JPH07294220A - Method and apparatus for detecting film thickness of multilayered thin film - Google Patents

Method and apparatus for detecting film thickness of multilayered thin film

Info

Publication number
JPH07294220A
JPH07294220A JP8951794A JP8951794A JPH07294220A JP H07294220 A JPH07294220 A JP H07294220A JP 8951794 A JP8951794 A JP 8951794A JP 8951794 A JP8951794 A JP 8951794A JP H07294220 A JPH07294220 A JP H07294220A
Authority
JP
Japan
Prior art keywords
thin film
multilayer thin
light
detecting
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8951794A
Other languages
Japanese (ja)
Inventor
Shigeki Kudo
重樹 工藤
Kazuo Nomura
一雄 野村
Masanori Nariai
正憲 成合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP8951794A priority Critical patent/JPH07294220A/en
Publication of JPH07294220A publication Critical patent/JPH07294220A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To highly accurately detect the thickness of a multilayered thin film at high speeds. CONSTITUTION:A white light from a white light source 1 is cast on a sample 10 via an optical fiber 2. A light reflected from the sample 10 is, via an optical fiber 3, introduced into a spectroscope 4. The light spectrum is processed by fast Fourier transformation, whereby an energy spectrum is obtained from a multi-channel detector 5. The spectrum is then processed by a signal processor 7. The thickness of a multilayered thin film is obtained in this manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、複写機のドラムに用
いられる、有機光導体層を円筒状の基体に塗布した、い
わゆるOPCドラム等における多層薄膜の膜厚検出方法
および装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for detecting the thickness of a multilayer thin film in a so-called OPC drum or the like, which is used for a drum of a copying machine, in which an organic photoconductor layer is coated on a cylindrical substrate. .

【0002】[0002]

【従来の技術】薄膜の膜厚を測定する方法として、繰り
返し反射干渉法,光の吸収を用いる方法,触針法,膜の
破断面を光学顕微鏡や走査電子線顕微鏡(SEM)で観
察する方法,薄膜の重さから測定する方法,等さまざま
な手法がある。しかし、試料を非破壊で測定できる点,
試料作りの容易さの点,測定手段の試料に及ぼす影響の
少ない点等から光を透過する試料に対しては繰り返し反
射干渉法が一番優れている。その繰り返し反射干渉法の
中には、単色光を用いるもの、一定の波長範囲を用いる
ものがある。中でも可視光範囲を用いる測定では、メカ
ニカルな駆動部を持たないという点で分光された光を瞬
時にセンサーで検出するマルチチャネルディテクタ方式
が高速処理に適している。
2. Description of the Related Art As a method for measuring the thickness of a thin film, a repeated reflection interferometry method, a method using light absorption, a stylus method, and a method of observing a broken surface of the film with an optical microscope or a scanning electron microscope (SEM). There are various methods such as measuring from the weight of thin film. However, the point that the sample can be measured non-destructively,
The repeated reflection interferometry method is the best for a sample that transmits light because of the ease of sample preparation and the small influence of the measuring means on the sample. Among the repeated reflection interferometry, there are one using monochromatic light and one using a certain wavelength range. Among them, in the measurement using the visible light range, the multi-channel detector method in which the dispersed light is instantly detected by the sensor is suitable for high-speed processing because it does not have a mechanical drive unit.

【0003】しかし、次に示すように単層膜の場合には
問題ないが、多層膜の場合になると信号処理方法に問題
がある。
However, as shown below, there is no problem in the case of a single layer film, but there is a problem in the signal processing method in the case of a multilayer film.

【0004】従来の単層膜の厚み測定を図3によって説
明する。図3において、11は基板、12は測定対象で
ある単層膜であり、13は空気であり、n0,n1,n2
は基板11,単層膜12,空気13の屈折率、Lは白色
光、LRは反射光、θは入射角を示す。図3に示すよう
に単層膜12の場合、この薄膜に白色光Lを入射し、そ
の反射光LRのスペクトルをマルチチャネル分光器で解
析している。このとき振幅反射率Rは
The conventional thickness measurement of a single layer film will be described with reference to FIG. In FIG. 3, 11 is a substrate, 12 is a single-layer film to be measured, 13 is air, and n 0 , n 1 , n 2
Is the refractive index of the substrate 11, the monolayer film 12, and the air 13, L is white light, L R is reflected light, and θ is the incident angle. As shown in FIG. 3, in the case of the single-layer film 12, white light L is incident on this thin film, and the spectrum of the reflected light L R is analyzed by a multichannel spectroscope. At this time, the amplitude reflectance R is

【0005】[0005]

【数1】 i :界面での反射フレネル係数(i=1,2) ni :材料iの屈折率(i=0,1,2) d:膜厚 で与えられる。この場合の反射強度スペクトルは|R|
2 で、この強度が測定される。簡単な計算により、この
強度は図4に示されるように位相δ1 で振動している。
そこで屈折率が既知の場合は、極大(極小)を与える波
長から薄膜が
[Equation 1] r i : reflection Fresnel coefficient at interface (i = 1, 2) n i : refractive index of material i (i = 0, 1, 2) d: film thickness The reflection intensity spectrum in this case is | R |
At 2 , this intensity is measured. By simple calculation, this intensity oscillates in phase δ 1 as shown in FIG.
Therefore, if the refractive index is known, the thin film will change from the wavelength giving the maximum (minimum)

【0006】[0006]

【数2】 λi :極大(極小)を与える波長 m:λ1 とλ2 (>λ1 )の間の極大(極小)値を0か
ら番号付けた値で計算できる。
[Equation 2] λ i : Wavelength that gives the maximum (minimum) m: The maximum (minimum) value between λ 1 and λ 2 (> λ 1 ) can be calculated by numbering from 0.

【0007】次に、図5に示すように2層以上の多層膜
の場合(例えば、図5ではN層の場合を示し、nN+1
目は空気を示す)には、第j層からの振幅反射率Rj
Next, in the case of a multilayer film having two or more layers as shown in FIG. 5 (for example, FIG. 5 shows the case of the N layer, the n N + 1th layer shows air), the j-th layer The amplitude reflectance R j from

【0008】[0008]

【数3】 j:第j層の屈折率 dj:第j層の膜厚 θj:第j層の入力角 rj :第j層のフレネル係数 δj :(2π/λ)njj cosθj で与えられる。ここで各層が透明で各層間の多重干渉を
無視すると、全体の振幅反射率Rは
[Equation 3] n j : Refractive index of j- th layer d j : Thickness of j-th layer θ j : Input angle of j- th layer r j : Fresnel coefficient of j-th layer δ j : (2π / λ) n j d j cos θ j Given in. If each layer is transparent and multiple interference between layers is ignored, the total amplitude reflectance R is

【0009】[0009]

【数4】 と近似される。その強度スペクトルは|R|2で、この
量が測定される。この時、各層の屈折率njが既知であ
れば、測定値から各層の膜厚は、初期値膜厚dj0(j=
1…N)から、よく知られたNewton法を用いて、
繰り返し手法で解くことができる。この方法はdjoが任
意に選択できず、実際の解の近傍の値を選択しないと速
く解が求まらなかったり、別の解になったりして、初期
値の選び方が困難で、層数Nが多い場合は、繰り返し回
数が多く処理時間が長くかかり、インライン等での実時
間処理には不向きである。
[Equation 4] Is approximated by Its intensity spectrum is | R | 2 and this quantity is measured. At this time, if the refractive index n j of each layer is known, the film thickness of each layer can be calculated from the measured values to obtain the initial value film thickness d j0 (j
1 ... N), using the well-known Newton method,
Iterative methods can be used. In this method, d jo cannot be arbitrarily selected, and unless a value in the vicinity of the actual solution is selected, a solution cannot be obtained quickly, or a different solution is obtained, and it is difficult to select the initial value. When the number N is large, the number of repetitions is large and the processing time is long, which is not suitable for real-time processing such as in-line processing.

【0010】[0010]

【発明が解決しようとする課題】このように、従来の多
層薄膜の膜厚検出方法では処理に時間がかかり、インラ
イン製造工程の中の現場で、工程を乱すことなく測定す
るには不向きであった。
As described above, the conventional method for detecting the thickness of a multilayer thin film requires a long processing time and is not suitable for the measurement in the in-line manufacturing process without disturbing the process. It was

【0011】そこで本発明は、高速フーリエを変換の手
法を用いて、多層膜厚の膜厚検出を高速に、かつ高精度
に行うことを可能にする多層薄膜の薄膜検出方法および
装置を提供することを目的とするものである。
Therefore, the present invention provides a thin film detection method and apparatus for a multilayer thin film, which makes it possible to detect the thickness of a multi-layer film at high speed and with high accuracy by using a method of transforming a fast Fourier. That is the purpose.

【0012】[0012]

【課題を解決するための手段】本発明にかかる多層薄膜
の膜厚検出方法は、多層薄膜試料に白色光を照射し、該
試料より反射した光を分光し、そのスペクトルを高速フ
ーリエ変換してエネルギースペクトルを得、その波形を
処理して薄膜の膜厚を得るようにしたものである。
A method for detecting a film thickness of a multilayer thin film according to the present invention comprises irradiating a multilayer thin film sample with white light, dispersing the light reflected from the sample, and performing a fast Fourier transform on the spectrum. An energy spectrum is obtained and the waveform is processed to obtain the film thickness of a thin film.

【0013】また、波形の処理はエネルギースペクトル
を波数変換するものである。
Further, the processing of the waveform is a wave number conversion of the energy spectrum.

【0014】さらに、多層薄膜試料より反射した光を分
光したスペクトルをハニング窓処理をするものである。
Further, the spectrum obtained by dispersing the light reflected from the multilayer thin film sample is subjected to the Hanning window process.

【0015】また、高速フーリエ変換時に0拡充をする
ものである。
Further, 0 is expanded at the time of fast Fourier transform.

【0016】そして、多層薄膜は例えば、OPCドラム
の多層薄膜としたものである。
The multilayer thin film is, for example, a multilayer thin film of an OPC drum.

【0017】本発明にかかる多層薄膜の膜厚検出装置
は、白色光源と、この白色光源の光を多層薄膜試料に照
射する光ファイバと、照射した光の前記多層薄膜試料か
らの反射光を導く光ファイバと、この光ファイバを介し
て前記反射光を入射せしめて分光し、その強度を検出す
るマルチチャネル分光器と、このマルチチャネル分光器
の出力を信号処理する信号処理器とからなるものであ
る。
A multilayer thin film thickness detecting apparatus according to the present invention guides a white light source, an optical fiber for irradiating the light from the white light source onto a multilayer thin film sample, and a reflected light of the irradiated light from the multilayer thin film sample. An optical fiber, a multi-channel spectroscope for injecting the reflected light through the optical fiber to disperse the light and detecting its intensity, and a signal processor for processing the output of the multi-channel spectroscope. is there.

【0018】[0018]

【作用】本発明の多層薄膜の膜厚検出方法は、白色光源
からの光を多層薄膜試料に導き、ここで反射された反射
光を分光して、そのスペクトルを、高速フーリエ変換を
行いエネルギースペクトルを得た後、その波形を処理す
ることにより薄膜の膜厚を得る。
The method for detecting the thickness of a multilayer thin film of the present invention is to guide light from a white light source to a multilayer thin film sample, disperse the reflected light reflected here, and perform a fast Fourier transform on the spectrum to obtain an energy spectrum. After that, the thickness of the thin film is obtained by processing the waveform.

【0019】また、波形の処理は、エネルギースペクト
ルを波数変換して行う。
The waveform processing is performed by converting the energy spectrum into wave numbers.

【0020】さらに、多層薄膜試料より反射した光を分
光後、そのスペクトルをハニング窓処理して高速フーリ
エ変換処理に誤差が生じないようにする。
Further, after the light reflected from the multilayer thin film sample is dispersed, the spectrum is subjected to a Hanning window process so that an error does not occur in the fast Fourier transform process.

【0021】また、高速フーリエ変換時に、0拡充を行
って精度を向上させる。
Further, at the time of fast Fourier transform, zero expansion is performed to improve accuracy.

【0022】さらに、多層薄膜は例えば、OPCドラム
を対象とする。
Furthermore, the multilayer thin film is intended for, for example, an OPC drum.

【0023】本発明の多層薄膜の膜厚検出装置は、白色
光源を多層薄膜試料に導き、この試料で反射された反射
光をマルチチャネル分光器で分光し、その強度を検出
し、信号処理器で処理することにより膜厚を得る。
The apparatus for detecting the thickness of a multilayer thin film of the present invention guides a white light source to a multilayer thin film sample, disperses the reflected light reflected by this sample with a multi-channel spectroscope, detects its intensity, and outputs a signal processor. To obtain the film thickness.

【0024】[0024]

【実施例】図1は本発明の多層薄膜の膜厚検出装置の一
実施例の構成を示すブロック図である。この図におい
て、1は白色光源、2,3は光ファイバで、2分岐ファ
イバーの構成となっている。4は分光器、5はマルチチ
ャネルディテクタで、両者でマルチチャネル分光器6を
構成している。7は信号処理器,10は多層薄膜試料
(以下、単に試料という)である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing the configuration of an embodiment of a film thickness detecting apparatus for a multilayer thin film according to the present invention. In this figure, 1 is a white light source, and 2 and 3 are optical fibers, which are bifurcated fibers. Reference numeral 4 is a spectroscope, and 5 is a multi-channel detector, which together constitute a multi-channel spectroscope 6. Reference numeral 7 is a signal processor, and 10 is a multilayer thin film sample (hereinafter, simply referred to as a sample).

【0025】次に、動作について説明する。まず、試料
10に対し、白色光源1からの白色光を光ファイバ2を
介して垂直(θ=0)に照射し、その反射光を光ファイ
バ3を介して分光器4に入射し分光し、マルチチャネル
ディテクタ5でその強度を検出し、得られた反射スペク
トルを信号処理器7に入力する。この時、試料10の各
層で下の層へ光が透過する様な吸収のない波長範囲を選
択する必要がある。もし吸収があれば、各層の膜厚以外
に吸収による強度影響を受け、結果として測定誤差が大
きくなる。
Next, the operation will be described. First, the sample 10 is irradiated with white light from the white light source 1 vertically (θ = 0) through the optical fiber 2, and the reflected light is incident on the spectroscope 4 through the optical fiber 3 and dispersed. The intensity is detected by the multi-channel detector 5, and the obtained reflection spectrum is input to the signal processor 7. At this time, it is necessary to select a wavelength range in which each layer of the sample 10 does not absorb light such that light is transmitted to the lower layer. If there is absorption, not only the film thickness of each layer but also the strength due to absorption influences the measurement error.

【0026】ここで、波長(λ)の逆数、つまり波数
(σ)に変換すると、〔数2〕より膜厚はその差Δσ=
σ1 2 (σi -1 i ,i=1,2)のみに依存し、
測定開始波長(λ1 )には独立になる。すなわち、
Here, when converted into the reciprocal of the wavelength (λ), that is, the wave number (σ), the film thickness difference Δσ = from [Equation 2].
depends only on σ 12i = λ −1 i , i = 1,2),
The measurement start wavelength (λ 1 ) is independent. That is,

【0027】[0027]

【数5】 となる。[Equation 5] Becomes

【0028】従って、この反射スペクトルを高速フーリ
エ変換(FFTという)すると線スペクトルになる。F
FTをする理由は波長変数のままでは、スペクトルはブ
ロードになり、後の処理が困難になるからである。
Therefore, when this reflection spectrum is subjected to fast Fourier transform (called FFT), it becomes a line spectrum. F
The reason for performing FT is that if the wavelength variable is left as it is, the spectrum becomes broad and subsequent processing becomes difficult.

【0029】次に、反射スペクトルを検出するマルチチ
ャネルディテクタ5のセンサの個数が有限(例えば10
24個)のため、そのままFFTを行うと信号の両端の
値(1番目と最後のセンサの値)に結果が大きく影響さ
れる。そこで、よく知られた窓処理、例えばハニング
(Hanning)窓等を用いる。更にFFTの基底を
細かくし、変換(近似)精度を向上させるために、得ら
れた信号(例えば1024個)の後へ0を拡充する。例
えば信号の総数をN倍にすれば、精度はN倍改善され
る。この拡充された信号に対してFFT処理を行い、そ
の結果からエネルギースペクトルを求める。
Next, the number of sensors of the multi-channel detector 5 for detecting the reflection spectrum is finite (for example, 10).
Therefore, if the FFT is performed as it is, the result is greatly influenced by the values at both ends of the signal (the values of the first and last sensors). Therefore, well-known window processing, for example, a Hanning window or the like is used. Further, the base of the FFT is made finer, and in order to improve the conversion (approximation) accuracy, 0 is expanded after the obtained signal (for example, 1024). For example, if the total number of signals is increased N times, the accuracy is improved N times. FFT processing is performed on this expanded signal, and the energy spectrum is obtained from the result.

【0030】この時、ピークを与える情報は〔数4〕よ
り、各層の膜厚によるものである。しかし、このままで
は真のピークを与えていない可能性がある。そこで、真
のピークの場合、ピークの両隣りの値が同じであるとい
う仮定を設け、補間による真のピークを求める。これに
よりピーク位置の精度は10倍程度改善される。
At this time, the information giving the peak is based on the film thickness of each layer from [Equation 4]. However, it may not give a true peak as it is. Therefore, in the case of a true peak, it is assumed that the values on both sides of the peak are the same, and the true peak is obtained by interpolation. As a result, the accuracy of the peak position is improved about 10 times.

【0031】この第j番目のピーク位置より、次の式が
成り立つ。
From the j-th peak position, the following equation holds.

【0032】[0032]

【数6】 M:信号の数 kJ :第j番目のピーク位置 l:分解能=測定波数範囲/M 従って、第1ピークから順に計算していくことで各層の
膜厚が計算できる。 〔具体例〕図6に示すような測定点で試料10を本発明
により測定したものと触針計で測定した結果とを下記
〔表1〕に示す。 〔表1〕 試料10は、2層で構成されており、第1層目の屈折率
(n1 )は試料10の1点で触針計による膜厚から計算
により算出し、n1 =1.724とした。第2層目の屈
折率(n2 )は試料の1点で、渦電流計による膜厚から
計算により算出し、n2 =1.862とした。
[Equation 6] M: number of signals k J : j-th peak position l: resolution = measured wave number range / M Therefore, the film thickness of each layer can be calculated by sequentially calculating from the first peak. [Specific Example] [Table 1] below shows the results obtained by measuring the sample 10 according to the present invention at the measurement points shown in FIG. 6 and the results obtained by measuring with a stylus meter. [Table 1] The sample 10 is composed of two layers, and the refractive index (n 1 ) of the first layer was calculated from the film thickness by a stylus meter at one point of the sample 10, and n 1 = 1.724. . The refractive index (n 2 ) of the second layer was calculated from the film thickness by an eddy current meter at one point of the sample, and was set to n 2 = 1.862.

【0033】[0033]

【発明の効果】本発明の多層薄膜の膜厚検出方法は、多
層薄膜試料に白色光を照射し、該試料より反射した光を
分光し、そのスペクトルを高速フーリエ変換してエネル
ギースペクトルを得、その波形を〔数5〕に基づいて処
理して薄膜の膜厚を得るようにしたので、多層薄膜の膜
厚を高速非破壊で測定できる。そして、波形の処理にお
いて、波数変換,ハニング窓処理,0拡充等を行うの
で、比較的少ないデータ数から精度よく膜厚を検出する
ことができる。
The method for detecting the thickness of a multilayer thin film of the present invention comprises irradiating a multilayer thin film sample with white light, dispersing the light reflected from the sample, and subjecting the spectrum to fast Fourier transform to obtain an energy spectrum, Since the waveform is processed based on [Equation 5] to obtain the film thickness of the thin film, the film thickness of the multilayer thin film can be measured at high speed and nondestructively. In the waveform processing, wave number conversion, Hanning window processing, zero expansion, etc. are performed, so that the film thickness can be accurately detected from a relatively small number of data.

【0034】さらに、本発明の多層薄膜の膜厚検出装置
は、白色光源と、この白色光源の光を多層薄膜試料に照
射する光ファイバと、照射した光の前記多層薄膜試料か
らの反射光を導く光ファイバと、この光ファイバを介し
て前記反射光を入射せしめて分光し、その強度を検出す
るマルチチャネル分光器と、このマルチチャネル分光器
の出力を信号処理する信号処理器とからなるので、簡単
な構成で、かつ高速非破壊で精度よく膜厚を検出するこ
とができる。
Furthermore, the multilayer thin film thickness detecting device of the present invention comprises a white light source, an optical fiber for irradiating the light from the white light source to the multilayer thin film sample, and a reflected light of the irradiated light from the multilayer thin film sample. It is composed of an optical fiber for guiding, a multi-channel spectroscope for making the reflected light incident through the optical fiber to disperse the light, and detecting its intensity, and a signal processor for processing the output of the multi-channel spectroscope. The film thickness can be accurately detected with a simple structure and at high speed without destructiveness.

【0035】本発明の多層薄膜の膜厚検出方法を用いる
と、比較的少ないデータ数から窓処理,0拡充,そのデ
ータに対する高速フーリエ変換の手法を用いて膜厚を高
速非破壊で精度よく算出することができる。
When the method for detecting the film thickness of the multilayer thin film of the present invention is used, the film thickness is calculated accurately at high speed and non-destructively by using the method of window processing, zero expansion and fast Fourier transform for the data from a relatively small number of data. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる多層膜薄の膜厚検出装置の構成
を示すブロック図である。
FIG. 1 is a block diagram showing the configuration of a multilayer thin film thickness detection apparatus according to the present invention.

【図2】本発明によるエネルギースペクトル〜(波数)
-1グラフの一例を示す模式図である。
FIG. 2 Energy spectrum according to the present invention ~ (wavenumber)
1 is a schematic diagram showing an example of a -1 graph.

【図3】単層膜に入射した光線の反射光路を示す模式図
である。
FIG. 3 is a schematic diagram showing a reflected light path of a light ray incident on a monolayer film.

【図4】図3の場合の反射強度スペクトルを示す図であ
る。
FIG. 4 is a diagram showing a reflection intensity spectrum in the case of FIG.

【図5】多層膜に入射した光線の各層の振幅反射率,フ
レネル係数の関係を説明する模式図である。
FIG. 5 is a schematic diagram illustrating the relationship between the amplitude reflectance and Fresnel coefficient of each layer of a light beam that has entered the multilayer film.

【図6】膜測定した場合の、測定点を示す図である。FIG. 6 is a diagram showing measurement points when a film is measured.

【符号の説明】[Explanation of symbols]

1 白色光源 2 光ファイバ 3 光ファイバ 4 分光器 5 マルチチャネルディテクタ 6 マルチチャネル分光器 7 信号処理器 1 white light source 2 optical fiber 3 optical fiber 4 spectroscope 5 multi-channel detector 6 multi-channel spectroscope 7 signal processor

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 多層薄膜試料に白色光を照射し、該試料
より反射した光を分光し、そのスペクトルを高速フーリ
エ変換してエネルギースペクトルを得、その波形を処理
して薄膜の膜厚を得ることを特徴とする多層薄膜の膜厚
検出方法。
1. A multilayer thin film sample is irradiated with white light, the light reflected from the sample is dispersed, the spectrum is subjected to fast Fourier transform to obtain an energy spectrum, and the waveform is processed to obtain the film thickness of the thin film. A method for detecting a film thickness of a multilayer thin film, comprising:
【請求項2】 波形の処理は、エネルギースペクトルを
波数変換することを特徴とする請求項1に記載の多層薄
膜の膜厚検出方法。
2. The method for detecting the film thickness of a multilayer thin film according to claim 1, wherein the waveform processing is wave number conversion of the energy spectrum.
【請求項3】 多層薄膜試料より反射した光を分光した
スペクトルをハニング窓処理することを特徴とする請求
項1に記載の多層薄膜の膜厚検出方法。
3. The method for detecting the thickness of a multilayer thin film according to claim 1, wherein a spectrum obtained by dispersing light reflected from the multilayer thin film sample is subjected to a Hanning window process.
【請求項4】 高速フーリエ変換時に0拡充をすること
を特徴とする請求項1に記載の多層薄膜の膜厚検出方
法。
4. The method for detecting the film thickness of a multilayer thin film according to claim 1, wherein 0 expansion is performed at the time of fast Fourier transform.
【請求項5】 多層薄膜が有機光導電体薄膜を表面に形
成した円筒状物の多層薄膜であることを特徴とする請求
項1に記載の多層薄膜の膜厚検出方法。
5. The method for detecting the film thickness of a multilayer thin film according to claim 1, wherein the multilayer thin film is a cylindrical thin film having an organic photoconductor thin film formed on the surface thereof.
【請求項6】 白色光源と、この白色光源の光を多層薄
膜試料に照射する光ファイバと、照射した光の前記多層
薄膜試料からの反射光を導く光ファイバと、この光ファ
イバを介して前記反射光を入射せしめて分光し、その強
度を検出するマルチチャネル分光器と、このマルチチャ
ネル分光器の出力を信号処理する信号処理器とからなる
ことを特徴とする多層薄膜の膜厚検出装置。
6. A white light source, an optical fiber for irradiating the multilayer thin film sample with light from the white light source, an optical fiber for guiding reflected light of the irradiated light from the multilayer thin film sample, and the optical fiber for guiding the reflected light from the multilayer thin film sample. A multi-layer thin film thickness detecting device comprising: a multi-channel spectroscope for injecting reflected light to disperse the light and detecting its intensity, and a signal processor for signal processing the output of the multi-channel spectroscope.
JP8951794A 1994-04-27 1994-04-27 Method and apparatus for detecting film thickness of multilayered thin film Pending JPH07294220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8951794A JPH07294220A (en) 1994-04-27 1994-04-27 Method and apparatus for detecting film thickness of multilayered thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8951794A JPH07294220A (en) 1994-04-27 1994-04-27 Method and apparatus for detecting film thickness of multilayered thin film

Publications (1)

Publication Number Publication Date
JPH07294220A true JPH07294220A (en) 1995-11-10

Family

ID=13972996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8951794A Pending JPH07294220A (en) 1994-04-27 1994-04-27 Method and apparatus for detecting film thickness of multilayered thin film

Country Status (1)

Country Link
JP (1) JPH07294220A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193424A (en) * 1998-12-24 2000-07-14 Sharp Corp Method and device for measuring thickness of thin-film
JP2001044254A (en) * 1999-07-27 2001-02-16 Sharp Corp Electronic component manufacturing apparatus and method
EP1110054A1 (en) * 1998-08-27 2001-06-27 Tevet Process Control Technologies Ltd. Methods and apparatus for measuring the thickness of a film, particularly of a photoresist film on a semiconductor substrate
EP1467177A1 (en) * 2003-04-09 2004-10-13 Mitsubishi Chemical Engineering Corporation Method and apparatus for measuring thicknesses of layers of multilayer thin film
US7304744B1 (en) 1998-12-24 2007-12-04 Sharp Kabushiki Kaisha Apparatus and method for measuring the thickness of a thin film via the intensity of reflected light
JP2010002327A (en) * 2008-06-20 2010-01-07 Otsuka Denshi Co Ltd Film thickness measuring instrument and film thickness measuring method
JP2010002328A (en) * 2008-06-20 2010-01-07 Otsuka Denshi Co Ltd Film thickness measuring instrument
JP2010016016A (en) * 2008-06-30 2010-01-21 Tokyo Seimitsu Co Ltd Method for detecting polishing end point and polishing apparatus
DE102010062023A1 (en) 2009-11-30 2011-06-16 Hoya Corporation A method of measuring a film thickness and method of making an eyeglass lens

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1110054A1 (en) * 1998-08-27 2001-06-27 Tevet Process Control Technologies Ltd. Methods and apparatus for measuring the thickness of a film, particularly of a photoresist film on a semiconductor substrate
EP1110054A4 (en) * 1998-08-27 2001-10-31 Tevet Process Control Technolo Methods and apparatus for measuring the thickness of a film, particularly of a photoresist film on a semiconductor substrate
US6801321B1 (en) 1998-08-27 2004-10-05 Tevet Process Control Technologies Ltd. Method and apparatus for measuring lateral variations in thickness or refractive index of a transparent film on a substrate
JP2000193424A (en) * 1998-12-24 2000-07-14 Sharp Corp Method and device for measuring thickness of thin-film
US7304744B1 (en) 1998-12-24 2007-12-04 Sharp Kabushiki Kaisha Apparatus and method for measuring the thickness of a thin film via the intensity of reflected light
JP2001044254A (en) * 1999-07-27 2001-02-16 Sharp Corp Electronic component manufacturing apparatus and method
EP1467177A1 (en) * 2003-04-09 2004-10-13 Mitsubishi Chemical Engineering Corporation Method and apparatus for measuring thicknesses of layers of multilayer thin film
JP2010002327A (en) * 2008-06-20 2010-01-07 Otsuka Denshi Co Ltd Film thickness measuring instrument and film thickness measuring method
JP2010002328A (en) * 2008-06-20 2010-01-07 Otsuka Denshi Co Ltd Film thickness measuring instrument
JP2010016016A (en) * 2008-06-30 2010-01-21 Tokyo Seimitsu Co Ltd Method for detecting polishing end point and polishing apparatus
DE102010062023A1 (en) 2009-11-30 2011-06-16 Hoya Corporation A method of measuring a film thickness and method of making an eyeglass lens

Similar Documents

Publication Publication Date Title
JP5980822B2 (en) How to do surface inspection
CN109001207B (en) Method and system for detecting surface and internal defects of transparent material
JPS5985908A (en) Method of measuring thickness of thin film using heat-wave detecting system and depth profile method
JP2002532696A (en) Method and apparatus for optically controlling the manufacturing process of a microstructured surface in semiconductor manufacturing
JPH05661B2 (en)
JP3852386B2 (en) Film thickness measuring method and film thickness measuring apparatus
JPH07294220A (en) Method and apparatus for detecting film thickness of multilayered thin film
JP4224028B2 (en) Film thickness measuring apparatus and method using improved high-speed Fourier transform
JP3928478B2 (en) Film thickness measuring method and film thickness measuring apparatus
JPH01132935A (en) Method and apparatus for analyzing film
US20040227955A1 (en) Method and apparatus for measuring thicknesses of layers of multilayer thin film
US6459488B1 (en) Diffuse reflectance method and apparatus for determining thickness of an infrared translucent layer
JPH05240787A (en) Surface plasmon microscope
JP2003506675A (en) Improved optical method for measuring metal thin films
JP3423486B2 (en) Method and apparatus for measuring refractive index distribution of optical element
KR102570084B1 (en) The thickness measurement method using a three-dimensional reflectance surface
JP2728773B2 (en) Apparatus and method for evaluating thickness of semiconductor multilayer thin film
JP4520846B2 (en) Near-field film thickness measurement system
JPS61182507A (en) Measuring instrument of film thickness
JP2544428B2 (en) Stress measuring method and stress measuring device
JPH01132936A (en) Method and apparatus for analyzing film
JPH1151618A (en) Film thickness detecting method for multi-layered thin film
CN116879232B (en) Internal defect visual monitoring device and method based on chromatographic strain measurement
JP3880369B2 (en) Film thickness measuring method and film thickness measuring apparatus
JP2001116518A (en) Method and instrument for measuring film thickness