at the bottom of the groove. Next, the X-ray from the X-ray tube 3 is locally irradiated through the single pinhole slit 4, and the X-ray diffraction intensity curve is measured by the PSPC detector 5.

次に平,後藤の方法により2重線分離処理が以下の
ようにしてコンピュータ11及びマルチチャンネルアナラ
イザにより行われる。
Next, double line separation processing is performed by the computer 11 and the multi-channel analyzer in the following manner by the method of Taira and Goto.

すなわち、X線回折強度曲線g(x)が得られると、
2重線分離後の強度曲線をf1(x),f2(x)とおい
て、更にf2(x)=Kf1(X−d)とする。
That is, when an X-ray diffraction intensity curve g (x) is obtained,
The intensity curves after double line separation are f 1 (x) and f 2 (x), and f 2 (x) = Kf 1 (X−d).

次にK値をパラメータとする(1)式で表される誤差
曲線I(K)を求める(第3図)。
Next, an error curve I (K) represented by the equation (1) using the K value as a parameter is obtained (FIG. 3).

I(K)=∫(f1(x)+Kf1(X−d)−g(x))2
dx ……(1) この時、この誤差曲線に極小値12が存在すれば2重線
分離は妥当であるとコンピュータ11により判定される。
なお一般にX線回折線はガウス分布あるいはコシー分布
で代表されるが、実測されるものは両者の中間的なもの
である。しかし、ここでは成分強度曲線の絶対的な分布
形が問題ではなくf1(x)とf2(x)が相似であればよ
い。
I (K) = ∫ (f 1 (x) + Kf 1 (X−d) −g (x)) 2
dx (1) At this time, if the minimum value 12 exists in this error curve, the computer 11 determines that the double line separation is appropriate.
In general, X-ray diffraction lines are represented by a Gaussian distribution or a Cauchy distribution, but what is actually measured is intermediate between the two. However, the absolute distribution form of the component intensity curve does not matter here, and it suffices if f 1 (x) and f 2 (x) are similar.

もし極小値が存在しなければその測定を無効とし、
X線照射域を若干,ずらして再測定される。
If no local minimum exists, invalidate the measurement,
The X-ray irradiation area is re-measured with a slight shift.

,およびが必要に応じて繰返され、適正な2
重線分離後のX線回折線測定結果が得られる。そして適
正な2重線分離後の強度曲線から半価値が求められ、次
に予め求められた検査対象物の使用同種材料の半価値と
硬さの関係から硬さが求められる。
, And are repeated as necessary,
An X-ray diffraction line measurement result after the heavy line separation is obtained. Then, the half value is determined from the intensity curve after the appropriate double line separation, and then the hardness is determined from the relationship between the previously determined half value and the hardness of the same material used for the inspection object.

次にその結果がどの程度の信頼性があるかは、K値
と信頼範囲の関係を表わす評価図(第4図(a))から
判定される。
Next, the degree of reliability of the result is determined from an evaluation diagram (FIG. 4A) showing the relationship between the K value and the confidence range.

第4図(a)はコンピュータ11を用いて次のようにし
て求められる。あらかじめ硬さの既知なサンプルを数種
用意して、K値を変化させて、それらの半価幅が測定さ
れ、プロットされると、例えば第1図(b)に示すよう
にある1つのK値に対し、硬さと半価値の関係は、ある
幅をもつ。この幅は、K値により異なり、大小がある。
この幅を信頼範囲と称し、これが小さい程信頼性が大き
くなる。更に、この幅をK値を変数にしてプロットされ
曲線が第4図(a)である。つまり既知のサンプルから
上記〜の工程でK値を求め、硬さ、K値、半価幅の
ばらつき幅との関係を統計的な考えで処理し、K値と信
頼範囲(=上記この幅)をプロットすれば第4図(a)
のようになる。従って、検査対象につき、上記の工程で
K値を求めると、第4図(a)の曲線から信頼範囲(測
定結果の信頼範囲、すなわち、これと強い相関を持つ硬
さの信頼範囲)が分る。
FIG. 4A is obtained using the computer 11 as follows. When several kinds of samples having known hardness are prepared in advance, the K value is changed, and their half widths are measured and plotted, for example, as shown in FIG. The relationship between hardness and half-value has a certain range. This width varies depending on the K value and has a magnitude.
This width is referred to as a confidence range, and the smaller the width, the greater the reliability. Further, this width is plotted with the K value as a variable, and a curve is shown in FIG. 4 (a). That is, the K value is obtained from the known sample in the above-described steps, and the relationship between the hardness, the K value, and the variation width of the half-value width is processed in a statistical way, and the K value and the confidence range (= the above width) Is plotted in Fig. 4 (a).
become that way. Therefore, when the K value is determined for the inspection target in the above-described process, the confidence range (the confidence range of the measurement result, that is, the confidence range of the hardness having a strong correlation with this) is obtained from the curve of FIG. You.

このようにして、従来のものよりもシンプルな装置
で、より感度、及び精度の高い材質検査が可能となる。
In this way, it is possible to perform a material inspection with higher sensitivity and accuracy with a simpler device than the conventional one.

〔発明の効果〕〔The invention's effect〕

本発明により次の効果を奏する。 The following effects are obtained by the present invention.

2重線分離法を採用するとともに2重線分離処理の妥
当性を判別し、その結果を再測定の要否にフイードバッ
クすることにより得られる結果の信頼性が高まる。さら
に、その信頼性の程度を得られたK値から評価し定量的
に表わすことができる。従って、総合的な結果を判断す
る際の有益なデータが得られるとともに精度の高い材質
検査が可能となる。
By adopting the double line separation method, judging the validity of the double line separation process, and feeding back the result to the necessity of re-measurement, the reliability of the obtained result is improved. Furthermore, the degree of the reliability can be evaluated from the obtained K value and quantitatively expressed. Therefore, useful data for judging the overall result can be obtained, and a highly accurate material inspection can be performed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の一実施例の装置の基本構成図。 第2図は、本発明の一実施例の検査システムのフローチ
ャート図。 第3図は、本発明の一実施例の2重線分離処理の妥当性
の判別を行なうためのK値と誤差の関係図。 第4図(a)及び(b)は、本発明の一実施例の硬さと
半価幅の関係をK値を変化させて求め、その図よりK値
と信頼範囲の関係を求めた信頼範囲の評価図。 第5図は、従来の一実施例の回折曲線の半価幅の図。 第6図は、従来の一実施例として回折曲線の半価幅より
硬さを推定する図(“X線応力測定法”養賢堂,1981,P1
87)。 第7図は、従来の一例の2重線分離法の説明図。第7図
(a)は、回折曲線そのままの半価幅の図。第7図
(b)は、2重線分離後の一つの単線曲線及び半価幅の
図。 第8図は、従来の一例として2重線分離の有効性を説明
した図。 第8図(a)は、材質差により回折線幅が変化した場
合、回折曲線そのままの半価幅変化図。第8図(b)
は、2重線分離後の単線曲線の半価幅変化図。 第9図は従来装置の一例のX線管、検出器及び照射位置
の関係を示す図。 第10図は同従来例のX線管及び検出器の駆動装置の概念
斜視図。 1……タービンロータ、2……測定面 3……X線管、4……シングルピンホールスリット 5……PSPC検出器、6……X線管駆動装置 7……X軸方向、8……駆動装置コントローラ 9……マルチチャンネルアナライザー 10……X線発生装置、11……コンピュータ 12……極小値、13,131,132,d2重線,d単線……半価幅 Δd1,Δd2……半価幅の変化量 25……X線検出器、26……回動式の取付台 27……円弧ギャー、28,29……平行スリット R……被検査体の所定の位置(照射位置)
FIG. 1 is a basic configuration diagram of an apparatus according to an embodiment of the present invention. FIG. 2 is a flowchart of an inspection system according to one embodiment of the present invention. FIG. 3 is a relationship diagram between a K value and an error for determining the validity of the double line separation processing according to one embodiment of the present invention. FIGS. 4 (a) and 4 (b) show the relationship between the hardness and the half width of one embodiment of the present invention obtained by changing the K value, and the relationship between the K value and the reliability range obtained from the figure. Evaluation chart. FIG. 5 is a diagram of a half width of a diffraction curve according to a conventional example. FIG. 6 is a diagram for estimating hardness from a half width of a diffraction curve as one example of the prior art (“X-ray stress measurement method”, Yokendo, 1981, p. 1).
87). FIG. 7 is an explanatory view of a conventional double line separation method. FIG. 7 (a) is a diagram of the half width of the diffraction curve as it is. FIG. 7 (b) is a diagram of one single line curve and half width after double line separation. FIG. 8 is a diagram for explaining the effectiveness of double line separation as an example of the related art. FIG. 8A is a diagram showing a half-value width change of a diffraction curve as it is when a diffraction line width changes due to a difference in material. FIG. 8 (b)
FIG. 4 is a half-value width change diagram of a single line curve after double line separation. FIG. 9 is a diagram showing a relationship among an X-ray tube, a detector and an irradiation position of an example of a conventional apparatus. FIG. 10 is a conceptual perspective view of an X-ray tube and detector driving device of the conventional example. DESCRIPTION OF SYMBOLS 1 ... Turbine rotor 2 ... Measurement surface 3 ... X-ray tube 4 ... Single pinhole slit 5 ... PSPC detector 6 ... X-ray tube driving device 7 ... X-axis direction 8 ... drive controller 9 ...... multichannel analyzer 10 ...... X-ray generator, 11 ...... computer 12 ...... minimum value, 13,131,132, d 2 doublets, d single wire ...... half width [Delta] d 1, [Delta] d 2 ...... half Width change amount 25 X-ray detector 26 Rotating mount 27 Arc gear 28 29 Parallel slit R Predetermined position (irradiation position) of inspection object

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】X線回折の強度曲線の形状を解析して硬さ
材質を検査するX線回折法による材質検査方法におい
て、 (1) 上記強度曲線から2重線分離を行う場合、2重
線分離処理の妥当性判別法として、K値、すなわち、2
重線分離後の一方の強度曲線に対する他方の強度曲線の
対応点の強度比、を変数とする下記(1)式に示す誤差
関係曲線に極小値があれば妥当とし、なければ妥当でな
いと判定し、 (2) 妥当の場合は、2重線分離後の強度曲線から半
価値を求め、次に予め求められた検査対象物の使用同種
材料の半価値と硬さの関係から硬さを求め、 (3) 上記で、妥当性が否の場合、その測定を無効と
し、対象物のX線照射域を変えて、再測定が行われるよ
うフイドバックする、ことを特徴とするX線回折法によ
る材質検査方法。 ∫(f1(x)+Kf1(x−d)−g(x))2dx ……
(1) ここで g(x):測定されたX線回折強度曲線 f1(x):一方の強度曲線 Kf1(x−d):他方の強度曲線 K:強度比(変数)
1. A material inspection method by an X-ray diffraction method for inspecting a hardness material by analyzing a shape of an intensity curve of the X-ray diffraction, wherein: (1) When performing double line separation from the intensity curve, As a method for determining the validity of the line separation processing, the K value, that is, 2
If there is a minimum value in the error relation curve shown in the following equation (1) using the intensity ratio of the corresponding point of the other intensity curve to the one intensity curve after the multiple line separation as a variable, it is determined to be invalid if it is not. (2) If appropriate, calculate the half value from the intensity curve after the double line separation, and then calculate the hardness from the relationship between the half value and the hardness of the same kind of material used for the test object determined in advance. (3) In the above case, when the validity is not satisfied, the measurement is invalidated, the X-ray irradiation area of the object is changed, and the object is fed back so that re-measurement is performed. Material inspection method. ∫ (f 1 (x) + Kf 1 (x−d) −g (x)) 2 dx ......
(1) Here, g (x): measured X-ray diffraction intensity curve f 1 (x): one intensity curve Kf 1 (x−d): the other intensity curve K: intensity ratio (variable)
JP62212919A 1987-08-28 1987-08-28 Material inspection method by X-ray diffraction method Expired - Lifetime JP2615064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62212919A JP2615064B2 (en) 1987-08-28 1987-08-28 Material inspection method by X-ray diffraction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62212919A JP2615064B2 (en) 1987-08-28 1987-08-28 Material inspection method by X-ray diffraction method

Publications (2)

Publication Number Publication Date
JPS6457156A JPS6457156A (en) 1989-03-03
JP2615064B2 true JP2615064B2 (en) 1997-05-28

Family

ID=16630456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62212919A Expired - Lifetime JP2615064B2 (en) 1987-08-28 1987-08-28 Material inspection method by X-ray diffraction method

Country Status (1)

Country Link
JP (1) JP2615064B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2839196B2 (en) * 1989-10-26 1998-12-16 株式会社日立製作所 Damage inspection method and device for shaft

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273145A (en) * 1985-09-27 1987-04-03 Fujitsu Ltd Method for splitting waveform of x-ray optoelectronic spectrum

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273145A (en) * 1985-09-27 1987-04-03 Fujitsu Ltd Method for splitting waveform of x-ray optoelectronic spectrum

Also Published As

Publication number Publication date
JPS6457156A (en) 1989-03-03

Similar Documents

Publication Publication Date Title
US7120228B2 (en) Combined X-ray reflectometer and diffractometer
US7068753B2 (en) Enhancement of X-ray reflectometry by measurement of diffuse reflections
US3936638A (en) Radiology
JP6230618B2 (en) Apparatus and method for surface mapping using in-plane oblique incidence diffraction
JPWO2005005969A1 (en) Energy dispersive X-ray diffraction / spectrometer
JP3889851B2 (en) Film thickness measurement method
JP2615064B2 (en) Material inspection method by X-ray diffraction method
JP2005140777A (en) Sample inspection method, its device, cluster tool for manufacturing microelectronics device, and device for manufacturing microelectronics device
JP3968350B2 (en) X-ray diffraction apparatus and method
GB2260403A (en) Measurement of paint coating quantity
JPH07294220A (en) Method and apparatus for detecting film thickness of multilayered thin film
JP2906924B2 (en) Wafer surface roughness measurement method
GB2084314A (en) Determining concentration by x-ray fluorescence
JP2002529699A (en) X-ray diffractometer with x-ray optical reference channel
JP2005529697A (en) Sample analysis method and apparatus
JPH0915392A (en) X-ray analyzer
EP0128922B1 (en) A method for producing the radiological image of an object, preferably for use in material testing, and a means for its performance
JP4624758B2 (en) Sample inspection method and apparatus
JP3018043B2 (en) Calibration curve creation method for film thickness measurement
JP2930866B2 (en) X-ray analysis method and apparatus used therefor
JP2594220B2 (en) X-ray fluorescence analysis method
JP3000892B2 (en) Film thickness measurement method using X-ray diffraction
RU2086954C1 (en) Method for measuring of absolute value of body density
JPH0237539B2 (en)
JP3777581B2 (en) Film thickness measurement method using X-ray diffraction method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 11