JPS6156823B2 - - Google Patents

Info

Publication number
JPS6156823B2
JPS6156823B2 JP55126798A JP12679880A JPS6156823B2 JP S6156823 B2 JPS6156823 B2 JP S6156823B2 JP 55126798 A JP55126798 A JP 55126798A JP 12679880 A JP12679880 A JP 12679880A JP S6156823 B2 JPS6156823 B2 JP S6156823B2
Authority
JP
Japan
Prior art keywords
circuit
output
time
multiplication
real part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55126798A
Other languages
Japanese (ja)
Other versions
JPS5752959A (en
Inventor
Haruo Akagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP55126798A priority Critical patent/JPS5752959A/en
Publication of JPS5752959A publication Critical patent/JPS5752959A/en
Publication of JPS6156823B2 publication Critical patent/JPS6156823B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/4806Computations with complex numbers
    • G06F7/4812Complex multiplication

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Computing Systems (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Complex Calculations (AREA)

Description

【発明の詳細な説明】 この発明は、高速フーリエ変換器のような複素
数を取り扱うデイジタル演算装置における乗算装
置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a multiplication device in a digital arithmetic device that handles complex numbers, such as a fast Fourier transformer.

この種の演算装置としては、従来、第1図に示
すものがあつた。図において、1と2は被乗数の
実数部aと虚数部bの入力端子、3と4は乗数の
実数部cと虚数部dの入力端子、5と6は積の実
数部Aと虚数部Bの出力端子、7〜10は上記a
とc、bとd、aとd、bとcの乗算を行なう乗
算回路、11は、acよりbdを減算する減算回
路、12はadとbcを加算する加算回路、13と
14は単位演算時間間隔で減算回路出力と加算回
路出力をそれぞれラツチして、複素数の積を出力
するラツチ回路である。
As this type of arithmetic device, there has conventionally been one shown in FIG. In the figure, 1 and 2 are input terminals for real part a and imaginary part b of the multiplicand, 3 and 4 are input terminals for real part c and imaginary part d of the multiplier, and 5 and 6 are input terminals for real part A and imaginary part B of the product. output terminals, 7 to 10 are the above a
11 is a subtraction circuit that subtracts bd from ac, 12 is an addition circuit that adds ad and bc, 13 and 14 are unit operations. This is a latch circuit that latches the output of the subtraction circuit and the output of the addition circuit at time intervals and outputs the product of complex numbers.

つぎに動作について説明する。複素数の乗算は
つぎの式(1)に示す公式にしたがつて演算すればよ
い。
Next, the operation will be explained. Multiplication of complex numbers can be performed according to the formula shown in equation (1) below.

(a+jb)×(c+jd) =(ac−bd)+j(ad+bc)=A+jB ……(1) ここでa:被乗数の実数部 b:被乗数の虚数部 c:乗数の実数部 d:乗数の虚数部 A:積の実数部 B:積の虚数部 入力端子1〜4より入力された被乗数と乗数の
実数部aとc、および虚数部のbとdは、乗算回
路7〜10で式1にしたがつて、乗算されて、積
ac、bd、ad、bcを得る。減算回路11では、積
acから積bdを減じて差ac−bdを出力する。加算
回路12では、積adと積bcとを加えて和ad+bc
を出力する。ラツチ回路13と14ではそれぞ
れ、差ac−bdと和ad+bcを装置に備わつている
タイミングによりラツチし、複素数の積の実数部
Aと虚数部Bを出力し、複素数の積出力A+jB
を得る。
(a + jb) × (c + jd) = (ac - bd) + j (ad + bc) = A + jB ... (1) where a: Real part of the multiplicand b: Imaginary part of the multiplicand c: Real part of the multiplier d: Imaginary part of the multiplier A: Real part of the product B: Imaginary part of the product The real parts a and c of the multiplicand and multiplier input from input terminals 1 to 4, and the imaginary parts b and d, are expressed as Formula 1 in multiplication circuits 7 to 10. are multiplied, and the product is
Get ac, bd, ad, bc. In the subtraction circuit 11, the product
Subtract the product bd from ac and output the difference ac - bd. The adder circuit 12 adds the product ad and the product bc to obtain the sum ad+bc.
Output. The latch circuits 13 and 14 respectively latch the difference ac-bd and the sum ad+bc according to the timing provided in the device, output the real part A and the imaginary part B of the product of complex numbers, and output the product output of complex numbers A+jB.
get.

ここで乗算回路7〜10の回路素子等について
は種々知られているところであるが、回路の規
模、消費電力が他の構成回路素子より大であるこ
とは一般的に良く知られている。
Although various information is known about the circuit elements of the multiplier circuits 7 to 10, it is generally well known that the scale and power consumption of the circuits are larger than that of other constituent circuit elements.

上述のように、従来の乗算装置においては、複
素数の乗算を4つの乗算回路と、1つの減算回路
と、1つの加算回路とにより実現しているが、高
速フーリエ変換器等においては、第1図に示した
ような複素数の乗算装置を複数個用いているの
で、結局多数の乗算回路が使用されることとな
り、回路の規模および消費電力が増大する。
As mentioned above, in conventional multiplication devices, multiplication of complex numbers is realized using four multiplication circuits, one subtraction circuit, and one addition circuit, but in fast Fourier transformers, etc. Since a plurality of complex multipliers as shown in the figure are used, a large number of multiplier circuits are eventually used, increasing the scale and power consumption of the circuit.

この発明は、上記のような従来のものの欠点を
除去するためになされたもので、複素数の乗算を
被乗数、乗数ともに単位演算時間内に時分割配列
して行なうことにより、乗算回路の数を削減して
従来の半分の2つとし、小規模で低消費電力の乗
算装置を提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and reduces the number of multiplication circuits by performing multiplication of complex numbers by time-divisionally arranging both the multiplicand and the multiplier within a unit calculation time. The number of multiplication devices is reduced to two, which is half that of the conventional one, and the purpose is to provide a small-scale multiplication device with low power consumption.

以下、この発明の一実施例を図について説明す
る。第2図において、1〜6は、第1図と共通部
分であり、20は被乗数の実数部aと虚数部bと
を単位演算時間内に時分割配列する第1の時分割
回路、21は乗数の実数部cと虚数部dとを単位
演算時間内に実数部/虚数部および虚数部/実数
部のそれぞれに時分割配列する第2の時分割回
路、22と23は単位演算時間間隔の1/2だけ遅
延する第1および第2の遅延回路、7と8は第1
および第2の乗算回路、11は減算回路、12は
加算回路、13と14はラツチ回路である。7,
8,11〜14は第1図と同じ動作をする回路で
ある。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 2, 1 to 6 are common parts with FIG. 1, 20 is a first time division circuit that time-divisionally arranges the real part a and the imaginary part b of the multiplicand within a unit operation time, and 21 is a 22 and 23 are circuits 22 and 23 which time-divisionally arrange the real part c and imaginary part d of the multiplier into real part/imaginary part and imaginary part/real part, respectively, within unit calculation time; The first and second delay circuits delay by 1/2, 7 and 8 are the first
and a second multiplication circuit, 11 is a subtraction circuit, 12 is an addition circuit, and 13 and 14 are latch circuits. 7,
8, 11 to 14 are circuits that operate in the same way as in FIG.

つぎに、上記構成の動作を第3図のタイミング
チヤートにしたがつて説明する。
Next, the operation of the above configuration will be explained with reference to the timing chart shown in FIG.

入力端子1および2より入力された複素数の被
乗数の実数部a(第3図A)と虚数部b(第3図
B)は、第2図の第1の時分割回路20で、装置
に備わつているタイミングを用いて単位演算時間
内に時分割配列されて第3図Eの出力a/bを得
る。
The real part a (FIG. 3A) and the imaginary part b (FIG. 3B) of the complex multiplicand inputted from input terminals 1 and 2 are processed by the first time division circuit 20 in FIG. Using the known timing, the signals are time-divisionally arranged within the unit calculation time to obtain the outputs a/b shown in FIG. 3E.

一方、乗数の実数部c(第3図C)と虚数部d
(第3図D)は、第2図の第2の時分割回路21
で装置に備わつているタイミングを用いて単位演
算時間内に時分割配列されて、第3図Fに示す実
数部/虚数部に配列された出力c/dと、第3図
Gに示す虚数部/実数部に配列された出力d/c
とを得る。第1の乗算回路7では、上記出力a/
bと出力c/dとの乗算を行ない、第3図Hに示
す積eを出力する。第2の乗算回路8では、出力
a/bと出力d/cとの乗算を行ない、第3図I
に示す積fを出力する。
On the other hand, the real part c (Fig. 3 C) and the imaginary part d of the multiplier
(D in FIG. 3) is the second time division circuit 21 in FIG.
The outputs c/d are arranged in a time-division manner within a unit calculation time using the timing provided in the device, and the outputs c/d are arranged in the real part/imaginary part shown in FIG. 3F, and the imaginary number shown in FIG. 3G. Output d/c arranged in part/real part
and get. In the first multiplication circuit 7, the output a/
b is multiplied by the output c/d to output the product e shown in FIG. 3H. The second multiplication circuit 8 multiplies the output a/b and the output d/c, as shown in FIG.
The product f shown in is output.

第1および第2の遅延回路22,23では、上
記積e,fをそれぞれ単位演算時間間隔の1/2だ
け遅延し(一般的にはラツチ回路が用いられ
る)、第3図JとKに示す出力e1とf1を得る。減
算回路11では、上記出力e1より積eを減じ、第
3図Lに示す差gを得る。加算回路12では、出
力f1に積fを加え、第3図Mに示す和hを得る。
ラツチ回路13と14では、上記差gと和hをそ
れぞれ装置に備わつているタイミングを用いて単
位演算時間間隔でラツチして、複素数の積の第3
図Nに示す実数部A=ac−bdと、第3図Oに示
す虚数部B=ad+bcとを得る。
The first and second delay circuits 22 and 23 respectively delay the products e and f by 1/2 of the unit calculation time interval (generally, latch circuits are used), and We get the outputs e 1 and f 1 shown. The subtraction circuit 11 subtracts the product e from the output e1 to obtain the difference g shown in FIG. 3L. The adder circuit 12 adds the product f to the output f 1 to obtain the sum h shown in FIG. 3M.
The latch circuits 13 and 14 latch the difference g and the sum h at unit calculation time intervals using the timing provided in the respective devices, and
The real part A=ac-bd shown in FIG. N and the imaginary part B=ad+bc shown in FIG. 3O are obtained.

以上説明したように、この発明では、従来の装
置と比べて乗算回路が4回路から2回路に削減で
き、時分割回路20,21、遅延回路22,23
の増加分(規模、消費電力ともに小)を考慮して
も、回路の規模、消費電力が削減できる。
As explained above, in the present invention, the number of multiplication circuits can be reduced from four to two compared to the conventional device, and the number of multiplication circuits can be reduced from four to two, and the number of multiplication circuits can be reduced from four to two.
Even when considering the increase in (both scale and power consumption are small), the circuit size and power consumption can be reduced.

なお、上記の実施例では、複素数の乗算が1段
階のみの場合について述べたが、高速フーリエ変
換器のように、複数個の乗算機能をカスケードに
用いる場合においては、各乗算段の出力において
実数部と虚数部の時間配列を次段の乗算段に適す
るようにしておけば、乗算数の時分割回路は初段
に設けるのみで済み、乗算回路の削減効果が一層
大きくなる。
In addition, in the above embodiment, the case where the multiplication of complex numbers is performed in only one stage is described, but when multiple multiplication functions are used in cascade like in a fast Fourier transformer, real numbers are processed at the output of each multiplication stage. If the time arrangement of the part and the imaginary part is made suitable for the next multiplication stage, the time division circuit for the multiplication number only needs to be provided in the first stage, and the effect of reducing the number of multiplication circuits becomes even greater.

以上のように、この発明によれば、複素数の乗
算を、被乗数、乗数の実数部と虚数部をそれぞれ
単位演算時間内に時分割配列して行なうことによ
り、回路規模および消費電力の大きい乗算回路を
削減でき、それだけ回路規模の縮少、消費電力の
低減化が実現できるという効果がある。
As described above, according to the present invention, multiplication of complex numbers is performed by time-divisionally arranging the multiplicand, the real part and the imaginary part of the multiplier, respectively, within a unit calculation time. This has the effect of reducing circuit scale and power consumption accordingly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の複素数の乗算装置を示す系統
図、第2図はこの発明の一実施例を示す系統図、
第3図は第2図の各部の動作を説明するためのタ
イミングチヤートである。 7……第1の乗算回路、8……第2の乗算回
路、11……減算回路、12……加算回路、1
3,14……ラツチ回路、20……第1の時分割
回路、21……第2の時分割回路、22……第1
の遅延回路、23……第2の遅延回路、a/b…
…第1の分割回路の出力、c/d,d/c……第
2の分割回路の出力、e……第1の乗算回路の出
力、e1……第1の遅延回路の出力、f……第2の
乗算回路の出力、f1……第2の遅延回路の出力、
g……減算回路の出力、h……加算回路の出力。
なお、図中、同一符号は同一または相当部分を示
す。
FIG. 1 is a system diagram showing a conventional complex number multiplication device, and FIG. 2 is a system diagram showing an embodiment of the present invention.
FIG. 3 is a timing chart for explaining the operation of each part in FIG. 2. 7...First multiplication circuit, 8...Second multiplication circuit, 11...Subtraction circuit, 12...Addition circuit, 1
3, 14... Latch circuit, 20... First time division circuit, 21... Second time division circuit, 22... First
delay circuit, 23... second delay circuit, a/b...
...output of the first dividing circuit, c/d, d/c...output of the second dividing circuit, e...output of the first multiplier circuit, e 1 ...output of the first delay circuit, f ...Output of the second multiplier circuit, f 1 ...Output of the second delay circuit,
g...Output of the subtraction circuit, h...Output of the addition circuit.
In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 複素数の乗算を行なう乗算装置であつて、被
乗数の実数部と虚数部とを単位演算時間内に時分
割配列して出力する第1の時分割回路と、乗数の
実数部と虚数部とを単位演算時間内に実数部/虚
数部および虚数部/実数部のそれぞれに時分割配
列して出力する第2の時分割回路と、上記第1の
時分割回路の出力と上記第2の時分割回路からの
実数部/虚数部に時分割配列された出力および虚
数部/実数部に時分割配列された出力のそれぞれ
とを乗算する第1および第2の乗算回路と、これ
ら両乗算回路の出力をそれぞれ単位演算時間間隔
の1/2だけ遅延する第1および第2の遅延回路
と、上記第1の遅延回路の出力から上記第1の乗
算回路の出力を減算する減算回路と、上記第2の
乗算回路の出力と第2の遅延回路の出力を加算す
る加算回路と、上記減算回路および加算回路のそ
れぞれの出力を単位演算時間間隔でラツチするラ
ツチ回路とを具備してなる乗算装置。
1. A multiplication device that performs multiplication of complex numbers, which comprises a first time division circuit that time-divisionally arranges and outputs the real part and imaginary part of the multiplicand within a unit operation time; a second time division circuit that time-divisionally arranges and outputs the real part/imaginary part and the imaginary part/real part, respectively, within a unit calculation time; and the output of the first time division circuit and the second time division circuit. first and second multiplier circuits for multiplying the real part/imaginary part from the circuit by the time-divisionally arranged output and the imaginary part/real part by the time-divisionally arranged output from the circuit; and outputs of both of the multiplier circuits. a subtraction circuit that subtracts the output of the first multiplication circuit from the output of the first delay circuit; A multiplication device comprising: an adder circuit that adds the output of the multiplier circuit and the output of the second delay circuit; and a latch circuit that latches the respective outputs of the subtracter circuit and the adder circuit at unit operation time intervals.
JP55126798A 1980-09-11 1980-09-11 Multiplier Granted JPS5752959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55126798A JPS5752959A (en) 1980-09-11 1980-09-11 Multiplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55126798A JPS5752959A (en) 1980-09-11 1980-09-11 Multiplier

Publications (2)

Publication Number Publication Date
JPS5752959A JPS5752959A (en) 1982-03-29
JPS6156823B2 true JPS6156823B2 (en) 1986-12-04

Family

ID=14944207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55126798A Granted JPS5752959A (en) 1980-09-11 1980-09-11 Multiplier

Country Status (1)

Country Link
JP (1) JPS5752959A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424889Y2 (en) * 1986-05-30 1992-06-12

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223846A (en) * 1982-06-23 1983-12-26 Fujitsu Ltd Multiplier of complex number
JP3759173B2 (en) * 1997-06-26 2006-03-22 旭化成株式会社 Parallel processor and digital signal processor using the same
KR100433627B1 (en) * 2001-12-11 2004-05-31 한국전자통신연구원 Low power multiplier for complex numbers
JP7317151B2 (en) * 2020-02-06 2023-07-28 三菱電機株式会社 complex multiplication circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424889Y2 (en) * 1986-05-30 1992-06-12

Also Published As

Publication number Publication date
JPS5752959A (en) 1982-03-29

Similar Documents

Publication Publication Date Title
Corinthios The design of a class of Fast Fourier Transform computers
JPS6156823B2 (en)
KR940004478A (en) 2D 4X4 Discrete Cosine Transform Circuit and 2D 4X4 Discrete Cosine Transform Circuit
Chaudhary et al. Design of 64 bit High Speed Vedic Multiplier
GB976620A (en) Improvements in or relating to multiplying arrangements for digital computing and like purposes
Powell et al. Signal processing with bit-serial word-parallel architectures
JPS6259828B2 (en)
JPS576972A (en) Multiplying circuit of complex number
JPS58163061A (en) Parallel picture processor
JPH0773161A (en) Arithmetic unit
JPS56168276A (en) Arithmetic processing unit
JPS553066A (en) Composite multiplier
JPH0371331A (en) Multiplier
JPS61246837A (en) Parallel multiplier
SU126668A1 (en) Method of parallel multiplication in digital computers and device for implementing the method
JPS54132144A (en) Multiple process system
Karthik et al. FPGA implementation of high speed vedic multipliers
JPH0784762A (en) Multiplication circuit
GB965830A (en) Parallel adder with fast carry network
SU972517A1 (en) Device for performing rapid fourier transform
JPH0484264A (en) Product sum arithmetic unit
JPS6043743A (en) Signal processing circuit
SU824197A1 (en) Computing device
SU868752A1 (en) Multiplier
JPH07117954B2 (en) Multiply-accumulator