JPH01132935A - Method and apparatus for analyzing film - Google Patents

Method and apparatus for analyzing film

Info

Publication number
JPH01132935A
JPH01132935A JP62291119A JP29111987A JPH01132935A JP H01132935 A JPH01132935 A JP H01132935A JP 62291119 A JP62291119 A JP 62291119A JP 29111987 A JP29111987 A JP 29111987A JP H01132935 A JPH01132935 A JP H01132935A
Authority
JP
Japan
Prior art keywords
light
coating
film
incident
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62291119A
Other languages
Japanese (ja)
Inventor
Wataru Tanimoto
亘 谷本
Akira Yamamoto
公 山本
Taiji Matsumura
泰治 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62291119A priority Critical patent/JPH01132935A/en
Publication of JPH01132935A publication Critical patent/JPH01132935A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To continuously and simultaneously analyze the thickness and composition of a film, by irradiating the film with infrared rays polarized in parallel to an incident surface at a Brewster angle and calculating the composition of the film from the absorption spectrum of the reflection spectrum of infrared rays. CONSTITUTION:The film 12 formed on a steel plate 10 runs in the direction shown by an arrow A. The incident light 24 of timewise interfering infrared rays emitted from an FT-IR light source part 50 is incident to a concave mirror 52 for incident light to irradiate the film 12 formed on the steel plate 10 so that an incident angle theta substantially becomes a Brewster angle. Further, the reflected light 28 from the upper surface of the film 12 and the reflected light 30 from the under surface thereof are condensed to a concave mirror 54 for emitted light to be incident to an FT-IR detection part 56. A polarizer 58 is driven in the light path of the incident light 24 by a polarizer driving part 60 to be moved to an insert position. The drive part 60 moves the polarizer 58 by the order of the FT-IR control part 62. In such a state that the polarizer 58 is inserted in the light path, the incident light 24 becomes polarized light parallel to the incident surface.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、被膜の分析方法及び装置に係り、特に、走行
している鋼板、鋼管等の金属表面に形成された被膜の膜
厚と成分組成をオンラインで連続的に同時測定する際に
用いるに好適な、光反射する基盤上に形成された、光を
一部透過する被膜の分析方法及び装置に関する。
The present invention relates to a method and apparatus for analyzing coatings, and is particularly suitable for use in continuous online measurement of the thickness and composition of coatings formed on the surfaces of moving metal plates, steel pipes, etc. The present invention relates to a method and apparatus for analyzing a film that is formed on a suitable light-reflecting substrate and partially transmits light.

【従来の技術】[Conventional technology]

近年、鋼材の表面性状の改善を目的として、無機あるい
は有機被膜で鋼材の表面を被膜した、いわゆる、はうろ
うがけ鋼製品、絶縁被膜付き電磁鋼板や有機樹脂液pI
A鋼板等が開発されている。 この場合、鋼材に被覆材の主原料(はうろうの場合はゆ
う薬、電磁鋼板の場合はMQO1有811!I脂の場合
はポリエステルあるいはエポキシ等の有1llV!J脂
)を水溶液あるいは有機溶媒に溶かして塗布した後、所
定の温度に加熱して反応させ、鋼材表面に密着させると
共に堅牢な被膜を形成させることが一般に行われている
。この際、主原料の池に、鋼材の表面性状を更に良くす
るための副原料も加えられる。従って、塗布し焼付けた
被膜の量(厚さ)と組成を最適値に管理することが、製
品品質の管理、製造コストの低減から非常に重要となる
。 一般に、めっき、塗装、高温酸化等を行った後の表面層
の組成や被膜量の分析は、螢光X線分析法により行われ
ているが、被測定物が有機樹脂やほうろう等のときには
、測定する元素が軽元素であるため、螢光X線を用いた
場合には真空で測定する必要がある。従って、例えば円
板状に打ち抜いた試料片を螢光X&1分析装置の試料室
内に入れ、高真空に排気して分析するため破壊検査とな
り、製造ラインで連続的に膜厚、成分組成を測定するこ
とは極めて困難であった。 そこで従来より、このような被測定物に対しては、赤外
分光法が用いられている。 赤外分光法により金属表面上に形成された被膜厚さを連
続分析する方法としては、特開昭60−73407や特
開昭58−704に記載されている如く、干渉している
反射光をスペクトルに分光して、その干渉波形から膜厚
を計算する方法(以下、干渉法と称する)、及び、特開
昭58−18109や特開昭59−87307に記載さ
れている如く、特定波長の反射光の被膜による吸収量を
測定する方法(以下、吸収法と称する)が提案されてい
る。 前者の干渉法は、例えば第3図に示す如く、光源20か
ら放出された光を、例えば回折格子等の分散索子22に
照射して、特定波長の入射光24を選別した後、例えば
集光レンズを含む適当な光学系26で、鋼板10上に形
成された被膜12に照射する。すると、被pIA12上
面での反射光28と、被膜下面での反射光30により干
渉が生ずる。 このとき、分散素子22を回転させて波長走査しながら
、反射光28.30を、例えば集光レンズからなる適当
な光学系32で検出器34に導き、その反射光強度を測
定すると、第4図に示す如く、波長によって反射強度の
強弱が連続する干渉波形が得られる。従って、この干渉
波形の山及び谷となる波長から被膜12の膜厚を求める
ものである。 一方、後者の吸収法は、被膜12によって吸収される特
定波長の光と、被JIi12には吸収されない特定波長
の光を照射し、それぞれの反射強度を測定することによ
り、被pA12の膜厚を求める方法である。即ち、例え
ば第5図に示す如く、光源20から放出された光を、例
えば多層膜フィルタから成るフィルタ36に通過させ、
被WA12に吸収される特定波長の光を選別した後、ビ
ームスプリッタ38で二分し、一方は検出器34Aに直
接入射し、他方は、鋼板10上に形成された被Jli1
2で吸収・反射された後、反射光39として他方の検出
器34Bに入射するようにする。検出器34A、34B
に入射した光は、それぞれ光強度信号に変換された後、
計算8140に送られる。計算機40は、送られてきた
入射光24及び被膜12により吸収を受けた反射光39
の2つの光強度信号を比較演算することにより、被膜1
2の膜厚を計算するものである。
In recent years, with the aim of improving the surface properties of steel materials, so-called floating steel products in which the surface of steel materials is coated with inorganic or organic coatings, electrical steel sheets with insulating coatings, and organic resin liquid PI have been developed.
A steel plate etc. have been developed. In this case, the main raw material of the coating material (Yuyaku in the case of porcelain, polyester or 1llV!J resin such as epoxy in the case of MQO1-811!I resin in the case of electrical steel sheet) is applied to the steel material in an aqueous solution or an organic solvent. It is common practice to melt the material and apply it, then heat it to a predetermined temperature to cause a reaction so that it adheres to the surface of the steel material and forms a strong film. At this time, auxiliary raw materials are also added to the main raw material pool to further improve the surface properties of the steel material. Therefore, it is very important to control the amount (thickness) and composition of the coated and baked film to optimum values in order to control product quality and reduce manufacturing costs. Generally, the composition and coating amount of the surface layer after plating, painting, high-temperature oxidation, etc. are analyzed by fluorescent X-ray analysis, but when the object to be measured is an organic resin or enamel, Since the elements to be measured are light elements, it is necessary to perform the measurement in a vacuum when fluorescent X-rays are used. Therefore, for example, a sample piece punched into a disk shape is placed in the sample chamber of the Fluorescence X&1 analyzer, evacuated to a high vacuum, and analyzed, resulting in a destructive inspection.The film thickness and component composition are continuously measured on the production line. This was extremely difficult. Therefore, infrared spectroscopy has conventionally been used for such objects to be measured. As a method for continuously analyzing the thickness of a film formed on a metal surface using infrared spectroscopy, as described in JP-A-60-73407 and JP-A-58-704, interference reflected light is analyzed. There is a method of dividing the spectrum into a spectrum and calculating the film thickness from the interference waveform (hereinafter referred to as interferometry), and a method of calculating the film thickness from the interference waveform of the spectrum. A method for measuring the amount of reflected light absorbed by a film (hereinafter referred to as an absorption method) has been proposed. In the former method, as shown in FIG. 3, for example, light emitted from a light source 20 is irradiated onto a dispersion probe 22, such as a diffraction grating, and incident light 24 of a specific wavelength is selected, and then, for example, the light is collected. The coating 12 formed on the steel plate 10 is irradiated with a suitable optical system 26 including a light lens. Then, interference occurs between the reflected light 28 on the upper surface of the pIA 12 and the reflected light 30 on the lower surface of the coating. At this time, while rotating the dispersion element 22 to scan the wavelength, the reflected light 28.30 is guided to the detector 34 by an appropriate optical system 32 consisting of, for example, a condensing lens, and the intensity of the reflected light is measured. As shown in the figure, an interference waveform is obtained in which the reflection intensity is continuous depending on the wavelength. Therefore, the thickness of the coating 12 is determined from the wavelengths that form the peaks and valleys of this interference waveform. On the other hand, in the latter absorption method, the film thickness of the pA 12 can be determined by irradiating light with a specific wavelength that is absorbed by the coating 12 and light with a specific wavelength that is not absorbed by the JIi 12 and measuring the reflection intensity of each. This is the way to find out. That is, as shown in FIG. 5, for example, the light emitted from the light source 20 is passed through a filter 36 made of, for example, a multilayer filter.
After selecting the light of a specific wavelength to be absorbed by the target WA 12, the beam splitter 38 divides the light into two parts, one of which is directly incident on the detector 34A, and the other is the target WA 12 formed on the steel plate 10.
After being absorbed and reflected by the detector 34B, the reflected light 39 enters the other detector 34B. Detectors 34A, 34B
After the incident light is converted into a light intensity signal,
Sent to calculation 8140. The computer 40 calculates the transmitted incident light 24 and the reflected light 39 absorbed by the coating 12.
By comparing and calculating the two light intensity signals of
This is to calculate the film thickness of 2.

【発明が解決しようとする問題点】 しかしながら、前者の干渉法では、被膜12のpA厚を
求めることは可能であるが、被膜12の組成の分析は不
可能である。 一方、後者の吸収法では、被膜中のある成分の含有証を
分析することは可能であるが、干渉の影響により測定精
度が悪い、又、被膜が単一成分であるか、又は被測定物
の被膜中での含有率が一定であれば膜厚を求めることが
できるが、被膜組成が複数であったり、被膜中成分の含
有率が一定でないときには、被膜の屈折率(n)が一定
とならないため、膜厚を求めるのは極めて困器であると
いう問題点を有していた。 即ち、金属表面上に形、成された被膜において、これま
で被膜の膜厚を連続分析する方法はあったが、同時に被
膜の成分組成を求める方法はなかった。従って、様々な
種類の被膜を有する鋼板等を製造するラインにおいて、
膜厚と成分組成を同時に連続分析することは、従来不可
能であった。
[Problems to be Solved by the Invention] However, with the former interference method, although it is possible to determine the pA thickness of the coating 12, it is not possible to analyze the composition of the coating 12. On the other hand, with the latter absorption method, it is possible to analyze the content of a certain component in the coating, but the measurement accuracy is poor due to the influence of interference, and if the coating consists of a single component or The film thickness can be determined if the content of the components in the film is constant, but if the film has multiple compositions or the content of the components in the film is not constant, the refractive index (n) of the film is constant. Therefore, it is extremely difficult to determine the film thickness. That is, although there has been a method for continuously analyzing the film thickness of a film formed on a metal surface, there has been no method for simultaneously determining the component composition of the film. Therefore, in a line that manufactures steel plates etc. with various types of coatings,
It has previously been impossible to simultaneously and continuously analyze film thickness and component composition.

【発明の目的】[Purpose of the invention]

本発明は、前記従来の問題点を解消するべくなされたも
ので、被膜の膜厚と成分組成を連続的に同時分析するこ
とが可能な被膜の分析方法及び装置を提供することを目
的とする。
The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a film analysis method and apparatus that can continuously and simultaneously analyze the film thickness and component composition of a film. .

【問題点を解決するための手段】[Means to solve the problem]

本発明は、光反射する基盤上に形成された、光を一部透
過する被膜の分析方法において、入射面に平行に偏光し
た赤外光を実質的にブリュースタ角で該被膜に照射し、
該赤外光の反射スペクトル? の吸収スペクトルから被膜の成分組成を求め、同時に、
又は前後して、完全には偏光していない光を該被膜に照
射し、眩光の反射スペクトルの干渉波形から被膜の厚さ
を求めるようにして、前記目的を達成したものである。 又、本発明の実施態様は、前記被膜が、走行している光
反射基盤上に形成されており、該被膜の膜厚と成分組成
をほぼ連続的にオンライン分析するようにしたものであ
る。 又、本発明の実施に好適である装置構成は、光反射する
基盤上に形成された、光を一部透過する被膜の分析装置
において、該被膜に赤外光を実質的にブリュースタ角で
照射する機構、及び、前記赤外光が平行偏光となるよう
偏光子を光路中に断続的に挿入する機構を含むフーリエ
変換型赤外分光装置と、該赤外光が偏光している場合は
赤外反射スペクトルの吸収スペクトルから被膜の成分組
成を計算し、該赤外光が偏光していない場合は赤外反射
スペクトルの干渉波形から被膜の膜厚を計算する演算部
とを備えたものである。
The present invention provides a method for analyzing a coating formed on a light-reflecting substrate that partially transmits light, including irradiating the coating with infrared light polarized parallel to the plane of incidence at substantially Brewster's angle;
Reflection spectrum of the infrared light? Determine the component composition of the film from the absorption spectrum, and at the same time,
Alternatively, the above object is achieved by irradiating the coating with light that is not completely polarized before and afterward, and determining the thickness of the coating from the interference waveform of the reflection spectrum of the glare. Further, in an embodiment of the present invention, the coating is formed on a moving light-reflecting substrate, and the film thickness and component composition of the coating are almost continuously analyzed on-line. Further, an apparatus configuration suitable for carrying out the present invention is an analyzer for a coating formed on a light-reflecting substrate that partially transmits light, in which infrared light is applied to the coating substantially at Brewster's angle. A Fourier transform infrared spectrometer including a mechanism for irradiating and a mechanism for intermittently inserting a polarizer into an optical path so that the infrared light becomes parallel polarized light, and if the infrared light is polarized, It is equipped with a calculation unit that calculates the component composition of the coating from the absorption spectrum of the infrared reflection spectrum, and calculates the film thickness of the coating from the interference waveform of the infrared reflection spectrum if the infrared light is not polarized. be.

【作用】[Effect]

本発明は、光反射する基盤上に形成された、光を一部透
過する被膜の分析に際して、透明な誘電体(屈折率n)
に平行光線が入射すると、入射角θがθ=tan−J1
を満す角度(ブリュースタ角)では、入射面に垂直な偏
光成分は一部反射し、−部透過するが、入射面に平行な
成分の反射は零で全て透過することを利用している。即
ち、入射面に平行に偏光した赤外光を実質的にブリュー
スタ角で該被膜に照射し、このブリュースタ角での反射
光を利用して赤外反射スペクトルを求め、該赤外反射ス
ペクトルの吸収スペクトルの、例えば吸収ピークから被
膜の成分組成を求める。これによって、バックグラウン
ドの影響なく組成を求めることができる。 更に、同時に又は前後して、完全には偏光していない光
を該被膜に照射し、眩光の反射スペクトルの、例えばベ
ースラインの干渉波形から被膜の厚さを求めるようにし
ている。従って、例えば1台のフーリエ変換型赤外分光
装置(FT−IR)で、被膜の成分組成と膜厚を、オン
ラインで同時に分析することが可能となる。
The present invention uses a transparent dielectric material (refractive index n) when analyzing a film formed on a light-reflecting substrate that partially transmits light.
When a parallel ray is incident on , the angle of incidence θ is θ=tan-J1
At an angle that satisfies (Brewster's angle), the polarized light component perpendicular to the plane of incidence is partially reflected and -part is transmitted, but the reflection of the component parallel to the plane of incidence is zero and all is transmitted. . That is, infrared light polarized parallel to the plane of incidence is irradiated onto the coating at substantially Brewster's angle, and the reflected light at Brewster's angle is used to obtain an infrared reflection spectrum. The component composition of the coating is determined from, for example, the absorption peak of the absorption spectrum. This allows the composition to be determined without being affected by background. Furthermore, at the same time or before and after, the film is irradiated with light that is not completely polarized, and the thickness of the film is determined from the reflection spectrum of the dazzling light, for example, the interference waveform of the baseline. Therefore, for example, it is possible to simultaneously analyze the component composition and film thickness of a film online using a single Fourier transform infrared spectrometer (FT-IR).

【実施例】【Example】

以下図面を参照して、本発明の実施例を詳細に説明する
。 本実施例は、第1図に示す如く構成されており、金属(
例えば鋼板10)上に形成された被膜12は、第1図中
に矢印Aで示された方向に走行している。 FT−IR光源部50から放射される、時間的に干渉し
た赤外光の入射光24は、入射光用の凹面鏡52に入射
され、入射角θが実質的にブリュースタ角となるように
して、鋼板10上に形成された被膜12に照射される。 被膜12の上面からの反射光28及び下面からの反射光
30は、出射光用の凹面th154で集められて、FT
−IR検出部56に入射される。 前記入射光24の光路中には、偏光子58が、偏光子駆
動部60により駆動されて、挿入位置(破線)又は′i
Am位置(実線)に移動される。この偏光子駆動部60
は、FT−IRffilJ御部62の指余部62、偏光
子58を移動する。信光子58が光路中に挿入された状
B(破線)において、前記入射光24は、入射面に平行
な偏光となる。 図において、40は計算機である。 以下、第2図を参照して、実施例の作用を説明する。 計算機40に測定開始を入力すると、計算機40からF
T−IR9,IJ御郡部62、繰返し測定の積算回数、
波長分解能等の測定条件と共に、測定開始指令が送られ
る。 測定が開始されると、まず偏光子58を実線の位置に移
動して退避させるため、FT−IR制御部62は、偏光
子駆動部60に、偏光子58を実線の位置へ移動させる
指令を出力する。@光子駆動部60は、その指令に従っ
て、偏光子58を実線の位置に移動させる(ステップ1
10)。 偏光子58の移動が終了するとと、FT−I R制御部
62は、FT−IR光源部50に光放射の指令を出力し
、FT−IR光源部50内にある赤外光源、干渉計(図
示省略)を駆動させて、時間的に干渉した赤外光を放射
させる(ステップ112)。 放射された光は、入射光用の凹面鏡52を介して、ブリ
ュースタ角θで被膜12に照射される。 この際の入射光24は、偏光子58を通っておらす、偏
光していないため、被膜12の上面及び下面で反射され
、干渉現象が起こる。 被pA12の下面での反射光30と被膜工2上面での反
射光28は、出射光用の凹面鏡54を介してFT−IR
検出部56に到達し、光強度が検出される(ステップ1
14)。 FT−I R検出部56で検出された光強度は、FT−
I R制御部62に送られ、このFT−I R制御部6
2においてフーリエ変換されて、赤外反射スペクトルが
求められる(ステップ116)。 測定精度を高めるべく多数回積算する場合は、FT−I
R光源部50の干渉計を多数回駆動させ、FT−IR検
出部56で検出して送られる光強度をFT−I R制御
部62においてフーリエ変換し、その赤外反射スペクト
ルを積算記憶する。 積算終了後、FT−IR制御部62で記憶されている赤
外反射スペクトルは、計算機40に送られる。計算機4
0は、送られてきた被M12による吸収ピークと干渉波
形の重なり合った赤外吸収スペクトルにおける、そのベ
ースラインの干渉波形の山及び谷となる波長を探し出し
、その波長から膜厚を計算する(ステップ118)。 例えば山となる波長をA1、その山からその1番目の山
となる波長をA2、入射角をθ、被膜の屈折率をnとす
ると、被膜の膜厚tは、次式で計算できる。 t=n ・A1・A2 /j2 n’  sin’#lA+  A2))・・・
(1) あるいは、測定された干渉波形に、理論計算で得られる
干渉波形を合致させてゆき、最も近いときの膜厚tを求
める方法を使ってもよい。 膜厚の測定が終了したら、次に偏光子58を破線の位置
に駆動して光路中に挿入するため、FT−IR制御部6
2は、偏光子駆動部6oに偏光子58を破線の位置に移
動させる指令を出力する。 偏光子駆動部60は、その指令に従い、偏光子58を破
線の位置に移動させて光路中に挿入する(ステップ12
0)。 以下、膜厚測定時と同様に、赤外光を放射しくステップ
122)、光強度を検出しくステップ124)、フーリ
エ変換して赤外反射スペクトルを求め、計算機40に送
る(ステップ126)。 この際、入射光24は、入射面に平行に偏光しており、
又その入射角θがブリュースタ角であるため、被膜12
の上面で反射する光28はなくなり、被膜12の下面で
反射する光30のみとなる。このため、干渉現象が起こ
らず、干渉波形のない平坦なベースラインの赤外反射ス
ペクトルが得られる。従って、赤外吸収ピークから被膜
成分を求める際の精度向上を図れる。 計算機40は、送られてきた干渉波形のない赤外反射ス
ペクトルの、例えば吸収ピーク面積と予め記憶しである
検量線とから、被膜12の成分組成を定址する(ステッ
プ128) 。 以上を測定の1サイクルとして、鋼板10上の被Jl!
12の膜厚及び成分組成をほぼ3!l!続的に繰り返し
測定する。 シリカを配合したエポキシ樹脂を鋼板表面に塗布して焼
付けた試料の膜厚とシリカ含有率を、本発明法で求め、
塗布液の塗布量と配合比より求めた基準値と比較したと
ころ、次の第1表に示すような結果が得られた。 第   1   表 なお本発明法では、樹脂を被覆しない鋼板を基準として
400〜4000CI−’の赤外スペクトルを測定し、
1100(111’付近のSi −0伸縮振動の吸収ピ
ークについてピーク面積を求め、該ピーク面積よりシリ
カ含有量を求めている。 本実施例においては、フーリエ変換型赤外分光装U(F
T−IR)を用いているので、同時に全波長域のスペク
トルが測定でき、複雑な組成の被膜の膜厚と各成分の含
有率を同時に高速で連続測定することができる。なお、
本発明の実施方法はこれに限定されず、フーリエ変換型
以外の赤外分光装置を使用することも可能である。
Embodiments of the present invention will be described in detail below with reference to the drawings. This embodiment is constructed as shown in FIG.
For example, a coating 12 formed on a steel plate 10) runs in the direction indicated by arrow A in FIG. Incident light 24 of temporally interfered infrared light emitted from the FT-IR light source section 50 is incident on a concave mirror 52 for incident light, and the incident angle θ is made to substantially become Brewster's angle. , the coating 12 formed on the steel plate 10 is irradiated. The reflected light 28 from the upper surface of the coating 12 and the reflected light 30 from the lower surface are collected by the concave surface th 154 for output light, and the FT
- The light is incident on the IR detection section 56. In the optical path of the incident light 24, a polarizer 58 is driven by a polarizer drive unit 60 to an insertion position (broken line) or 'i
It is moved to the Am position (solid line). This polarizer drive unit 60
moves the finger rest section 62 of the FT-IRffilJ control section 62 and the polarizer 58. In state B (broken line) in which the optical photon 58 is inserted into the optical path, the incident light 24 becomes polarized light parallel to the plane of incidence. In the figure, 40 is a computer. The operation of the embodiment will be explained below with reference to FIG. When inputting the start of measurement into the calculator 40, the calculator 40 selects F.
T-IR9, IJ Ogoribe 62, cumulative number of repeated measurements,
A measurement start command is sent along with measurement conditions such as wavelength resolution. When the measurement is started, first, in order to move the polarizer 58 to the position shown by the solid line and retreat, the FT-IR control unit 62 instructs the polarizer drive unit 60 to move the polarizer 58 to the position shown by the solid line. Output. @The photon drive unit 60 moves the polarizer 58 to the position indicated by the solid line according to the command (step 1
10). When the movement of the polarizer 58 is completed, the FT-IR control unit 62 outputs a light emission command to the FT-IR light source unit 50, and the infrared light source and interferometer ( (not shown) to emit temporally interfered infrared light (step 112). The emitted light is irradiated onto the coating 12 at a Brewster angle θ via a concave mirror 52 for incident light. Since the incident light 24 at this time passes through the polarizer 58 and is not polarized, it is reflected by the upper and lower surfaces of the coating 12, causing an interference phenomenon. The reflected light 30 on the lower surface of the pA 12 and the reflected light 28 on the upper surface of the coating work 2 are transmitted to the FT-IR through a concave mirror 54 for output light.
The light reaches the detection unit 56 and the light intensity is detected (step 1
14). The light intensity detected by the FT-IR detection unit 56 is
This FT-IR controller 6
2, Fourier transform is performed to obtain an infrared reflection spectrum (step 116). When integrating multiple times to improve measurement accuracy, use FT-I.
The interferometer of the R light source section 50 is driven many times, and the light intensity detected and sent by the FT-IR detection section 56 is Fourier transformed in the FT-IR control section 62, and its infrared reflection spectrum is accumulated and stored. After the integration is completed, the infrared reflection spectrum stored in the FT-IR control unit 62 is sent to the computer 40. calculator 4
0 searches for the wavelengths that are the peaks and troughs of the interference waveform of the baseline in the infrared absorption spectrum where the absorption peak due to the M12 to be sent and the interference waveform overlap, and calculates the film thickness from that wavelength (step 118). For example, assuming that the peak wavelength is A1, the wavelength that is the first peak from that peak is A2, the incident angle is θ, and the refractive index of the coating is n, the film thickness t of the coating can be calculated using the following equation. t=n ・A1・A2 /j2 n'sin'#lA+ A2))...
(1) Alternatively, a method may be used in which the measured interference waveform is matched with the interference waveform obtained by theoretical calculation, and the closest film thickness t is determined. When the film thickness measurement is completed, the FT-IR control unit 6 moves the polarizer 58 to the position indicated by the broken line and inserts it into the optical path.
2 outputs a command to the polarizer drive unit 6o to move the polarizer 58 to the position indicated by the broken line. In accordance with the command, the polarizer drive unit 60 moves the polarizer 58 to the position indicated by the broken line and inserts it into the optical path (step 12).
0). Thereafter, in the same way as when measuring the film thickness, infrared light is emitted (Step 122), light intensity is detected (Step 124), and an infrared reflection spectrum is obtained by Fourier transformation and sent to the computer 40 (Step 126). At this time, the incident light 24 is polarized parallel to the plane of incidence,
Also, since the incident angle θ is Brewster's angle, the coating 12
No light 28 is reflected from the top surface, and only light 30 is reflected from the bottom surface of the coating 12. Therefore, no interference phenomenon occurs, and an infrared reflection spectrum with a flat baseline without interference waveforms can be obtained. Therefore, it is possible to improve the accuracy when determining the film components from the infrared absorption peak. The computer 40 determines the component composition of the coating 12 from, for example, the absorption peak area of the infrared reflection spectrum without interference waveforms and a previously stored calibration curve (step 128). The above is considered as one cycle of measurement, and the target Jl! on the steel plate 10!
The film thickness and component composition of 12 are almost 3! l! Continuously repeat measurements. The film thickness and silica content of a sample in which an epoxy resin containing silica was applied to the surface of a steel plate and baked were determined using the method of the present invention.
When compared with standard values determined from the coating amount and compounding ratio of the coating liquid, the results shown in Table 1 below were obtained. Table 1 In addition, in the method of the present invention, an infrared spectrum of 400 to 4000 CI-' is measured based on a steel plate not coated with resin,
The peak area of the absorption peak of the Si -0 stretching vibration near 1100 (111') is determined, and the silica content is determined from the peak area. In this example, a Fourier transform infrared spectrometer U (F
Since T-IR) is used, spectra in all wavelength ranges can be measured simultaneously, and the thickness and content of each component of a coating with a complex composition can be measured simultaneously and continuously at high speed. In addition,
The method of implementing the present invention is not limited to this, and it is also possible to use an infrared spectrometer other than the Fourier transform type.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明によれば、金属等の光を反射
する基盤上に形成された、光を一部透過する被膜の膜厚
と成分組成を、オンラインで連続的に同時分析すること
が可能となる。従って、製造ラインにおける操業条件の
最適化や品質の管理を容易に行うことができ、優れた表
面性状をもつ鋼材等を安定して生産することができると
いう優れた効果を有する。
As explained above, according to the present invention, it is possible to continuously and simultaneously analyze the film thickness and component composition of a partially light-transmitting film formed on a light-reflecting substrate such as a metal on-line. It becomes possible. Therefore, it is possible to easily optimize the operating conditions and control the quality in the production line, and it has the excellent effect of stably producing steel materials with excellent surface properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る被膜の分析方法を実施するなA
Uの実施例の構成を示す、一部ブロック線図を含む正面
図、第2図は、前記実施例の作用を説明するための流れ
図、第3図は、従来の干渉法による膜厚測定の原理を説
明するための概略図、第4図は、前記干渉法によって得
られる干渉波形の例を示す線図、第5図は、従来の吸収
法による膜厚測定の原理を説明するための概略図である
。 10・・・鋼板、 12・・・被膜、 24・・・入射光、 40・・・計算機、 50・・・フーリエ変換型赤外分光装置(FT−IR)
光源部、 52.54・・・凹面鏡、 θ・・・入射角、 56・・・FT−IR検出部、 58・・・偏光子、 60・・・偏光子駆動部、 62−FT−IR$I[1゜
FIG. 1 shows A when carrying out the coating analysis method according to the present invention.
FIG. 2 is a flowchart for explaining the operation of the embodiment, and FIG. 3 is a diagram showing the conventional method for measuring film thickness by interferometry. A schematic diagram for explaining the principle; FIG. 4 is a diagram showing an example of an interference waveform obtained by the interferometry method; FIG. 5 is a schematic diagram for explaining the principle of film thickness measurement by the conventional absorption method. It is a diagram. DESCRIPTION OF SYMBOLS 10... Steel plate, 12... Coating, 24... Incident light, 40... Computer, 50... Fourier transform infrared spectrometer (FT-IR)
Light source section, 52.54... Concave mirror, θ... Incident angle, 56... FT-IR detection section, 58... Polarizer, 60... Polarizer drive section, 62-FT-IR$ I[1゜

Claims (3)

【特許請求の範囲】[Claims] (1)光反射する基盤上に形成された、光を一部透過す
る被膜の分析方法において、 入射面に平行に偏光した赤外光を実質的にブリユースタ
角で該被膜に照射し、 該赤外光の反射スペクトルの吸収スペクトルから被膜の
成分組成を求め、 同時に、又は前後して、完全には偏光していない光を該
被膜に照射し、 該光の反射スペクトルの干渉波形から被膜の厚さを求め
ることを特徴とする被膜の分析方法。
(1) A method for analyzing a film formed on a light-reflecting substrate that partially transmits light, in which the film is irradiated with infrared light polarized parallel to the plane of incidence at substantially the Brilleusta angle, and the infrared light is Determine the component composition of the coating from the absorption spectrum of the reflection spectrum of external light, irradiate the coating with light that is not completely polarized at the same time or before and after, and determine the thickness of the coating from the interference waveform of the reflection spectrum of the light. A coating analysis method characterized by determining the
(2)前記被膜が、走行している光反射基盤上に形成さ
れており、該被膜の膜厚と成分組成をほぼ連続的にオン
ライン分析するようにした特許請求の範囲第1項記載の
被膜の分析方法。
(2) The coating according to claim 1, wherein the coating is formed on a traveling light-reflecting substrate, and the film thickness and component composition of the coating are almost continuously analyzed on-line. analysis method.
(3)光反射する基盤上に形成された、光を一部透過す
る被膜の分析装置において、 該被膜に赤外光を実質的にブリユースタ角で照射する機
構、及び、前記赤外光が平行偏光となるよう偏光子を光
路中に断続的に挿入する機構を含むフーリエ変換型赤外
分光装置と、 該赤外光が偏光している場合は赤外反射スペクトルの吸
収スペクトルから被膜の成分組成を計算し、該赤外光が
偏光していない場合は赤外反射スペクトルの干渉波形か
ら被膜の膜厚を計算する演算部と、 を備えたことを特徴とする被膜の分析装置。
(3) An analyzer for a coating formed on a light-reflecting substrate that partially transmits light, including a mechanism for irradiating the coating with infrared light substantially at the Brilleusta angle, and a mechanism for irradiating the coating with infrared light substantially at the Brieuster angle, and a mechanism for irradiating the coating with infrared light in parallel. A Fourier transform infrared spectrometer that includes a mechanism that intermittently inserts a polarizer into the optical path to obtain polarized light, and if the infrared light is polarized, the composition of the coating can be determined from the absorption spectrum of the infrared reflection spectrum. An arithmetic unit that calculates the film thickness of the film from the interference waveform of the infrared reflection spectrum when the infrared light is not polarized.
JP62291119A 1987-11-18 1987-11-18 Method and apparatus for analyzing film Pending JPH01132935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62291119A JPH01132935A (en) 1987-11-18 1987-11-18 Method and apparatus for analyzing film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62291119A JPH01132935A (en) 1987-11-18 1987-11-18 Method and apparatus for analyzing film

Publications (1)

Publication Number Publication Date
JPH01132935A true JPH01132935A (en) 1989-05-25

Family

ID=17764702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62291119A Pending JPH01132935A (en) 1987-11-18 1987-11-18 Method and apparatus for analyzing film

Country Status (1)

Country Link
JP (1) JPH01132935A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0488652A (en) * 1990-07-31 1992-03-23 Toshiba Ceramics Co Ltd Manufacture of silicon wafer
JPH04106948A (en) * 1990-08-27 1992-04-08 Toshiba Ceramics Co Ltd Manufacture of silicon wafer
JPH04106947A (en) * 1990-08-27 1992-04-08 Toshiba Ceramics Co Ltd Interlattice oxygen concentration measurement of pulled-up silicon wafer
JPH04108693A (en) * 1990-08-29 1992-04-09 Toshiba Ceramics Co Ltd Production of silicon wafer
JPH04108692A (en) * 1990-08-29 1992-04-09 Toshiba Ceramics Co Ltd Production of silicon wafer
JPH04109648A (en) * 1990-08-29 1992-04-10 Toshiba Ceramics Co Ltd Manufacture of silicon wafer
JPH04180644A (en) * 1990-07-31 1992-06-26 Toshiba Ceramics Co Ltd Method of measuring interstitial oxygen concentration of pulled silicon wafer
JPH05243353A (en) * 1992-02-27 1993-09-21 Toshiba Ceramics Co Ltd Measuring method for concentration of interstitial oxygen or substitutional carbon of silicon wafer
US6734967B1 (en) 1995-01-19 2004-05-11 Kla-Tencor Technologies Corporation Focused beam spectroscopic ellipsometry method and system
JP2009014380A (en) * 2007-07-02 2009-01-22 Casio Comput Co Ltd Method of measuring infrared absorption spectrum of membrane
JP2010169445A (en) * 2009-01-20 2010-08-05 Ricoh Co Ltd Method and instrument for measuring density of image, and image forming apparatus
JP2012021856A (en) * 2010-07-14 2012-02-02 Keyence Corp Interference thickness meter
US20130226330A1 (en) * 2012-02-24 2013-08-29 Alliance For Sustainable Energy, Llc Optical techniques for monitoring continuous manufacturing of proton exchange membrane fuel cell components
JP2014508921A (en) * 2011-01-31 2014-04-10 ビアメトリクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for determining optical properties by simultaneously measuring intensities in thin film layers using light of multiple wavelengths

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323678A (en) * 1976-08-17 1978-03-04 Minolta Camera Co Ltd Phot ometer
JPS5342759A (en) * 1976-09-29 1978-04-18 Canon Inc Interference measuring method
JPS5453595A (en) * 1977-10-04 1979-04-26 Nippon Bunko Kogyo Kk Powder measuring apparatus
JPS5876741A (en) * 1981-10-31 1983-05-09 Toyota Central Res & Dev Lab Inc Optical apparatus
JPS60128330A (en) * 1983-12-15 1985-07-09 Matsushita Electric Ind Co Ltd Refractive index measuring device of thin film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323678A (en) * 1976-08-17 1978-03-04 Minolta Camera Co Ltd Phot ometer
JPS5342759A (en) * 1976-09-29 1978-04-18 Canon Inc Interference measuring method
JPS5453595A (en) * 1977-10-04 1979-04-26 Nippon Bunko Kogyo Kk Powder measuring apparatus
JPS5876741A (en) * 1981-10-31 1983-05-09 Toyota Central Res & Dev Lab Inc Optical apparatus
JPS60128330A (en) * 1983-12-15 1985-07-09 Matsushita Electric Ind Co Ltd Refractive index measuring device of thin film

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180644A (en) * 1990-07-31 1992-06-26 Toshiba Ceramics Co Ltd Method of measuring interstitial oxygen concentration of pulled silicon wafer
JPH0488652A (en) * 1990-07-31 1992-03-23 Toshiba Ceramics Co Ltd Manufacture of silicon wafer
JPH04106948A (en) * 1990-08-27 1992-04-08 Toshiba Ceramics Co Ltd Manufacture of silicon wafer
JPH04106947A (en) * 1990-08-27 1992-04-08 Toshiba Ceramics Co Ltd Interlattice oxygen concentration measurement of pulled-up silicon wafer
JPH04108693A (en) * 1990-08-29 1992-04-09 Toshiba Ceramics Co Ltd Production of silicon wafer
JPH04109648A (en) * 1990-08-29 1992-04-10 Toshiba Ceramics Co Ltd Manufacture of silicon wafer
JPH04108692A (en) * 1990-08-29 1992-04-09 Toshiba Ceramics Co Ltd Production of silicon wafer
JPH05243353A (en) * 1992-02-27 1993-09-21 Toshiba Ceramics Co Ltd Measuring method for concentration of interstitial oxygen or substitutional carbon of silicon wafer
US6734967B1 (en) 1995-01-19 2004-05-11 Kla-Tencor Technologies Corporation Focused beam spectroscopic ellipsometry method and system
JP2009014380A (en) * 2007-07-02 2009-01-22 Casio Comput Co Ltd Method of measuring infrared absorption spectrum of membrane
JP2010169445A (en) * 2009-01-20 2010-08-05 Ricoh Co Ltd Method and instrument for measuring density of image, and image forming apparatus
JP2012021856A (en) * 2010-07-14 2012-02-02 Keyence Corp Interference thickness meter
JP2014508921A (en) * 2011-01-31 2014-04-10 ビアメトリクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for determining optical properties by simultaneously measuring intensities in thin film layers using light of multiple wavelengths
US20130226330A1 (en) * 2012-02-24 2013-08-29 Alliance For Sustainable Energy, Llc Optical techniques for monitoring continuous manufacturing of proton exchange membrane fuel cell components

Similar Documents

Publication Publication Date Title
JPH01132935A (en) Method and apparatus for analyzing film
US4984894A (en) Method of and apparatus for measuring film thickness
TWI395943B (en) Apparatus and method for analysis of a sample having a surface layer, and cluster tool and apparatus for producing microelectronic devices
US20060177566A1 (en) Anodizing system with a coating thickness monitor and an anodized product
JPS639161B2 (en)
JPS6052706A (en) Film thickness measuring device
CN113777049A (en) Angle-resolved snapshot ellipsometer and measuring system and method thereof
CN103969210A (en) Open type CO2/H2O monitoring device based on non-dispersive infrared principle
Kivioja et al. Thickness measurement of thin polymer films by total internal reflection Raman and attenuated total reflection infrared spectroscopy
JP2003344024A (en) Method and apparatus for measuring thickness of film
JP2003509667A (en) Method and apparatus for optical measurement of layer and surface properties
JPH01132936A (en) Method and apparatus for analyzing film
TW201543021A (en) Device for analysing a specimen and corresponding method
CN115290571A (en) Measuring apparatus and measuring method
US5894127A (en) Polarized specular reflectance infrared apparatus and method
JPS6217166B2 (en)
JP2003503685A (en) Layer thickness measurement method and equipment
JP2000193424A (en) Method and device for measuring thickness of thin-film
JPS61132847A (en) Method and instrument for fluorescent x-ray analysis of two-layered plating film
JPH01124703A (en) Method and device for noncontact measurement of film characteristic
JPH04120404A (en) Apparatus and method for estimating thickness of semiconductor multilayer thin film
JPH0545288A (en) Method and device for judging degree of polymer hardening
Wang et al. New correction method for FTIR online film-thickness measurement
JPH07159132A (en) Device for measuring temperature of semiconductor surface and thickness of film formed on the surface
SU1105788A1 (en) Method of determination of crystal specific free energy