JPH1151618A - Film thickness detecting method for multi-layered thin film - Google Patents

Film thickness detecting method for multi-layered thin film

Info

Publication number
JPH1151618A
JPH1151618A JP22580397A JP22580397A JPH1151618A JP H1151618 A JPH1151618 A JP H1151618A JP 22580397 A JP22580397 A JP 22580397A JP 22580397 A JP22580397 A JP 22580397A JP H1151618 A JPH1151618 A JP H1151618A
Authority
JP
Japan
Prior art keywords
thin film
film thickness
sample
thickness
fast fourier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22580397A
Other languages
Japanese (ja)
Inventor
Masanori Nariai
正憲 成合
Andrew Ransten
アンドリュウ ランステン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP22580397A priority Critical patent/JPH1151618A/en
Publication of JPH1151618A publication Critical patent/JPH1151618A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Filters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the improved film thickness measuring instrument which can measure a thicker multi-layered film with high precision. SOLUTION: A sample 10 having a multi-layered thin film is irradiated with the light from a white light source 1 and the light reflected by the sample is spectrally diffused by a multichannel spectroscope 8. Further, a signal processor 7 after reducing reflection spectra other than the object of measurement according to the spectrum patterns of the light source 1 and the respective layers of the sample 10 performs the wave front conversion of the reflection spectrum. Then a DC component is removed through a smoothing differentiating process and then fast Fourier transformation is performed to detect the film thickness.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、多層薄膜の膜厚検出方
法に関するものであり、詳しくは、電子写真感光体の有
機光導体層などの多層薄膜の厚さを検出する多層薄膜の
膜厚検出方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting the thickness of a multilayer thin film, and more particularly, to a method for detecting the thickness of a multilayer thin film such as an organic photoconductor layer of an electrophotographic photosensitive member. It relates to a detection method.

【0002】[0002]

【従来の技術】光透過性の薄膜の厚さを反射光によって
測定する繰り返し反射干渉法は、試料を非破壊で測定で
きる等の点で優れており、中でも、分光された光を瞬時
にセンサーで検出するマルチチャネルディテクタ方式の
可視光による測定方法は、メカニカルな駆動部のない測
定装置を使用できる点において有利である。斯かる測定
方法は、白色反射光スペクトルをマルチチャンネル分光
器で解析し、得られた振幅反射率から反射強度を演算し
た後、波長の中の極値を与える波長および材料の屈折率
に基づき、Newton法を利用し且つ初期値としての
膜厚を設定して繰り返し手法により膜厚の近似値を得る
ものである。
2. Description of the Related Art The repetitive reflection interferometry, in which the thickness of a light-transmitting thin film is measured by reflected light, is excellent in that the sample can be measured nondestructively. The measurement method using a visible light of the multi-channel detector system detected by the method is advantageous in that a measuring device without a mechanical driving unit can be used. Such a measuring method analyzes the white reflected light spectrum with a multi-channel spectroscope, calculates the reflection intensity from the obtained amplitude reflectance, and then, based on the wavelength and the refractive index of the material giving the extreme value among the wavelengths, An approximate value of the film thickness is obtained by a repeated method using the Newton method and setting the film thickness as an initial value.

【0003】しかしながら、上記の薄膜の測定方法は、
電子写真感光体の有機光導体層などの多層膜に適用した
場合、信号処理において問題が生じる。すなわち、上記
の繰り返し手法において、演算の初期値として設定する
膜厚の値が実際の値から隔たっている場合には、解が速
く求まらなかったり又は別の解になったりすることがあ
る。また、膜層数が多い場合は、繰り返し回数が多くな
り、処理時間が長くなるため、インライン等での実際的
な処理には不向きである。
[0003] However, the above-mentioned method for measuring a thin film is as follows.
When applied to a multilayer film such as an organic photoconductor layer of an electrophotographic photosensitive member, a problem occurs in signal processing. That is, in the above-mentioned iterative method, when the value of the film thickness set as the initial value of the calculation is different from the actual value, the solution may not be obtained quickly or may be a different solution. . In addition, when the number of film layers is large, the number of repetitions increases, and the processing time becomes long, which is not suitable for practical processing such as in-line.

【0004】そこで、特開平7−294220号公報に
記載される様に、本発明者等は、先に、高速フーリエ変
換(FFT)の手法を使用し、多層薄膜の厚さを高速に
且つ高精度に検出する膜厚検出方法を提案している。上
記の公報に記載の多層薄膜の膜厚検出方法は、試料に白
色光を照射し、試料から反射した光を分光し、その反射
スペクトルをハニング窓処理し且つ高速フーリエ変換し
てエネルギースペクトルを得た後、その波形を波数変換
処理して薄膜の膜厚を特定する方法である。
Therefore, as described in Japanese Patent Application Laid-Open No. Hei 7-294220, the present inventors first used a fast Fourier transform (FFT) technique to increase the thickness of a multilayer thin film at high speed and high speed. A film thickness detection method that accurately detects the thickness is proposed. The method for detecting the thickness of a multilayer thin film described in the above publication irradiates a sample with white light, disperses light reflected from the sample, performs a Hanning window process on the reflection spectrum, and performs fast Fourier transform to obtain an energy spectrum. After that, the waveform is subjected to wave number conversion processing to specify the thickness of the thin film.

【0005】[0005]

【発明が解決しようとする課題】ところで、昨今の電子
写真感光体においては、カラーコピーやより高解像度の
画像処理に対応するため、厚さがより均一で且つ0.4
〜1.5μmと言った一層薄い膜が形成される。その結
果、上記の膜厚検出方法では、測定対象の薄膜層からの
反射光に対し、下地のスペクトルを含む反射光が影響し
て十分な解析精度が得られない場合がある。本発明は、
斯かる実情に鑑みなされたものであり、その目的は、一
層薄い厚さの多層膜をより高精度に測定可能な改良され
た膜厚検出方法を提供することにある。
Incidentally, in recent electrophotographic photoreceptors, in order to cope with color copying and higher resolution image processing, the thickness of the electrophotographic photoreceptor is more uniform and 0.4 mm.
A thinner film of about 1.5 μm is formed. As a result, in the above-described film thickness detection method, there is a case where sufficient analysis accuracy cannot be obtained due to the influence of the reflected light including the spectrum of the base on the reflected light from the thin film layer to be measured. The present invention
In view of such circumstances, an object of the present invention is to provide an improved film thickness detection method capable of measuring a thinner multilayer film with higher accuracy.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
め、本発明に係る多層薄膜の膜厚検出方法は、多層薄膜
を有する試料に白色光を照射し、当該試料から反射した
光を分光すると共に、光源と各層のスペクトルパターン
に基づき、測定対象外の反射スペクトルを低減させた
後、反射スペクトルを波数変換し、次いで、平滑化微分
処理して直流成分を除去した後、高速フーリエ変換する
ことにより、薄膜の膜厚を検出することを特徴としてい
る。
In order to solve the above-mentioned problems, a method for detecting the thickness of a multilayer thin film according to the present invention includes irradiating a sample having a multilayer thin film with white light and spectrally reflecting light reflected from the sample. In addition, based on the light source and the spectral pattern of each layer, after reducing the reflection spectrum outside the measurement target, the reflection spectrum is wavenumber-converted, then smoothed and differentiated to remove the DC component, and then subjected to fast Fourier transform. Thus, the thickness of the thin film is detected.

【0007】また、上記の膜厚検出方法においては、周
波数域の直流成分を効果的に除去するため、次式で示さ
れるハイパスフィルター(yt )を使用して平滑化微分
処理するのが好ましい。
In the above-described film thickness detection method, in order to effectively remove a DC component in a frequency range, it is preferable to perform a smoothing differentiation process using a high-pass filter (y t ) represented by the following equation. .

【0008】[0008]

【数4】 (Equation 4)

【0009】更に、周波数域において有効なピークを顕
在化させ、高速フーリエ変換を効率的に行うため、次式
で示されるハニング窓(Wn )による処理を施して高速
フーリエ変換するのが好ましい。
Further, in order to make effective peaks appear in the frequency range and to efficiently perform the fast Fourier transform, it is preferable to perform a fast Fourier transform by performing a process using a Hanning window (W n ) represented by the following equation.

【0010】[0010]

【数5】 (Equation 5)

【0011】また、周波数域において有効なピークを一
層顕在化させるため、上記ハニング窓に替え、次式で示
されるマトリックス(A)の固有ベクトルであるスレピ
アン窓による処理を施して高速フーリエ変換してもよ
い。
Further, in order to make the effective peaks in the frequency region more apparent, a process using a Slepian window, which is an eigenvector of the matrix (A) represented by the following equation, is performed instead of the Hanning window, and a fast Fourier transform is performed. Good.

【0012】[0012]

【数6】 (Equation 6)

【0013】[0013]

【発明の実施の形態】図面を参照し、本発明に係る多層
薄膜の膜厚検出方法の実施形態を説明する。図1は、膜
厚検出装置の一構成例を示すブロック図である。図2
は、試料の層構成を模式的に示した断面図である。図3
は、平滑化微分処理にハイパスフィルターを使用した場
合の周波数応答を示す図である。図4は、周波数域の処
理において使用されるハニング窓による処理例を示す図
である。図5は、周波数域の処理において使用されるス
レピアン窓による処理例を示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for detecting the thickness of a multilayer thin film according to the present invention will be described with reference to the drawings. FIG. 1 is a block diagram illustrating a configuration example of a film thickness detection device. FIG.
FIG. 3 is a cross-sectional view schematically illustrating a layer configuration of a sample. FIG.
FIG. 4 is a diagram showing a frequency response when a high-pass filter is used for smoothing differentiation processing. FIG. 4 is a diagram illustrating a processing example using a Hanning window used in the processing of the frequency range. FIG. 5 is a diagram illustrating a processing example using a Slepian window used in the processing of the frequency domain.

【0014】本発明の膜厚検出方法は、図1に示す様な
膜厚検出装置を使用し、多層薄膜を有する試料(10)
における所定の膜の厚さを非破壊で検出する方法であ
る。多層薄膜を有する試料(10)としては電子写真感
光体などが挙げられる。電子写真感光体は、例えば、シ
ート状または円筒状の基体の表面にアルミニウム導電層
を形成し、斯かる導電層の上に下引層を介して電荷発生
層、電荷移動層などの感光層を順次に形成して成る。
The method for detecting a film thickness according to the present invention uses a film thickness detecting device as shown in FIG.
Is a method for non-destructively detecting the thickness of a predetermined film. Examples of the sample (10) having a multilayer thin film include an electrophotographic photoreceptor. The electrophotographic photoreceptor includes, for example, an aluminum conductive layer formed on the surface of a sheet-like or cylindrical substrate, and a photosensitive layer such as a charge generation layer and a charge transfer layer formed on the conductive layer via an undercoat layer. It is formed sequentially.

【0015】下引層は、0.5〜3μm程度の厚さで形
成された共重合ナイロン等の塗膜である。感光層は、従
来公知の各種の感光体材料の塗布液によって形成され
る。斯かる塗布液としては、感光体材料と1種以上の溶
媒から成る従来公知の各種のものを使用することが出来
る。電荷発生物質としては、スーダンレッド、ダイアン
ブルー等のアゾ顔料の他、ジスアゾ顔料、キノン顔料、
フタロシアニン顔料、ピリリウム塩、アズレニウム塩な
どが挙げられる。電荷輸送物質としては、主鎖または側
鎖にアントラセン、ピレン等の多芳香族化合物またはイ
ンドール、カルバゾール等の含窒素環式化合物の骨格を
有する化合物、その他、ヒドラゾン化合物など正孔輸送
物質が挙げられる。感光層が積層型の場合、例えば、電
荷発生層は0.3〜1.0μmの厚さで形成され、電荷
移動層は15〜40μmの厚さで形成される。
The undercoat layer is a coating film of nylon or the like formed with a thickness of about 0.5 to 3 μm. The photosensitive layer is formed by a conventionally known coating solution of various photoconductor materials. As such a coating liquid, various conventionally known liquids composed of a photoreceptor material and one or more solvents can be used. As the charge generating substance, other than azo pigments such as Sudan Red and Diane Blue, disazo pigments, quinone pigments,
Examples include phthalocyanine pigments, pyrylium salts, azurenium salts and the like. Examples of the charge transport material include compounds having a skeleton of a polyaromatic compound such as anthracene or pyrene or a nitrogen-containing cyclic compound such as indole or carbazole in a main chain or a side chain, and a hole transport material such as a hydrazone compound. . When the photosensitive layer is a stacked type, for example, the charge generation layer is formed with a thickness of 0.3 to 1.0 μm, and the charge transfer layer is formed with a thickness of 15 to 40 μm.

【0016】なお、以下の説明においては、試料(1
0)の層構成を図2に示す様な層構成として説明する。
図2に示す層構成において、符号(d1 ,d2 …dN
は基材表面の各薄膜層の厚さを示し、符号(n0 ,n
1 ,n2 …nN )は基板とその表面の各薄膜層の屈折
率、符号(nN+1 )は試料(10)表面の空気の屈折率
をそれぞれ示す。
In the following description, the sample (1
The layer configuration 0) will be described as a layer configuration as shown in FIG.
In the layer configuration shown in FIG. 2, the symbols (d 1 , d 2 ... D N )
Indicates the thickness of each thin film layer on the surface of the base material, and the symbols (n 0 , n
1 , n 2 ... N N ) indicate the refractive index of the substrate and each thin film layer on its surface, and the symbol (n N + 1 ) indicates the refractive index of air on the surface of the sample (10).

【0017】図1に示す膜厚検出装置は、白色光源
(1)、光ファイバー(2,3)、マルチチャンネル分
光器(6)及び信号処理装置(7)から主として構成さ
れる。光ファイバー(2,3)は、2分岐ファイバーで
あり、白色光源(1)から発光された光を試料(10)
に照射する光ファイバー(2)と、試料(10)からの
反射戻り光を捕捉してマルチチャンネル分光器(6)に
導入する光ファイバー(3)とから成る。マルチチャン
ネル分光器(6)は、光ファイバ(3)からの入射光を
分光する分光器(4)及び分光スペクトルの強度を検出
して信号処理装置(7)に信号出力するマルチチャネル
ディテクタ(5)によって構成される。そして、信号処
理装置(7)には、入力された信号に基づき、所定の演
算処理を行う演算処理手段が含まれる。
The film thickness detecting device shown in FIG. 1 mainly includes a white light source (1), optical fibers (2, 3), a multi-channel spectroscope (6), and a signal processing device (7). The optical fiber (2, 3) is a bifurcated fiber, and converts the light emitted from the white light source (1) into a sample (10).
An optical fiber (2) for irradiating the sample and an optical fiber (3) for capturing the reflected return light from the sample (10) and introducing it to the multi-channel spectrometer (6). The multi-channel spectrometer (6) includes a spectroscope (4) for splitting incident light from the optical fiber (3) and a multi-channel detector (5) for detecting the intensity of the spectrum and outputting a signal to the signal processing device (7). ). The signal processing device (7) includes an arithmetic processing unit that performs a predetermined arithmetic process based on the input signal.

【0018】本発明の膜厚検出方法では、図1に示す様
に、先ず、試料(10)に対し、光ファイバ(2)を介
し、白色光源(1)の光を垂直(θ=0)に照射すると
共に、光ファイバ(3)を介し、試料(10)で反射し
た光をマルチチャンネル分光器(6)の分光器(4)に
導入して分光する。次いで、マルチチャネルディテクタ
(5)によって分光スペクトルの強度を検出し、得られ
た分光スペクトルの強度信号を信号処理装置(7)に入
力して演算処理する。
In the film thickness detecting method of the present invention, as shown in FIG. 1, first, the light of the white light source (1) is perpendicularly applied to the sample (10) via the optical fiber (2) (θ = 0). And the light reflected by the sample (10) is introduced into the spectroscope (4) of the multi-channel spectroscope (6) through the optical fiber (3) to be separated. Next, the intensity of the spectral spectrum is detected by the multi-channel detector (5), and the obtained intensity signal of the spectral spectrum is input to the signal processing device (7) for arithmetic processing.

【0019】本発明においては、信号処理装置(7)に
反射スペクトルを入力した際、各層の吸収による強度影
響を受けて測定誤差が増大するのを防止するため、先
ず、試料(10)の各層において下層側へ透過する様な
吸収のない波長範囲を選択する。更に、各層を形成する
薄膜間の干渉を補完するため、波長域において、予め確
認された光源と各層の反射スペクトルパターンとに基づ
き、測定対象以外の層の反射スペクトルを低減させてお
く。特に、試料(10)が電子写真感光体の場合、基材
や導電層を構成するアルミニウムによる反射スペクトル
のピークを補正することが有効である。
In the present invention, when a reflection spectrum is input to the signal processing device (7), first, each layer of the sample (10) is prevented in order to prevent an increase in measurement error due to the influence of the intensity due to absorption of each layer. In the above, a wavelength range where there is no absorption that transmits to the lower layer side is selected. Further, in order to complement the interference between the thin films forming each layer, the reflection spectra of the layers other than the object to be measured are reduced in the wavelength range based on the light source and the reflection spectrum pattern of each layer confirmed in advance. In particular, when the sample (10) is an electrophotographic photosensitive member, it is effective to correct the peak of the reflection spectrum due to aluminum constituting the base material and the conductive layer.

【0020】次いで、得られた反射スペクトルを波数変
換することにより、波長域から周波数域の信号に変換す
る。波長域の信号は、波長(λ)の逆数、すなわち、波
数(σ)に変換すると、d=(1/2n)(1/Δσ)
(但し、nは屈折率)の関係から、膜厚dは、次式の様
に、その差Δσ=σ12 (σii -1 ,i=1,
2)のみに依存し、測定開始波長(λ1 )からは独立に
なる。
Then, the obtained reflection spectrum is converted into a signal in a wavelength range from a wavelength range by performing a wave number conversion. When the signal in the wavelength range is converted into the reciprocal of the wavelength (λ), that is, the wave number (σ), d = (1 / 2n) (1 / Δσ)
From the relationship (where n is the refractive index), the film thickness d is expressed by the following equation: Δσ = σ 1 −σ 2i = λ i −1 , i = 1,
2) only, and is independent of the measurement start wavelength (λ 1 ).

【0021】[0021]

【数7】 (Equation 7)

【0022】そこで、直流成分を除去するため、波数変
換した信号を平滑化微分処理する。本発明においては、
平滑化微分処理するに当たり、次式で示される所謂ハイ
パスフィルター(yt )( Chebyshev High-Pass Filte
r )が使用される。例えば、ハイパスフィルター(y
t )により、20周期以下の信号を40db程度に減衰
させた状態においては、図3に示す様な周波数応答が得
られる。斯かるハイパスフィルター(yt )の使用によ
り、周波数域における直流成分を効果的に除去できる。
Therefore, in order to remove the DC component, the signal subjected to wave number conversion is subjected to smoothing differentiation processing. In the present invention,
In performing the smoothing differentiation process, a so-called high-pass filter (y t ) represented by the following equation (Chbyshev High-Pass Filte)
r) is used. For example, a high-pass filter (y
According to t ), in a state where a signal of 20 cycles or less is attenuated to about 40 db, a frequency response as shown in FIG. 3 is obtained. By using such a high-pass filter (y t ), a DC component in a frequency domain can be effectively removed.

【0023】[0023]

【数8】 (Equation 8)

【0024】次に、ハイパスフィルター(yt )によっ
て直流成分を除去し、平滑化微分処理した波数信号に対
し、所定の窓関数による処理を施す。窓関数としては、
所謂ボクスカー窓( Boxcar window )、ハニング窓(
Hanning window )、スレピアン窓( Slepian window
)等の関数が使用し得る。
Next, a DC component is removed by a high-pass filter (y t ), and the wave number signal subjected to the smoothing differentiation processing is subjected to processing by a predetermined window function. As a window function,
So-called Boxcar window, Hanning window (
Hanning window, Slepian window
) May be used.

【0025】波数信号に上記の様な窓関数を適用する理
由は次の通りである。すなわち、反射スペクトルを検出
するマルチチャネルディテクタ(5)のセンサの個数が
例えば1024個と言った有限数のため、そのまま後段
の高速フーリエ変換を行うと信号の両端の値(1番目と
最後のセンサの値)によって結果が大きく影響されるか
らである。
The reason why the above window function is applied to the wave number signal is as follows. That is, since the number of sensors of the multi-channel detector (5) for detecting the reflection spectrum is a finite number, for example, 1024, if the subsequent fast Fourier transform is directly performed, the values at both ends of the signal (the first and last sensors) are obtained. Is greatly influenced by the result.

【0026】本発明においては、次式で示す改良された
ハニング窓(Wn )による処理を施すのが好ましい。斯
かるハニング窓処理により、周波数域において有効なピ
ークを顕在化させることが出来る。例えば、1024個
の測定データを上記ハニング窓(Wn )によって処理し
た場合の振幅の大きさは図4に示す様に補正される。
In the present invention, it is preferable to perform processing using an improved Hanning window (W n ) represented by the following equation. By such a Hanning window process, an effective peak in the frequency domain can be made obvious. For example, the magnitude of the amplitude when 1024 pieces of measurement data are processed by the Hanning window (W n ) is corrected as shown in FIG.

【0027】[0027]

【数9】 (Equation 9)

【0028】また、本発明においては、上記ハニング窓
に替え、次式で示されるマトリックス(A)の固有ベク
トルであるスレピアン窓による処理を施してもよい。斯
かるスレピアン窓処理により、周波数域において有効な
ピークを一層顕在化させることが出来る。例えば、上記
と同様の1024個の測定データを上記スレピアン窓に
よって処理した場合の振幅の大きさは図5に示す様に補
正される。
In the present invention, instead of the above Hanning window, a process using a Slepian window, which is an eigenvector of the matrix (A) represented by the following equation, may be performed. By such Slepian window processing, effective peaks in the frequency domain can be made more apparent. For example, the magnitude of the amplitude when 1024 pieces of measurement data similar to the above are processed by the Slepian window is corrected as shown in FIG.

【0029】[0029]

【数10】 (Equation 10)

【0030】上記の様な各窓関数による処理の結果、測
定すべき薄膜層からの反射光に対し、以下の処理過程で
得られる周波数データに対してより接近した周波数の分
離を改善できる。そして、各窓処理した信号は、高速フ
ーリエ変換することにより厚さデータとして処理でき、
所定の薄膜の膜厚dを高速に演算できる。また、高速フ
ーリエ変換するに当たり、高速フーリエ変換における基
底を細かくし、変換(近似)精度を向上させるため、得
られた例えば1024個の信号の後へ0を拡充し、信号
の総数を例えばN倍にすることにより、精度をN倍改善
できる。
As a result of the processing using each window function as described above, it is possible to improve the separation of the frequency of the reflected light from the thin film layer to be measured, which is closer to the frequency data obtained in the following process. Then, the signal subjected to each window processing can be processed as thickness data by performing a fast Fourier transform,
The thickness d of a predetermined thin film can be calculated at high speed. Further, in performing the fast Fourier transform, in order to refine the basis in the fast Fourier transform and improve the conversion (approximation) accuracy, 0 is expanded after the obtained 1024 signals, for example, and the total number of signals is increased by N times. By doing so, the accuracy can be improved N times.

【0031】膜厚dの演算は、先ず、高速フーリエ変換
して得られたデータから次式で近似される振幅反射率
(R)を演算し、強度スペクトルの大きさ|R|2 を求
める。
In the calculation of the film thickness d, first, the amplitude reflectance (R) approximated by the following equation is calculated from the data obtained by the fast Fourier transform, and the magnitude | R | 2 of the intensity spectrum is obtained.

【0032】[0032]

【数11】 [Equation 11]

【0033】次いで、第j番目のピーク位置に関して次
式が成り立つから、各層の既知の屈折率nj を利用し且
つ初期値膜厚djo(j=1…N)を設定し、第1ピーク
から順に計算していくことにより各層の膜厚が計算でき
る。
Next, since the following equation holds for the j-th peak position, the known refractive index n j of each layer is used and an initial film thickness d jo (j = 1... N) is set. The thickness of each layer can be calculated by sequentially calculating from.

【0034】[0034]

【数12】 (Equation 12)

【0035】上記の様に、本発明の膜厚検出方法におい
ては、波長域において、測定対象外の反射スペクトルを
低減させ、周波数域において、平滑化微分処理して直流
成分を除去し、そして、高速フーリエ変換するため、例
えば、多層膜の中の0.4〜1.5μmと言った極めて
薄い膜厚を高速に且つ極めて高精度に検出できる。ま
た、ハイパスフィルターを使用して平滑化微分処理した
場合には、周波数域における直流成分を効果的に除去で
きるため、より高精度に膜厚を特定できる。そして、周
波数域において改良されたハニング窓またはスレピアン
窓による処理を施して高速フーリエ変換した場合には、
接近した周波数を高精度で分離でき、一層高精度に膜厚
を特定できる。
As described above, in the film thickness detection method of the present invention, the reflection spectrum outside the object of measurement is reduced in the wavelength range, the DC component is removed by smoothing differentiation in the frequency range, and Because of the fast Fourier transform, for example, an extremely thin film thickness of 0.4 to 1.5 μm in a multilayer film can be detected at high speed and with extremely high accuracy. Further, when the smoothing differential processing is performed using the high-pass filter, the DC component in the frequency range can be effectively removed, so that the film thickness can be specified with higher accuracy. Then, in the case where fast Fourier transform is performed by performing processing using an improved Hanning window or Slepian window in the frequency domain,
Close frequencies can be separated with high accuracy, and the film thickness can be specified with higher accuracy.

【0036】[0036]

【発明の効果】本発明に係る多層薄膜の膜厚検出方法に
よれば、波長域において、測定対象外の層の反射スペク
トルを低減させ、周波数域において、平滑化微分処理し
て直流成分を除去し、そして、高速フーリエ変換するた
め、多層膜の中の極めて薄い膜厚を高速に且つ極めて高
精度に検出できる。
According to the method for detecting the thickness of a multilayer thin film according to the present invention, the reflection spectrum of a layer not to be measured is reduced in the wavelength range, and the DC component is removed by smoothing and differentiation in the frequency range. In addition, because of the fast Fourier transform, an extremely thin film thickness in the multilayer film can be detected at high speed and with extremely high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】膜厚検出装置の一構成例を示すブロック図FIG. 1 is a block diagram illustrating a configuration example of a film thickness detection device.

【図2】試料の層構成を模式的に示す断面図FIG. 2 is a cross-sectional view schematically illustrating a layer configuration of a sample.

【図3】平滑化微分処理にハイパスフィルターを使用し
た場合の周波数応答を示す図
FIG. 3 is a diagram illustrating a frequency response when a high-pass filter is used in the smoothing differentiation process.

【図4】周波数域の処理において使用されるハニング窓
による処理例を示す図
FIG. 4 is a diagram showing an example of processing using a Hanning window used in processing in a frequency range.

【図5】周波数域の処理において使用されるスレピアン
窓による処理例を示す図
FIG. 5 is a diagram showing a processing example using a Slepian window used in processing in a frequency domain;

【符号の説明】[Explanation of symbols]

1 白色光源 2 光ファイバ 3 光ファイバ 4 分光器 5 マルチチャネルディテクタ 6 マルチチャネル分光器 7 信号処理装置 DESCRIPTION OF SYMBOLS 1 White light source 2 Optical fiber 3 Optical fiber 4 Spectroscope 5 Multi-channel detector 6 Multi-channel spectrometer 7 Signal processing device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 多層薄膜を有する試料に白色光を照射
し、当該試料から反射した光を分光すると共に、光源と
各層のスペクトルパターンに基づき、測定対象外の反射
スペクトルを低減させた後、反射スペクトルを波数変換
し、次いで、平滑化微分処理して直流成分を除去した
後、高速フーリエ変換することにより、薄膜の膜厚を検
出することを特徴とする多層薄膜の膜厚検出方法。
1. A sample having a multilayer thin film is irradiated with white light, the light reflected from the sample is dispersed, and the reflection spectrum outside the measurement object is reduced based on the light source and the spectral pattern of each layer. A method for detecting the film thickness of a multilayer thin film, comprising: converting the spectrum into a wave number, and then performing a smoothing differentiation process to remove a DC component, and then performing a fast Fourier transform to detect the film thickness of the thin film.
【請求項2】 次式で示されるハイパスフィルター(y
t )を使用して平滑化微分処理する請求項1に記載の多
層薄膜の膜厚検出方法。 【数1】
2. A high-pass filter (y
2. The method for detecting the thickness of a multilayer thin film according to claim 1, wherein the smoothing differentiation process is performed using t ). (Equation 1)
【請求項3】 次式で示されるハニング窓(Wn )によ
る処理を施して高速フーリエ変換する請求項1又は2に
記載の多層薄膜の膜厚検出方法。 【数2】
3. The method for detecting a film thickness of a multilayer thin film according to claim 1, wherein a fast Fourier transform is performed by performing a process using a Hanning window (W n ) represented by the following equation. (Equation 2)
【請求項4】 次式で示されるマトリックス(A)の固
有ベクトルであるスレピアン窓による処理を施して高速
フーリエ変換する請求項1又は2に記載の多層薄膜の膜
厚検出方法。 【数3】
4. The method for detecting a film thickness of a multilayer thin film according to claim 1, wherein a fast Fourier transform is performed by performing a process using a Slepian window which is an eigenvector of the matrix (A) represented by the following equation. (Equation 3)
JP22580397A 1997-08-07 1997-08-07 Film thickness detecting method for multi-layered thin film Withdrawn JPH1151618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22580397A JPH1151618A (en) 1997-08-07 1997-08-07 Film thickness detecting method for multi-layered thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22580397A JPH1151618A (en) 1997-08-07 1997-08-07 Film thickness detecting method for multi-layered thin film

Publications (1)

Publication Number Publication Date
JPH1151618A true JPH1151618A (en) 1999-02-26

Family

ID=16835039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22580397A Withdrawn JPH1151618A (en) 1997-08-07 1997-08-07 Film thickness detecting method for multi-layered thin film

Country Status (1)

Country Link
JP (1) JPH1151618A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100731971B1 (en) * 2006-01-10 2007-06-27 (주)동영하이테크 Universal motor
CN103575703A (en) * 2012-08-09 2014-02-12 中国科学院微电子研究所 Method for measuring single-crystal-silicon-based solar surface antireflection film by reflection spectrum
JP2021012056A (en) * 2019-07-04 2021-02-04 シャープ株式会社 Evaluation device and evaluation method for multilayer film forming body
US11913773B2 (en) 2018-05-24 2024-02-27 Lg Chem, Ltd. Non-destructive method for measuring thickness of three-layered reinforced hydrogen ion exchange membrane for fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100731971B1 (en) * 2006-01-10 2007-06-27 (주)동영하이테크 Universal motor
CN103575703A (en) * 2012-08-09 2014-02-12 中国科学院微电子研究所 Method for measuring single-crystal-silicon-based solar surface antireflection film by reflection spectrum
US11913773B2 (en) 2018-05-24 2024-02-27 Lg Chem, Ltd. Non-destructive method for measuring thickness of three-layered reinforced hydrogen ion exchange membrane for fuel cell
JP2021012056A (en) * 2019-07-04 2021-02-04 シャープ株式会社 Evaluation device and evaluation method for multilayer film forming body

Similar Documents

Publication Publication Date Title
Ajovalasit et al. Towards RGB photoelasticity: full-field automated photoelasticity in white light
US7892855B2 (en) Surface plasmon resonance sensors and methods for detecting samples using the same
US5255075A (en) Optical sensor
WO2000034738B1 (en) Rapid and accurate thin film measurement of individual layers in a multi-layered or patterned sample
JP3782481B2 (en) Modulation spectroscopic ellipsometer
CN110927121B (en) Phase type SPR detection device and method based on white light interference spectrum
KR100595348B1 (en) Method of and apparatus for measuring thickness of thin film or thin layer
JPH09119815A (en) Method and device for measuring film thickness
EP1467177A1 (en) Method and apparatus for measuring thicknesses of layers of multilayer thin film
US4828388A (en) Method of measuring concentration of substances
TWI798614B (en) Combined ocd and photoreflectance apparatus, system and method
JPH1151618A (en) Film thickness detecting method for multi-layered thin film
JPH07294220A (en) Method and apparatus for detecting film thickness of multilayered thin film
KR102195132B1 (en) Method for measuring the light intensity of continuous rotation of a polarizer
JP2007155630A (en) Thickness measuring method and thickness measuring apparatus of laminated thin film
US6411388B1 (en) System and method for frequency domain interferometric second harmonic spectroscopy
JPS59105508A (en) Measurement of whith interference film thickness
JP2000314612A (en) Measurement method for film thickness of light transmission film and film thickness measuring device
JP2728773B2 (en) Apparatus and method for evaluating thickness of semiconductor multilayer thin film
JP2935412B2 (en) Method and apparatus for measuring thickness of thin film and method for manufacturing optical filter
JP2001116518A (en) Method and instrument for measuring film thickness
JP2003279324A (en) Film thickness measuring method and device thereof
JP2003050108A (en) Method and device for measuring film thickness
WO1996000887A1 (en) An improved optical sensor and method
JP2790410B2 (en) High sensitivity color difference observation method for film thickness and refractive index

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041102