JPS5876741A - Optical apparatus - Google Patents

Optical apparatus

Info

Publication number
JPS5876741A
JPS5876741A JP17504181A JP17504181A JPS5876741A JP S5876741 A JPS5876741 A JP S5876741A JP 17504181 A JP17504181 A JP 17504181A JP 17504181 A JP17504181 A JP 17504181A JP S5876741 A JPS5876741 A JP S5876741A
Authority
JP
Japan
Prior art keywords
light
sample
reflected
sample surface
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17504181A
Other languages
Japanese (ja)
Other versions
JPS6341019B2 (en
Inventor
Kazuyuki Tate
和幸 舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP17504181A priority Critical patent/JPS5876741A/en
Publication of JPS5876741A publication Critical patent/JPS5876741A/en
Publication of JPS6341019B2 publication Critical patent/JPS6341019B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/57Measuring gloss

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To determine the orientation of substance and the directivity of color in transparent or semi-transparent material by a method wherein a parallel light via lens or the like from a light source enters the surface of a sample and then, diffused and reflected lights from the surface thereof are detected with a light receiver set at a specified light receiving angle. CONSTITUTION:A sample 23 retained on a sample base 22 and a light source device 24 are arranged in a measuring chamber 21 of an optical device. The light source device 24 comprises a lamp 25, a condenser mirror 26 and a filter 27. A white light from the lamp 25 enters the sample 23 at an incidence angle thetai=+30 deg. as almost parallel light with the condenser mirror 26. The diffused lights reflected at thetar1=-60 deg. and those reflected at thetar2=+60 deg. among diffused and reflected lights on the surface of the sample are separately introduced to a rotary mirror 30 via a lens L and a mirror M. With such an arrangement, the orientation of substance, the directivity of color and the like in transparent or semi-transparent can be obtained accurately.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、試料における透明もしくけ半透明材料中1こ
反射率の高い物質を含有する膜1こよる光の反射量を測
定し、試料中1こおける111記物質の配向を、殊1こ
メタ11 ツク塗膜中tこおけるメタル片の配向を巨視
的1こ測定するの1こ最適の光学装置ilfに関する。 一般Fこソリッド塗膜の場合、光をあてると大部分の光
は塗膜表面とその近傍で拡散反創゛[るので正反射光成
分は少ない。しかしながら柄片状のアルミニウム片等の
高光反側性のメタル片を主鎖ネ1とするメタリック塗膜
の場合1こは塗膜中のメタル片表面で光が正反射される
ので正反射光成分は大きい。そのため、メタリック塗膜
の色)Jこの正反射光成分1こよ−〕で大きく影智され
、光源と観察者の位置関係1こよって色が異なって艶身
4)。メタリック塗膜による正反射光成分は塗膜中のメ
タルハの配向tこ支配されるのでメタリック塗膜の色は
メタル片の配向に依存する。ソリッド塗膜の色が塗装方
法や塗装条件Fこよって変化しないの1こ対してメタリ
ック塗膜の色が塗装方法や塗装条件によって大ざく変化
するのは塗装方法や塗装条件1こまってメタル片の配向
か変わるためである。このようにこ塗装方法や塗装条件
1こよって変化するメタリック塗膜の色を視itこ合致
The present invention measures the amount of light reflected by a film containing a substance with high reflectivity in one transparent or translucent material in a sample, and determines the orientation of the substance No. 111 in one in the sample. The present invention relates to an optimal optical device for macroscopically measuring the orientation of metal pieces in a coating film. In the case of a general F solid coating film, when light is applied, most of the light is diffused and reflected on the coating surface and its vicinity, so the specularly reflected light component is small. However, in the case of a metallic coating film whose main chain is a metal piece with high light reversibility, such as a patterned aluminum piece, the light is specularly reflected on the surface of the metal piece in the coating film, so the specularly reflected light component is is big. Therefore, the color of the metallic coating film is greatly influenced by this specularly reflected light component, and the color varies depending on the positional relationship between the light source and the viewer. Since the specularly reflected light component by the metallic coating film is controlled by the orientation of the metal pieces in the coating film, the color of the metallic coating film depends on the orientation of the metal pieces. The color of a solid paint film does not change depending on the painting method or painting conditions, whereas the color of a metallic paint film largely changes depending on the painting method or painting conditions. This is because the orientation changes. In this way, the color of the metallic coating film changes depending on the coating method and coating conditions.

【7た測定方法で測色することは品質管理上極めて重要
である。 従来、塗膜の色の測定は第1図2第2図に示すような光
学系の測色計を用いて灯なうた。第1図の光学系では照
明用光源l、レンズ2でほぼ平行光線1こして試料8e
こ垂直tこ照射する。試料1こおける正反射光は光源側
1こ戻り、三刺激値x、y、z用受光素子4. 5. 
 fitこはいらないよう1こして試料8の拡散光を積
分球7で積分して受光素子4.5゜6で検出する。 他方第2図の光学系では試料81こ左右45°から照明
して垂直方向の拡散光を積分筒9を介して三刺激鎮X、
Y、Z用受光素子10.11.42で測定する。 メタリック塗膜をエア霧化塗装しこよって得る場合、一
般1こメタル片は巨視的1こ第8図、第4図1こ−示す
ような規則性を持って配列する。すなわち第8図のよう
なメタル片の配列は少なく瞳めて適切な塗装条件時1こ
得らtIl  このようにメタル片か配列したメタリッ
ク塗膜は方位性かない(観察者の目の高さを一定ンこ保
って各方位から見た11、′f、色の差が認められない
)。また第4図のようなメタル片の配向は垂直面の塗装
時tこ多(発生し、このJ゛うにメタル片が試料面1こ
対して傾きを持って配列I7たメタリック塗膜は方位性
を持つ。即ちメタリック塗膜を一方の方位からみると白
っぽくみえ、他方の方位からみると黒っぽくみえる。こ
のような方位性を有するメタリック塗膜の色を1111
記の測色計の光学系で測ることは困難である。 しかし、第2図の光学系において左右2方向からの照明
を一方向のみにして試料を回転させ’r 11111定
するとメタリック塗膜の色の方位性を求めることかでき
る。また、この光学系を用いてメタリック塗膜上走査さ
せて測色することによりいわゆるガンむらを定量化する
ことが可能である。 メタリック塗膜をエア霧化塗装で得た場合、メタリック
塗膜の色に関する問題(方位性、ガンむら等)を工はと
んどメタル片の規則的な配向方位1こ起因していたので
測色計の光学系Fこおいては光の入射角、受光角を変化
させず1こ入射方位、または受光方位を変化さぜること
により視聴に合った色の測定か可能であった。 近年、低公害化、省資源化が必要となり、メタリック塗
装の回転霧化塗装化か検討されている。 回転霧化塗装で得られたメタリック塗膜では第5図Eこ
示すようにメタル片がランダムeこ配列している。その
ためメタリック塗膜1こ方位性がない。しかしながら回
転霧化ω装で得たメタリック?膜の方向性(方位を一定
Fこ偉って観察者の目の高さを変えて見た時の色)はエ
ア霧化塗装で得たメタリック塗膜の方向性と異なる。即
ち一般に正面から見るとエア霧化塗装置こよるメタl″
”’1%)ツク塗膜のほうか白(みえるが斜め方向から
みると回転霧化塗装によるメタリック塗膜が白くみえ2
)。 今後、塗装ラインにおけるメタリック塗装には回転霧化
塗装装置の採用か進むと思われるが補修塗りにおいては
依然エア霧化式塗装ガンか使用さnつdけらγ(ること
が予41!さrる。 従−・て品質管理上、エア露化塗装と回転霧化塗装置こ
よるメタII ツク塗膜の色の方向(zlを視聴をこよ
く対応するように一測定しうる装置の開発か不t+’l
欠である。 本発明者はエア霧化塗装と回転霧化塗装にJ゛るメタリ
ック塗膜の色を市販のカラーアナライ廿−の入射角と反
射角をそ第1それ変化さ(−て測定した。 その結果塗料が同じ場合のメタリック塗膜の色差の大部
分がL (R即ち三刺激1ikのY 1[+’ (n 
差1こ起因することが判った。そして入+を角を適当P
こ設定して受光角を変化させることによりメタリック塗
膜の色の方向性が測定できることがわかった。すなわち
第6図ンこ示すように入射角を+80°ICシて受光。 角を−7,・か、+□5−ま−Q変化さ、オて求めた。 ア霧化塗装と回転霧化塗装によるメタリ・・り塗膜のL
Mを示す。この結果は視聴1こJ:<−M、し、エア霧
化塗装によるメグリ・7り塗膜中のメタル片が一方向t
こ配向しているのに対し1回転霧化塗装によるメタリッ
ク塗膜中のメタル片がランダムに配列していることを示
した。 そこで1本発明者轄1.上記検討、解析の結果に鑑み、
鋭意研究した結果、光源からレンズ等を経た平行光を試
料面(こ入射させ、試料面で拡散反射した光を所定の受
光角に8置した受光器で検出することにより、試料にお
ける透明もしくは半透明材料中の反射率の高い物質の配
向9色の方向性が。 従来装置に比して正確かつ簡便をこ求めることができる
装置を案出し、た。 本発明の目的とするところは、試料における透明もしく
は半透明材料中(こ反射率の高い物質を含有する膜1こ
よる光の反射量を測定し、試料中tこおけるmI記物質
の配向を、殊1こメタリック塗膜中tこおけるメタル片
の配向を巨視的に測定するのケこ最適で、メタリック塗
膜の色の方向性を劃1こ一致するようtこ正確かつ簡便
に測定することができる光学装置を提供することtこあ
る。 すなわち1本発明は、第1発明と第2発明とからなり、
第1発明は所定位置Eこ固定しレンズ等を経た平行光を
試料面tこ入射させる光源と。 この光源と対応する少なくとも二層」−の位]〆イ1こ
固定的で、かつU++記試料面で反射しl、=光4・受
光−fる受光部と。 前記受光部より取り入れた光を′市電的信号1こ変換す
る受光器とからなり。 前記各受光部から取り入れた光を同時又は選択的に受光
器に作用させることにより、 11.tltこおける透
明もしくは半透明材料中1こ反射率の1v】い物質を含
有する膜1こよる光の反射量を測定し、試料中frおけ
る前記物質の配向を検出するようにし7た光学装置であ
る。 かかる構成よりなる本第1発明の光学装置6′は。 試料面tこおける光の反射量1こついては、入A、1方
向Vこ対する各受光方向を適宜選択することにより。 入射角ならびをこ受光角の依存性が従来の装置に比べて
極めて効率良く測定することができる。 従って1本第1発明の装riij汀第8図ないし第5図
々示のような上記物質の配向を巨視的1こ定量化するこ
とができるといった従来の装置では得られない実用上有
意義な作用効果を奏する。 また、第2発明は。 少な(とも二層上の位置1こ固定的で、かつ光源よりレ
ンズ等を経た平行光を試料面1こ入射させる入射部と。 この入射部と対応する所定位w1こ固定的で、かつ61
■記試料而で反射した光を受光する受光部と。 前記受光部より取り入r+だ光をw!気的伯号1こ変換
する受光器とからなり。 m1記入射部から試料面で反射したのちの光を選択的に
受光器1こ作用させることtこより、試料における透明
もしくは半透明材料中に反射率の高い物質を含有する膜
1こよる光の反射量を測定し試料中tこおける前記物質
の配向を検出するようeこした光学装置である。 かかる構成よりなる本第2発明の光学装置は。 上記第1発明の装置と#才は同様の作用効果を奏すると
ともtこ、これ1こ加えてさらtこ試料面tこおける光
の反射量1こついては、受光方向に対する各入射方向を
適宜選択することにより、入射方位ならびに受光方位の
依存性がより一層効率良く測定することができる。[7
かも本第2発明の装置は+ tlil tri!第1発
明の装置1こ加えて第8図と第4図4示のような上記物
質の配向の両者の差をも巨視的1こ定)+1化すること
かできるといった上記第1発明の装置では得られない作
用効果をもたらすと共に、’:’P)に装置を簡素化、
安価とすることができる集用」二多大な作用効果を奏す
る。 ここで前記各発明において、平行光の入射角O1は例え
は、0くθi (+90°の範囲ならどt」でもよい。 また受光角Orは例えは、 −90’(Dr〈十90°
、OrΦ±O1の範囲ならよいが少なくλ・も2以上の
受光部を設ける場合中りくとも2−)σ)受光器として
の受光素子の受光角はそれぞれ0「−−Oi±a、or
−%−#i土β(15°<;ニー<:45°。 以下9本発明を各実施例tこ基づいて説明すイ)。 第1発明の第1実施例〔第7図参IN()第7図は本第
1発明の第】実施例の光学系統図である。内周面を黒色
の艶消し塗料で塗−た円筒型の測定室21の中tこは試
料台221こ保持した試料28と光源装置24が設置し
である。光源装置24はランプ25.集光ミラー26.
フィルター27からなり、ランプ25からの白色光が集
光ミラー261こよってほぼ平行光線1こなって試料2
8tこ入射角θi −+80°で入射する。試料面で拡
散反射した光の中、θrl−−fiO°で反射した拡散
光とθr2−十(10″で反射した拡散光はそれぞれ測
定室21の席2B、29からレンズLやミラーMを経て
回転ミラー801こ導かれる。回転ミラー80はセクタ
ーモータ811こよって高速回転しく 50Hz〕、2
#1類の拡散光を交互に分光器入射スリット82に導く
。分光器入射スリット32より入射L7た光は回折格子
83上1こ試料像を結像したのち1分散さオ′(て出射
ス’l ント84を照明する。 この時回折格子33の移動1こより出射スリット84を
通過する光は分光され、フィルターを経て光電子増倍管
35をこ入射し、 wLi信号1こ変換し、2種類の拡
散光の分光反射率を測定する。 この分光反射率と予め求めた標準白色板の分光反射率か
ら O1=+ a Oo   or+=110゜O4=+8
0°   θra = 十fl O’所定の計算式に基
づき、上記2611類の光学系1こおける色を計算する
。 次1こ本第1発明の第1実施例装昭の操作及び作動を説
明する。 標準白色板を試料台22に保持し分光反射率を求める。 ランプ25からの白色光は集光ミラー261こまってほ
ぼ平行光線となりフィルター27を通り試料台22に保
持さオ′【た標準白色板tこ入射角θ+−+SO°で入
射する。標準白色抜上でl)r+−−60°に反射した
拡散光とθr2=+(jo’tこ反射した拡散光はそれ
ぞれ測定室21の窓28゜29からレンズLやミラーM
を経て回転ミラ−30tこ到る。セクター七−夕811
こより高速回転する回転ミラーで上記2柚類の拡散光は
交互tこ回折格子88に導か7L、そtしそ11分光さ
れて光1匡子増倍管35に入射し、電気変換され出力さ
f(る。 この場合出力は回転ミツ−30の回転周期に同期して分
離出力させるので2種類の拡散光の分光反射率R8(O
r+λ)が求まる。 R8(or、λ)〔θr:θr+(−−floo)また
はOr2(−十60°)、λ;380(λく780層〕
次1こ、メタリック塗装板を試料台221こ保持して、
同様に2種類の拡散光の分光反射率Rm(Or。 ス)を求める。 そして標準白色板の分光反射率Rg(θr、λ)とメタ
リック塗装板の分光反射率Rm(or、))とからそ第
1そjの光学系の分光比反射率ρ(or、λ)を求め、
 il+、 (21,(81式よりそれぞf+の光学系
における玉料*[’X(or)、Y(Or)、Z(Or
)を計算する1゜Rm(θr、λ) p(Br・λ””Rs(θr、1) X(tj r )=KdioP′A’iλρ(or、λ
)△ス□fl)Y(Br)=にΣPλyλp ((J 
r、λ)△λ□(2)80 Z (Or ) −K aoPk zλP(or、λ)
△λ    (8)Pλ:照明に用いた標準の光のスペ
クI〜ル分布(CIE決定の値→定数〕 iλ yλ)スペクトル三刺激値(CIE決定の餉→iλ 定数〕 △λ;波長間隔(夏+rn) K + 1/1,000,000 モして玉料激jTIX(lJr)、Y(Or)・Z(a
r ) y(4)。 (5)、 f61式に代入してl、(Or)、a(Or
)、b(/7r)を算出する。 2 L(Or)−10Y (or)      −−□(4
)2 a(or) =  1.75(1,02X(or )−
Y((lr))/Y(or)□(5) 1/2 b(Or)= 7. O(Y(or)−α847Z(I
I r ))/Y(//r)−=−+fi1 本第1発明の第1実施例装酋1こよりエア霧化塗装と回
転霧化塗装で得た各メタリック塗装板の色は表1に示す
如くで視聴によく一致し、R(二L(−flo)/L(
+flO)≧1))こよって色の方向性が表り 現できた。エア霧化塗装時のRは大きく、メダル片が第
8図のように配向していることを示し回転霧化塗装時の
Rは小さくメタル片か第5図のよう1こランダム?こ配
列していることを示した。 表     l 上記第1発明の第1実施例の場合、メタII ンク塗p
tn色の方向性、即ちメタル片の配向に加えてそ1それ
の光学系1こおける色がn11]定できるが方向性だけ
が求まれはよい場合(大抵のijA台)1こはメタリッ
ク塗膜の分光反射率があまり波長1こ依存しないので拡
散光を分光しなくても、また、単波(4光を用いても方
向性はそれぞれの光学系における反射率の比で表わせる
。 @1発明の第2実施例〔第8図参照〕 第8図は本第1発明の第2実施例の光学系統図だ試料4
8が設置しである。光源装置44は4111定室41の
外に設置し、測定室の光入射窓45から光が試料481
こ入射角Ot=+−6o°で入射するJうに配殺しであ
る。光諒装館44はランプ46.レンズ47. フィル
ター48.スリット4oから成り、ランプ46からの白
色光がレンズ47をこまってほぼ平行光線1こなって試
料向傷8tこ入射すイ〉1゜試料面48で反射した光は
測定!41の多数の出射窓50〜59に取り伺けられた
光学繊維II゛−こよりセ/I/Cに導かれそれそt(
電気変換さオ【る。これ1こより各受光角Orの反射量
が求めろ君る。 タル片J〕配向を求めた結果を示す。 こjLによるとエア霧化塗装時1こはメタル片が一方向
1こ(第8 Im ) a!列し9回曝霧化塗肢時1こ
はメタル片がランダムFこ(第5図)配列していること
を示した。 第2発明の実施例〔第10図ないし第12図参照〕 第1O図、第11図は本第2発明の実施例の測定室10
0?こおける光受光部101と光入射部102〜109
の配瞳を示す。内周面を黒色の艶消し塗料で塗装した半
球状の測定室100の中心部1ごは試料台901こ保持
した試料91が設置できるようPこなっている。 試料面91の天頂のTM11定室100の壁tこは光受
光部101が設けである。測定室100の壁1こは入射
角か一675°、−45°、 −22,5°、 +15
°。 +46°、+61.5°1こなる位置ヲこぞれそれ光入
射部102,108,104,105.10(’I。 ]07が設けてあり、そして入射角か45°で、h位が
90°ずつ異なった位1mにそJ’lそオl光大引部1
08.108,109.106か設けて1憂)イ)。 光入射部102〜109のMlこはぞ第1そf1第41
図1ご示すような光源部110か設けてk)イ)、、光
源部110はランプ111.集光ミラー112.常閉形
シャッター118.フィルター114喉からなり、ラン
プ111からの白色光が四元ミラー112tこよってほ
ぼ平行光線となり、ソレノイF1]51こよって開閉さ
れる常閉形シャッター118の開放時tこフィルター1
14を経て光入射部より試ネ(面911こ照射さfする
。 また、光受光部101から取り出さiまた拡散光は図示
し1(いレンズ、スリット、フィルターを紅で、光電子
増倍管tこ鳩かれ市電1引こ変椀さオ【る。 次作側させて常閉形シャ、ターを順次間MI L−、各
光入射部より平行光を試料面1こ照射する。すると各光
入射部より光を入射させた時の拡散光が光受光部101
より光電子増倍管に導かむ、″f!L気信号に変換され
る1、こわ1こより、そわぞれの光入射位置1こ対応す
る拡散光量が求まり、メタル片の配列か測定できる。 なお、ソレノイドは手動ヌイソチで作動させてもよいが
タイマーを利用して順番番こ作動させてもよい。 また1本第2発明の実施例では拡散光を分光しなかった
が前記第1発明の第1実施例の如く1分光するとそねそ
れの光学系1こおける色の測定が可能である。
[7] Measuring color using different measurement methods is extremely important for quality control. Conventionally, the color of a coating film has been measured using an optical colorimeter as shown in FIG. 1, FIG. 2, and FIG. In the optical system shown in Fig. 1, an illumination light source 1 and a lens 2 produce 1 approximately parallel beam of light to the sample 8e.
Irradiate vertically. The specularly reflected light from the sample 1 is returned to the light source side by 1 point, and is sent to the light receiving element 4 for the tristimulus values x, y, and z. 5.
The diffused light of the sample 8 is integrated by the integrating sphere 7 and detected by the light-receiving element 4.5°6 so as not to require a fit. On the other hand, in the optical system shown in FIG. 2, the sample 81 is illuminated from 45 degrees left and right, and the vertically diffused light is transmitted through the integrating tube 9 to the tristimulus tube X,
Measurement is performed using Y and Z light receiving elements 10.11.42. When a metallic coating film is obtained by air atomization coating, the metal pieces are generally arranged with regularity as shown in macroscopic figures 8 and 4. In other words, the arrangement of metal pieces as shown in Figure 8 is small and can only be obtained under appropriate coating conditions.A metallic coating film with metal pieces arranged in this way has no orientation (the height of the observer's eye is 11, 'f when viewed from each direction while maintaining a constant distance, no difference in color is observed). In addition, the orientation of the metal pieces as shown in Figure 4 often occurs when painting a vertical surface, and this metallic coating film in which the metal pieces are arranged at an angle with respect to the sample surface is oriented. In other words, when a metallic coating film is viewed from one direction, it appears whitish, and when viewed from the other direction, it appears blackish.The color of a metallic coating film with such orientation is 1111
It is difficult to measure with the optical system of the colorimeter described below. However, in the optical system shown in FIG. 2, if the sample is rotated with illumination from the left and right directions in only one direction and the angle is determined, the orientation of the color of the metallic coating can be determined. Further, by scanning the metallic coating film using this optical system and measuring the color, it is possible to quantify so-called gun unevenness. When a metallic paint film is obtained by air atomization painting, problems related to the color of the metallic paint film (orientation, unevenness, etc.) are often caused by the regular orientation of the metal pieces. In the optical system F of the colorimeter, it was possible to measure colors suitable for viewing by changing the incident direction or light receiving direction without changing the light incident angle or light receiving angle. In recent years, there has been a need to reduce pollution and save resources, and consideration has been given to using rotary atomization for metallic coatings. In the metallic coating film obtained by rotary atomization coating, metal pieces are randomly arranged as shown in Figure 5E. Therefore, the metallic coating film has no orientation. However, the metallic color obtained with the rotating atomization ω system? The directionality of the film (the color when viewed from a fixed orientation and changing the observer's eye height) is different from the directionality of a metallic paint film obtained by air atomization painting. In other words, when viewed from the front, the air atomized paint is generally visible.
``'1%) The paint film is white (it looks white, but when viewed from an angle, the metallic paint film created by the rotary atomization paint looks white2)
). In the future, it is likely that rotary atomization painting equipment will be adopted for metallic painting on painting lines, but air atomization painting guns will still be used for repair painting. Therefore, for quality control purposes, it was necessary to develop a device that could measure the color direction (zl) of the Meta II paint film for air exposure painting and rotary atomization painting in a way that closely corresponds to the viewing angle. Not +'l
It is lacking. The present inventor measured the color of metallic coatings for air atomization coating and rotary atomization coating by first changing the incident angle and reflection angle of a commercially available color analyzer. As a result, most of the color difference between metallic coatings when the paint is the same is L (R, that is, Y 1[+' (n
It was found that this was due to a difference of 1. Then put the + in the corner as appropriate P
It was found that the color directionality of a metallic coating film could be measured by changing the acceptance angle with these settings. That is, as shown in Figure 6, the incident angle is set to +80° IC to receive light. We calculated the angle by -7,・,+□5-ma-Q change. L of metallic paint film by atomization painting and rotary atomization painting
Indicates M. The results are as follows: 1-view J:<-M, and the metal pieces in the Meguri/7 coating film by air atomization coating are unidirectional.
In contrast to this orientation, the metal pieces in the metallic coating film formed by single-rotation atomization coating were shown to be randomly arranged. Therefore, 1. Inventor's responsibility 1. In view of the results of the above consideration and analysis,
As a result of extensive research, we have found that by directing parallel light from a light source through a lens, etc., to the sample surface, and detecting the diffusely reflected light from the sample surface with 8 receivers placed at predetermined acceptance angles, we can detect whether the sample is transparent or semi-transparent. We have devised an apparatus that can obtain the orientation of nine colors of highly reflective substances in a transparent material, which is more accurate and simpler than conventional apparatuses. The amount of light reflected by a film 1 containing a substance with high reflectance in a transparent or translucent material (in particular, in a metallic coating film) is measured to determine the orientation of the substance in the sample. To provide an optical device that is optimal for macroscopically measuring the orientation of a metal piece in a metallic coating, and that can precisely and easily measure the color directionality of a metallic coating film so as to match it exactly. That is, one present invention consists of the first invention and the second invention,
The first aspect of the invention is a light source which is fixed at a predetermined position and causes parallel light to enter the sample surface after passing through a lens or the like. At least two layers corresponding to this light source - 1] A light-receiving part which is fixed and reflects from the sample surface, = light 4, light reception -f. It consists of a light receiver that converts the light taken in from the light receiving section into a streetcar signal. 11. By causing the light taken in from each of the light receiving sections to act on the light receiver simultaneously or selectively; 11. An optical device configured to measure the amount of light reflected by a film containing a substance having a reflectance of 1V in a transparent or translucent material in a transparent or translucent material, and to detect the orientation of the substance in a sample. It is. The optical device 6' of the first invention has such a configuration. The amount of light reflected on the sample surface t can be determined by appropriately selecting each of the light receiving directions opposite to the incident direction A and the direction V. The dependence of the incident angle and the acceptance angle can be measured extremely efficiently compared to conventional devices. Therefore, the apparatus of the first invention has a practically significant effect that cannot be obtained with conventional apparatuses, such as being able to macroscopically quantify the orientation of the above-mentioned substances as shown in FIGS. 8 to 5. be effective. Moreover, the second invention is. A small (in both cases, a fixed position 1 on the two layers, and an entrance part through which parallel light from a light source passes through a lens, etc., enters one sample surface. A predetermined position w1 corresponding to this entrance part is fixed, and 61
■A light-receiving section that receives the light reflected by the object described above. The light is taken in from the light receiving section. It consists of a photoreceptor that converts one light source. By selectively applying the light that has been reflected from the sample surface from the incident part to the light receiver 1, the light emitted from the film 1 containing a substance with high reflectance in the transparent or semi-transparent material of the sample is This is an optical device designed to measure the amount of reflection and detect the orientation of the substance in the sample. The optical device of the second invention has such a configuration. The device of the first invention and the device of the first invention have the same effects, and in addition, the amount of light reflected from the sample surface t is determined by adjusting each incident direction with respect to the light receiving direction. By selecting this, the dependence of the incident direction and the light receiving direction can be measured even more efficiently. [7
Maybe the device of the second invention is + tlil tri! In addition to the apparatus of the first invention, the apparatus of the first invention can also make the difference between the orientations of the substances as shown in FIGS. 8 and 4 macroscopically 1+1. In addition to providing effects that cannot be obtained with other methods, it also simplifies the device
It can be used inexpensively and has two great effects. Here, in each of the above inventions, the incident angle O1 of the parallel light may be, for example, 0 to θi (t in the range of +90°. The acceptance angle Or may be, for example, -90'(Dr<190°
, OrΦ±O1, but at least λ. If two or more light receiving sections are provided, the light receiving angle of the light receiving element as a light receiver should be 0 "--Oi±a, or
-%- #i soil β (15°<;knee<:45°. The present invention will be explained below based on each of the embodiments). FIG. 7 is an optical system diagram of the first embodiment of the first invention (see FIG. 7). A sample 28 held on a sample stage 221 and a light source device 24 are installed inside a cylindrical measurement chamber 21 whose inner peripheral surface is coated with black matte paint. The light source device 24 includes a lamp 25. Concentrating mirror 26.
It consists of a filter 27, and the white light from the lamp 25 is reflected by a condensing mirror 261 into a nearly parallel beam of light, which is directed to the sample 2.
8t is incident at an incident angle θi −+80°. Among the light diffusely reflected on the sample surface, the diffused light reflected at θrl--fiO° and the diffused light reflected at θr2-10'' are transmitted from seats 2B and 29 of the measurement chamber 21 through lens L and mirror M, respectively. The rotating mirror 80 is guided by a rotating mirror 801. The rotating mirror 80 is rotated at high speed by a sector motor 811 (50 Hz), 2
#1 type diffused light is alternately guided to the spectrometer entrance slit 82. The light L7 incident from the spectrometer entrance slit 32 forms one sample image on the diffraction grating 83, and then illuminates the output spot 84 with one dispersion. The light passing through the output slit 84 is spectrally divided, passes through a filter, enters the photomultiplier tube 35, converts the wLi signal into one signal, and measures the spectral reflectance of two types of diffused light. From the obtained spectral reflectance of the standard white plate, O1 = + a Oo or+ = 110° O4 = +8
0° θra = 10 fl O' The color in one optical system of the above 2611 type is calculated based on a predetermined calculation formula. Next, the operation and operation of the first embodiment of the first invention will be explained. A standard white plate is held on the sample stage 22 and the spectral reflectance is determined. The white light from the lamp 25 is converged by the condensing mirror 261 to become a substantially parallel beam, which passes through the filter 27 and enters the standard white plate held on the sample stage 22 at an incident angle θ+−+SO°. The diffused light reflected at r+--60° and the diffused light reflected at θr2=+(jo't) are reflected from the windows 28° and 29 of the measurement chamber 21, respectively, to the lens L and mirror M.
After that, a rotating mirror of 30 tons is delivered. Sector Tanabata 811
By means of a rotating mirror that rotates at high speed, the diffused light of the two citrons is alternately guided to a diffraction grating 88, separated into 7L, 11 parts, and incident on a conical multiplier tube 35, where it is electrically converted and output as f( In this case, the outputs are separated and output in synchronization with the rotation period of the rotator 30, so the spectral reflectance of the two types of diffused light R8 (O
r+λ) is found. R8 (or, λ) [θr: θr+ (--floo) or Or2 (-160°), λ; 380 (780 layers at λ)]
Next, hold the metallic painted plate on the sample stand 221,
Similarly, the spectral reflectance Rm (Or.) of two types of diffused light is determined. Then, from the spectral reflectance Rg (θr, λ) of the standard white plate and the spectral reflectance Rm (or, )) of the metallic painted plate, the spectral ratio reflectance ρ (or, λ) of the first optical system is calculated. seek,
il+, (21, (From formula 81, the beads *['X(or), Y(Or), Z(Or
) Calculate 1°Rm(θr, λ) p(Br・λ””Rs(θr, 1) X(tj r )=KdioP'A'iλρ(or, λ
)△s□fl)Y(Br)=toΣPλyλp ((J
r, λ)△λ□(2)80 Z (Or) -K aoPk zλP(or, λ)
Δλ (8) Pλ: Spectral distribution of standard light used for illumination (value determined by CIE → constant) iλ yλ) Spectral tristimulus value (value determined by CIE → iλ constant) Δλ; Wavelength interval ( summer + rn) K + 1/1,000,000
r ) y(4). (5), Substitute into the f61 formula and get l, (Or), a(Or
), b(/7r) is calculated. 2 L(Or)-10Y (or) --□(4
)2 a(or) = 1.75(1,02X(or)−
Y((lr))/Y(or)□(5) 1/2 b(Or)=7. O(Y(or)−α847Z(I
Ir))/Y(//r)-=-+fi1 The colors of each metallic coated plate obtained by air atomization coating and rotary atomization coating from the first embodiment of the first invention are shown in Table 1. As shown, it agrees well with the viewing and listening, and R(2L(-flo)/L(
+flO)≧1)) Thus, color directionality could be expressed. R during air atomization painting is large, indicating that the medal pieces are oriented as shown in Figure 8. R is small during rotary atomization painting, or is it a metal piece or one random piece as shown in Figure 5? It was shown that this arrangement exists. Table 1 In the case of the first embodiment of the first invention, Meta II ink coating p
tn color directionality, that is, in addition to the orientation of the metal piece, the color in its optical system can be determined (n11), but when only the directionality is required (most ijA machines), metallic coating is used. Since the spectral reflectance of the film does not depend much on one wavelength, the directionality can be expressed by the ratio of the reflectance in each optical system, even if diffused light is not dispersed, or even if a single wave (4 lights) is used. 1. Second Embodiment of the First Invention [See Figure 8] Figure 8 is an optical system diagram of the second embodiment of the first invention.Sample 4
8 is installed. The light source device 44 is installed outside the 4111 fixed room 41, and the light enters the sample 481 from the light entrance window 45 of the measurement chamber.
This is a perfect match for the sea urchin which is incident at an angle of incidence of Ot=+-6o. The light ryosokan 44 has a lamp 46. Lens 47. Filter 48. It consists of a slit 4o, and the white light from the lamp 46 passes through the lens 47 to form one almost parallel beam and enters the sample toward the scratch 8t.The light reflected from the sample surface 48 is measured! The optical fibers II', which are exposed to a large number of exit windows 50 to 59 of 41, are guided to the C/I/C and then
Electrical conversion is possible. From this, the amount of reflection for each acceptance angle Or can be determined. Tal piece J] The results of determining the orientation are shown. According to JL, when painting with air atomization, there is one metal piece in one direction (No. 8 Im) a! When the metal pieces were atomized and coated 9 times in a row, it was found that the metal pieces were randomly arranged (Fig. 5). Embodiment of the second invention [See FIGS. 10 to 12] FIGS. 1O and 11 show the measurement chamber 10 of the embodiment of the second invention.
0? Light receiving section 101 and light incident sections 102 to 109
It shows the eyes of the pupils. The center part 1 of the hemispherical measuring chamber 100 whose inner peripheral surface is painted with black matte paint is curved so that a sample 91 held by a sample stage 901 can be installed therein. A light receiving section 101 is provided on the wall of the TM11 fixed chamber 100 at the zenith of the sample surface 91. One wall of the measurement chamber 100 has an incident angle of -675°, -45°, -22,5°, +15
°. Light incidence portions 102, 108, 104, 105.10 ('I.]07 are provided at the positions of +46° and +61.5°, respectively, and the incident angle is 45°, and the h position is 90°. 1m at different degrees of angle
08.108, 109.106 and 1) a). Ml of light incidence parts 102 to 109 is 1st sof1 41st
A light source section 110 as shown in FIG. 1 is provided. Concentrating mirror 112. Normally closed shutter 118. The white light from the lamp 111 becomes a substantially parallel beam of light through the quaternary mirror 112t, and when the normally closed shutter 118, which is opened and closed by the solenoid F151, is opened, the filter 1
The lens, slit, and filter are shown in red, and the light is taken out from the light receiving section 101. Next, move the normally closed shutters to the side and irradiate one sample surface with parallel light from each light incidence part.Then, each light incidence The diffused light when light is incident from the light receiving part 101
The amount of diffused light corresponding to each light incident position can be determined from the 1,000 f! The solenoid may be operated manually or in sequence using a timer.Also, in the embodiment of the second invention, the diffused light was not dispersed, but in the embodiment of the first invention. When one minute of light is used as in the first embodiment, it is possible to measure the color in one optical system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来装置の概要図、第8図ないし
第5図はメタリック塗膜におけるメタル片の配列態様を
そしそtし示す説明図、第6図はメタリック塗膜1こお
けるメタル片の配向態様を示す線図、第7図は本第1発
明の第1実施例装置を示す概要図、第8図は本第1発明
の第2実施例装置を示す概要図、第9図は本第1発明の
第2実施例装置によるメタル片の配向態様を示す線図、
第10図ないし第12図は本第2発明の■施例4・ぞオ
【ぞわ示す概要図である。 図中 21・・・・・測定室、22・・・・・試料台。 23・・・・・試料、24・・・・・光源装置。 25・・・・・ランプ、26・・・・・集光ミラー。 L・争書・争しンス゛I M−eや・−ミラ、32ψ・
・書°スリット。 特許出願人 株式会1:t  ’# n(中央イiff究所代理人 升理士 高 橋 祥 泰 (42名) 第1図 第3図 第5図 第6図 第2図 第4図
Figures 1 and 2 are schematic diagrams of conventional equipment, Figures 8 to 5 are explanatory diagrams showing the arrangement of metal pieces in a metallic coating, and Figure 6 is a diagram showing the arrangement of metal pieces in a metallic coating. Diagram showing the orientation mode of the metal pieces, FIG. 7 is a schematic diagram showing the first embodiment of the device of the first invention, FIG. 8 is a schematic diagram showing the second embodiment of the device of the first invention, and FIG. The figure is a diagram showing the orientation mode of metal pieces by the second embodiment of the device of the first invention,
10 to 12 are schematic diagrams illustrating Embodiment 4 of the second invention. In the figure 21...Measurement chamber, 22...Sample stand. 23... Sample, 24... Light source device. 25... Lamp, 26... Concentrating mirror. L・Dispute・Dispute ゛IMeya・-Mira, 32ψ・
・Written slit. Patent Applicant Co., Ltd. 1:t'#n (Central IFF Research Institute Agent Masuyasu Takahashi (42 people) Figure 1 Figure 3 Figure 5 Figure 6 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】 ■)所定位置に固定しレンズ等を経た平行光を試料面t
こ入射させる光源と。 この光源と対応する少なくとも二組上の位[rこ固定的
で、かつ前記試料面で反射した光を受光する受光部と。 前記受光部より取り入れた光を電気的信号に変換する受
光器とからなり。 前記各受光部から取り入れた光を同時又は選択的1こ受
光器1こ作用させること1こより、試料1こおける透明
もしくは半透明材料中1こ反射率の高い物質を含有する
膜1こよる光の反射量を測定し試料中tこおける前記物
質の配向を検出するよう1こしたことを特徴とする光学
装置。 2)所定位置1こ固定しレンズ等を経た平行光を試料面
に入射させる光源と。 この試料面で反射する光の正反射方向を挾む少なくとも
二組上の位置に固定的で、かつ前記試料面で反射した光
を受光する受光部と。 前記受光部より取り入れた光4・電気的(Flりに変換
する受光器とからなり。 前記各受光部から取り入れた光を同lR#又は選択的t
こ受光器に作用させること1こより、試料tこおける透
明もしくは半透明材料中1こ反射率の高い物質を含有す
る膜による光の反射量を測定し試料中1こおける前記物
質の配向を検出するようにしたことを特徴とする特許請
求の範囲第1項記載の光学装置。 3)所定位置に固定しレンズ等を経た平行光を試料面に
入射させる光詠と。 この試料面に入射する光の入射方向を挾む少なくとも二
組上の位置をこ固定的で、かつ前記試料面で反射した光
を受光する受光部と。 前記受光部より取り入れた光を爾、気的(Fl号に変換
する受光器とがらなり。 前記各受光部から取り入れた光を同時又は選択的1こ受
光器に作用させること1こまり、試料tこおける透明も
しくは半透明材料中に反射率の高い物質を含有する嘆1
こよる光の反射量を測定し試料中しこおける前記物質の
配向を検lJ4するよう1こしたことを特徴とする特1
t1−請求の範囲第1項記載の光学装置。 4)少な(とも二以十の位ittこ固定的で、かつ光源
からレンズ等を経た平行光を試料面に入射させる入射部
と。 この入射部と対応する所定位置tこ固定的で。 かつ前記試料面で反射した光を受光する受光部と。 前記受光部より(反り入れた光をwtM的信秒信号1換
する受光器とからなり。 前記入射部から試料面で反射したのちの光を選択的に受
光器に作用させること?こより。 試料における透明もしくは半透明材料中1こ反射率の高
い物質を含有する膜1こよる光の反射量を測定し試料中
におけるn++記物質の配向を検出するよう1こしたこ
とを特徴とする光学装置。
[Claims] ■) Fixed at a predetermined position and directing parallel light through a lens etc. to the sample surface t
This is the incident light source. a light receiving section that is fixed at least two positions above the light source and that receives light reflected from the sample surface; It consists of a light receiver that converts the light taken in from the light receiving section into an electrical signal. By simultaneously or selectively applying the light taken in from each of the light-receiving parts to one light-receiving unit, light is emitted from one film containing a highly reflective substance in a transparent or semi-transparent material in one sample. An optical device characterized in that it measures the amount of reflection of the substance and detects the orientation of the substance in the sample. 2) A light source that is fixed at a predetermined position and makes parallel light enter the sample surface through a lens or the like. a light receiving section that is fixed at at least two positions above the specular reflection direction of the light reflected on the sample surface and receives the light reflected on the sample surface; It consists of a light receiver that converts the light 4 taken in from the light receiving part to electrical (Fl). The light taken in from each of the light receiving parts is converted into the same lR# or selectively
By applying this to the light receiver, the amount of light reflected by a film containing a substance with high reflectance in one of the transparent or translucent materials in the sample is measured, and the orientation of the substance in one in the sample is detected. The optical device according to claim 1, characterized in that the optical device is configured to do the following. 3) A light beam that is fixed at a predetermined position and allows parallel light to enter the sample surface after passing through a lens, etc. a light receiving section that is fixed at at least two sets of positions sandwiching the incident direction of the light incident on the sample surface, and that receives light reflected from the sample surface; The light taken in from the light receiving parts is then connected to a light receiver which converts it into gas (Fl).The light taken in from each of the light receiving parts is simultaneously or selectively applied to the light receiver. Containing substances with high reflectance in transparent or translucent materials
Feature 1 characterized in that the orientation of the substance in the sample is detected by measuring the amount of reflected light.
t1 - Optical device according to claim 1. 4) A small (2 to 10) fixed position, and an entrance part through which parallel light from a light source passes through a lens, etc. is incident on the sample surface. A predetermined position corresponding to this entrance part is fixed. a light receiving section that receives the light reflected on the sample surface; and a light receiving section that converts the light reflected from the light receiving section into a wtM signal. The light that is reflected from the sample surface from the incident section. selectively acting on the photoreceptor? This method measures the amount of light reflected by a film containing a substance with a high reflectance among the transparent or translucent materials in the sample, and determines the orientation of the n++ substances in the sample. An optical device characterized in that it detects.
JP17504181A 1981-10-31 1981-10-31 Optical apparatus Granted JPS5876741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17504181A JPS5876741A (en) 1981-10-31 1981-10-31 Optical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17504181A JPS5876741A (en) 1981-10-31 1981-10-31 Optical apparatus

Publications (2)

Publication Number Publication Date
JPS5876741A true JPS5876741A (en) 1983-05-09
JPS6341019B2 JPS6341019B2 (en) 1988-08-15

Family

ID=15989176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17504181A Granted JPS5876741A (en) 1981-10-31 1981-10-31 Optical apparatus

Country Status (1)

Country Link
JP (1) JPS5876741A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127148A (en) * 1981-11-17 1983-07-28 アグゾ・コ−ティングス・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Device for measuring color tone
JPS6161042A (en) * 1984-08-27 1986-03-28 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー Method of characterizing optical property of surface containing metallic particle by apparatus
JPH01132936A (en) * 1987-11-18 1989-05-25 Kawasaki Steel Corp Method and apparatus for analyzing film
JPH01132935A (en) * 1987-11-18 1989-05-25 Kawasaki Steel Corp Method and apparatus for analyzing film
JP2006234613A (en) * 2005-02-25 2006-09-07 Toyota Motor Corp Device and method for evaluating paint film
JP2009069138A (en) * 2007-08-23 2009-04-02 Toyo Aluminium Kk Method for evaluating color unevenness of metallic coating
JP2010197323A (en) * 2009-02-27 2010-09-09 Kansai Paint Co Ltd Method and system for quantifying orientation state of scaly material in paint film
JP2015529832A (en) * 2012-09-19 2015-10-08 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. Polygonal color, opacity, pigment characterization, and texture analysis of painted surfaces via visual and / or appliance techniques
US9818205B2 (en) 2016-02-19 2017-11-14 Ppg Industries Ohio, Inc. Simplified texture comparison engine
US10613727B2 (en) 2016-02-19 2020-04-07 Ppg Industries Ohio, Inc. Color and texture match ratings for optimal match selection
JP2023049358A (en) * 2021-09-29 2023-04-10 イワサキインターナショナル株式会社 Web press

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127148A (en) * 1981-11-17 1983-07-28 アグゾ・コ−ティングス・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Device for measuring color tone
JPH0429019B2 (en) * 1981-11-17 1992-05-15 Biiku Hiemii Gmbh
JPS6161042A (en) * 1984-08-27 1986-03-28 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー Method of characterizing optical property of surface containing metallic particle by apparatus
JPH0580614B2 (en) * 1984-08-27 1993-11-09 Du Pont
JPH01132936A (en) * 1987-11-18 1989-05-25 Kawasaki Steel Corp Method and apparatus for analyzing film
JPH01132935A (en) * 1987-11-18 1989-05-25 Kawasaki Steel Corp Method and apparatus for analyzing film
JP4534795B2 (en) * 2005-02-25 2010-09-01 トヨタ自動車株式会社 Coating film evaluation apparatus and method
JP2006234613A (en) * 2005-02-25 2006-09-07 Toyota Motor Corp Device and method for evaluating paint film
JP2009069138A (en) * 2007-08-23 2009-04-02 Toyo Aluminium Kk Method for evaluating color unevenness of metallic coating
JP2010197323A (en) * 2009-02-27 2010-09-09 Kansai Paint Co Ltd Method and system for quantifying orientation state of scaly material in paint film
JP2015529832A (en) * 2012-09-19 2015-10-08 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. Polygonal color, opacity, pigment characterization, and texture analysis of painted surfaces via visual and / or appliance techniques
US10178351B2 (en) 2012-09-19 2019-01-08 Ppg Industries Ohio, Inc. Multi-angular color, opacity, pigment characterization and texture analysis of a painted surface via visual and/or instrumental techniques
US9818205B2 (en) 2016-02-19 2017-11-14 Ppg Industries Ohio, Inc. Simplified texture comparison engine
US10613727B2 (en) 2016-02-19 2020-04-07 Ppg Industries Ohio, Inc. Color and texture match ratings for optimal match selection
US10969952B2 (en) 2016-02-19 2021-04-06 Ppg Industries Ohio, Inc. Color and texture match ratings for optimal match selection
JP2023049358A (en) * 2021-09-29 2023-04-10 イワサキインターナショナル株式会社 Web press

Also Published As

Publication number Publication date
JPS6341019B2 (en) 1988-08-15

Similar Documents

Publication Publication Date Title
JP5797695B2 (en) Apparatus and method for measuring chromaticity against angle
US7276719B2 (en) Device for a goniometric examination of the optical properties of surfaces
US7679756B2 (en) Device for a goniometric examination of optical properties of surfaces
US3176306A (en) Apparatus for testing surface quality of material
JP2016001198A (en) Inspection device for optical surface characteristic and inspection method thereof
JPS5876741A (en) Optical apparatus
US4575252A (en) Apparatus for measuring absolute reflectance
JPH05142153A (en) Method and device for inspecting surface state by using irradiation
PL167918B1 (en) Method of and apparatus for determining degree of optical transparency and optical quality of translucent plates
US3349665A (en) Characterizing light reflecting properties of a surface
CN208537405U (en) A kind of spectral photometric colour measuring device
US4538912A (en) Method of and apparatus for inspection of coatings on surfaces
JP3659952B2 (en) Surface defect inspection equipment
JPH05215681A (en) Measuring instrument for optical surface characteristic
US3938896A (en) Image colorimeter
JPH0349056B2 (en)
JPH07120323A (en) Measuring apparatus for surface color of metal
JPH0445769B2 (en)
CN105509889B (en) A kind of spectrophotometric color measurement instrument
JPS61155927A (en) Apparatus for measuring hue of metallic paint film
US5831725A (en) Two-mode surface defect testing system
JP2690764B2 (en) Method for measuring sparkle of metallic coating
CN110954508B (en) Method for measuring reflectance at opening of integrating sphere and method for absolute measurement of diffuse reflectance
DE489392C (en) Device intended to be connected in front of a photometer
JPS58102134A (en) Measuring color tone of metallic painted film