JPS6155689B2 - - Google Patents

Info

Publication number
JPS6155689B2
JPS6155689B2 JP56132305A JP13230581A JPS6155689B2 JP S6155689 B2 JPS6155689 B2 JP S6155689B2 JP 56132305 A JP56132305 A JP 56132305A JP 13230581 A JP13230581 A JP 13230581A JP S6155689 B2 JPS6155689 B2 JP S6155689B2
Authority
JP
Japan
Prior art keywords
coefficient
multiplier
digital signal
signal sequence
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56132305A
Other languages
Japanese (ja)
Other versions
JPS5833754A (en
Inventor
Masao Kasuga
Yoshuki Tsuchikane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP56132305A priority Critical patent/JPS5833754A/en
Publication of JPS5833754A publication Critical patent/JPS5833754A/en
Publication of JPS6155689B2 publication Critical patent/JPS6155689B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Computing Systems (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はデイジタル乗算回路に係り、乗算係数
を整数と小数との和又は差で表わし、整数部分に
ついては例えばビツトシフトを行ない、かつ、小
数部分については乗算器で乗算した後両者を演算
することにより、ビツト数の少ない乗算器でも乗
算による演算誤差が殆どなく、係数量子化誤差を
大幅に低減し得るデイジタル乗算回路を提供する
ことを目的とする。 一般にパルス符号変調(PCM)信号などの離
散的デイジタル信号系列を記録、再生するシステ
ムなどにおいては、離散的デイジタル信号系列の
レベルや周波数特性を変更するために、デイジタ
ルフイルタ、レベル減衰器、減衰等化器などを使
用するが、これらのデイジタル信号処理回路では
特にデイジタル乗算処理という極めて重要な基本
演算を必要とする。このデイジタル乗算処理を行
なうデイジタル乗算回路には、大規模集積回路
(LSI)によるデイジタル乗算器(以下、単に乗
算器という)が必要であるが、この乗算器のビツ
ト数は限られているため、有限語長演算が必要と
なる。 第1図は従来のデイジタル乗算回路の一例のブ
ロツク系統図を示す。同図中、入力端子1に入来
した離散的デイジタル信号系列は乗算器2に供給
され、ここで係数器3よりの係数と乗算された後
出力端子4へ出力される。いま、時刻nTにおけ
る入力離散的デイジタル信号系列をxo、時刻nT
における出力離散的デイジタル信号系列をyo
更に係数をaとするとyoは次式で表わされる。
ただし、Tは離散的デイジタル信号系列xo、yo
の標本化時間を示す。 yo=a・xo (1) (1)式中、係数aはその語長をNとすると例えば
次式の補数表示で表わされる。 ただし、(2)式中、βpはモースト・シグニフイ
カント・ビツト(MSB)の符号ビツト(極性ビ
ツト)の値を示し、βjはMSB以外の各ビツトの
値を示し、いずれも0か1である。 ここで、係数aは10進数をデイジタル数値(通
常は2の補数表示による値)で表わしたものであ
り、しかも語数がNで示す如く限られているた
め、10進数を正確に表現できない場合がある。す
なわち、係数を有限語長で量子化するために量子
化誤差が生ずることになる。 これを具体的に説明するに、例えば係数a1
1.03125、a2を1.25とすると、これらを2の補数
表示で表わすと となる。ただし、(3)式その他では固定小数点表示
であり、ビツトパターンに直したときの正規化の
最大値は2である。従つて、係数aの語長Nが7
ビツトである場合は問題とならないが、Nが4ビ
ツトである場合は で表わされることになり、(4)式を10進数で表現す
るとa1は1.0、a2は1.25となり、a1の値が本来の値
1.03125とは異なつたものとして表わされてしま
うことになる。 従つて、従来はこの係数量子化誤差を所定の範
囲内に抑制するために係数の語長Nを大にしなけ
ればならず、このため乗算器の乗算語長が制限さ
れている場合には、デイジタル乗算回路の規模を
大にしなければならず、大型で、また高価となる
という欠点があつた。 本発明は上記の欠点を除去したものであり、以
下第2図及び第3図と共にその各実施例について
説明する。 第2図は本発明になるデイジタル乗算回路の第
1実施例のブロツク系統図を示す。同図中、入力
端子5に入来した離散的デイジタル信号系列は乗
算器6に供給され、ここで係数器7よりの係数α
iと乗算される一方、後記するシフトレジスタ9
に供給される。上記係数αiは次の演算アルゴリ
ズムに則つて定められる。入力離散的デイジタル
信号系列xoに乗算されるべき係数を(2)式で示す
如くaとすると、これを整数と小数との和又は差
で表わす。 a=±L±α (5) ただし、(5)式中Lは整数、αは小数である。(5)
式を更に書き改めて次式を得る。 a=±L±(2i・α)・2-i (6) (6)式からわかるように、係数aと離散的デイジ
タル信号系列xoとを乗算する場合は、整数Lに
ついてはビツトシフトの選択で実現でき、また2
-iの乗算はiビツト右へシフトすればよいから、
乗算動作は実質上2i・αだけの問題と考えてよ
く、この2i・αが前記αiである。 このことにつき、更に具体例と共に説明する。
いま(3)式の係数a1を離散的デイジタル信号系列x
oに(1)式に示す如く乗算して出力デイジタル信号
系列yoを得る場合を考えると、(3)式は次の如く
に書き改められる。 a1=01.00001=01.00000+00.00001 これを10進数で表わすと a1=1+α=1+(2i・α)・2-i (7) ここで、iを5とすると、(7)式の右辺の2i
αは25・αとなり、これをα1 5とする。すな
わち、係数語長を4ビツトとするとα1 5は α1 5=01.00 (8) となる。従つて、(1)式に(7)、(8)式を適用すると、 yo=a1・xo=xo+α1xo=xo+α1 5・2-5・xo
(9) となる。 係数器7の出力係数αiは、前記した如く、(5)
式の小数αの値を左へiビツトシフトして得た値
であり、(9)式の乗算を行なう場合は(8)式の5ビツ
ト左へシフトして得た値α1 5であり、従つて乗算
器6の出力信号はxo・α1 5で表わされる。この
乗算器6の出力信号xo・α1 5は次段のシフトレ
ジスタ8に供給され、ここで5ビツト右へシフト
されてα1 5・2-5・xoとされた後演算器10に供
給される。ただし、これらのビツトシフトは
MSBについては符号ビツトだから行なわない。 一方、ここでは2で正規化しており、(7)式中の
整数1は2の1/2だから入力デイジタル信号系列
oはシフトレジスタ9により1ビツト右へシフ
トされ、しかる後に演算器10に供給され、ここ
でシフトレジスタ8よりの信号と加算される。こ
れにより、演算器10からは(9)式で表わされるデ
イジタル信号系列yoが取り出され、出力端子1
1へ出力される。 以上の説明より明らかなように、(3)式で表わさ
れる係数a1を入力デイジタル信号系列xoと乗算
する場合、係数器7の係数語長が4ビツトシフト
であつたとしても、係数をαiとすることにより
係数の情報が失なわれることがないから、従来に
くらべて係数量子化誤差を大幅に低減できると共
に、乗算による演算誤差も少なくすることができ
る。 次に本発明回路の第2実施例につき第3図と共
に説明するに、第3図は本発明回路の第2実施例
のブロツク系統図で、第2図と同一構成部分には
同一番号を付してその説明を省略する。(9)式の乗
算を行なう場合、シフトレジスタ12は入力離散
的デイジタル信号系列xoを5ビツト右へシフト
して(MSBを除く)その信号を乗算器13に供
給する。乗算器13はシフトレジスタ12の出力
信号に係数器14よりの係数αj(ここでは(8)式
のα1 5)を乗算して得た信号を演算器10に供給
し、ここでシフトレジスタ9よりの信号と加算さ
せる。すなわち、本実施例の場合は乗算器13に
供給するデイジタル信号を予めビツトシフトして
乗算器13に供給するものであり、第1実施例と
同一の特長を有する。 なお、上記の実施例において、Lは1つの整数
として説明したが、ビツトパターンに直したとき
の正規化の最大値をMAXとすると、±MAX、±1/
2(MAX)、±1/4(MAX)、………、0として(6)
式に従つて表現する、すなわち、
The present invention relates to a digital multiplication circuit, in which a multiplication coefficient is expressed as the sum or difference of an integer and a decimal number, and the integer part is subjected to, for example, a bit shift, and the decimal part is multiplied by a multiplier, and then both are calculated. It is an object of the present invention to provide a digital multiplication circuit that has almost no calculation error due to multiplication even in a multiplier with a small number of bits, and can significantly reduce coefficient quantization errors. Generally, in systems that record and reproduce discrete digital signal sequences such as pulse code modulation (PCM) signals, digital filters, level attenuators, attenuation, etc. are used to change the level and frequency characteristics of the discrete digital signal sequence. However, these digital signal processing circuits especially require an extremely important basic operation called digital multiplication processing. The digital multiplication circuit that performs this digital multiplication process requires a digital multiplier (hereinafter simply referred to as a multiplier) using a large-scale integrated circuit (LSI), but since the number of bits in this multiplier is limited, Finite word length operations are required. FIG. 1 shows a block diagram of an example of a conventional digital multiplication circuit. In the figure, a discrete digital signal sequence input to an input terminal 1 is supplied to a multiplier 2, where it is multiplied by a coefficient from a coefficient multiplier 3 and then output to an output terminal 4. Now, the input discrete digital signal sequence at time nT is x o and time nT
The output discrete digital signal sequence at y o ,
Furthermore, when the coefficient is a, y o is expressed by the following equation.
However, T is a discrete digital signal sequence x o , y o
indicates the sampling time of y o =a·x o (1) In equation (1), the coefficient a is expressed by the complement of the following equation, for example, where N is the word length. However, in equation (2), β p indicates the value of the sign bit (polarity bit) of the most significant bit (MSB), and β j indicates the value of each bit other than the MSB, both of which are 0 or 1. be. Here, the coefficient a is a decimal number expressed as a digital value (usually a value in two's complement representation), and since the number of words is limited as shown by N, there are cases where the decimal number cannot be expressed accurately. be. That is, a quantization error occurs because the coefficients are quantized with a finite word length. To explain this concretely, for example, if the coefficient a 1 is
1.03125, a 2 is 1.25, and these are expressed in two's complement notation as becomes. However, equation (3) and others are expressed in fixed-point numbers, and the maximum normalization value when converted to a bit pattern is 2. Therefore, the word length N of coefficient a is 7
There is no problem if N is 4 bits, but if N is 4 bits, then When formula (4) is expressed in decimal notation, a 1 is 1.0, a 2 is 1.25, and the value of a 1 is the original value.
It will be represented as something different from 1.03125. Therefore, conventionally, in order to suppress this coefficient quantization error within a predetermined range, it is necessary to increase the word length N of the coefficients, and for this reason, when the multiplication word length of the multiplier is limited, The disadvantage is that the scale of the digital multiplication circuit must be increased, making it large and expensive. The present invention eliminates the above-mentioned drawbacks, and embodiments thereof will be described below with reference to FIGS. 2 and 3. FIG. 2 shows a block diagram of a first embodiment of the digital multiplication circuit according to the present invention. In the figure, a discrete digital signal sequence inputted to an input terminal 5 is supplied to a multiplier 6, where a coefficient α from a coefficient multiplier 7 is input.
While multiplied by i , shift register 9 described later
supplied to The coefficient α i is determined according to the following calculation algorithm. Assuming that the coefficient to be multiplied by the input discrete digital signal sequence x o is a as shown in equation (2), this is expressed as the sum or difference of an integer and a decimal. a=±L±α (5) However, in formula (5), L is an integer and α is a decimal. (Five)
Rewrite the equation further to obtain the following equation. a=±L±(2 i・α)・2 -i (6) As can be seen from equation (6), when multiplying the coefficient a by the discrete digital signal sequence x o , for the integer L, the bit shift It can be achieved by selection, and 2
Multiplying by -i requires shifting i bits to the right, so
The multiplication operation can be considered to be a problem of only 2 i ·α, and this 2 i ·α is the above-mentioned α i . This will be further explained with specific examples.
Now, the coefficient a 1 of equation (3) is expressed as the discrete digital signal sequence x
Considering the case where the output digital signal sequence y o is obtained by multiplying o as shown in equation (1), equation (3 ) can be rewritten as follows. a 1 = 01.00001 = 01.00000 + 00.00001 Expressing this in decimal notation, a 1 = 1 + α 1 = 1 + (2 i・α 1 )・2 -i (7) Here, if i is 5, equation (7) is obtained. 2 i・ on the right side of
α 1 becomes 2 5 · α 1 , which is defined as α 1 5 . That is, if the coefficient word length is 4 bits, α 1 5 becomes α 1 5 =01.00 (8). Therefore, applying equations (7) and (8) to equation (1), y o = a 1・x o = x o + α 1 x o = x o + α 1 5・2 -5・x o
(9) becomes. As mentioned above, the output coefficient α i of the coefficient unit 7 is expressed as (5)
This is the value obtained by shifting the value of the decimal α in the equation to the left by i bits, and when performing the multiplication in equation (9), the value obtained by shifting the value of the decimal decimal α in equation (8) to the left by 5 bits is α 1 5 , Therefore, the output signal of the multiplier 6 is represented by x o ·α 1 5 . The output signal x o · α 1 5 of this multiplier 6 is supplied to the next stage shift register 8, where it is shifted to the right by 5 bits to become α 1 5 · 2 -5 · x o , and then the arithmetic unit 10 is supplied to However, these bit shifts are
This is not done for the MSB since it is a sign bit. On the other hand, here, it is normalized by 2, and since the integer 1 in equation (7) is 1/2 of 2, the input digital signal sequence xo is shifted to the right by 1 bit by the shift register 9, and then sent to the arithmetic unit Here, it is added to the signal from the shift register 8. As a result, the digital signal series y o expressed by equation (9) is taken out from the arithmetic unit 10, and the output terminal 1
Output to 1. As is clear from the above explanation, when multiplying the coefficient a 1 expressed by equation (3) by the input digital signal sequence x o , even if the coefficient word length of the coefficient unit 7 is a 4-bit shift, the coefficient is Since coefficient information is not lost by setting i , coefficient quantization errors can be significantly reduced compared to the conventional method, and calculation errors due to multiplication can also be reduced. Next, the second embodiment of the circuit of the present invention will be explained with reference to FIG. 3. FIG. 3 is a block system diagram of the second embodiment of the circuit of the present invention, and the same components as in FIG. 2 are given the same numbers. The explanation will be omitted. When performing the multiplication in equation (9), the shift register 12 shifts the input discrete digital signal sequence x o to the right by 5 bits (excluding the MSB) and supplies the signal to the multiplier 13 . The multiplier 13 multiplies the output signal of the shift register 12 by the coefficient α j (here α 1 5 in equation (8)) from the coefficient unit 14 and supplies the obtained signal to the arithmetic unit 10, where the shift register Add it to the signal from 9. That is, in this embodiment, the digital signal supplied to the multiplier 13 is bit-shifted in advance and then supplied to the multiplier 13, and has the same features as the first embodiment. In the above embodiment, L was explained as one integer, but if the maximum value of normalization when converted to a bit pattern is MAX, then ±MAX, ±1/
2 (MAX), ±1/4 (MAX), ......, as 0 (6)
Express according to the formula, i.e.,

【式】と複数の整数の和で表現 してもよい(ただし、Mは分離数を示す。)。 また、係数の値が10進数に換算したとき、例え
ば1から1.5の間であるときは係数を1+αと
し、また1.5から2の間であるときは係数を2−
αとして前記演算アルゴリズムに従つて乗算を行
なう方が、量子化ビツトが少ないので好ましい。 なお、シフトレジスタ9は係数の整数Lの値に
よつては不要とすることもできる(例えば、係数
が2−αと表わされた場合は、整数Lの値は正規
化の最大値2と等しいからxoは直接演算器10
に供給される。)。また小数部分の値αを右ヘビツ
トシフトすることもあり得る。 上述の如く、本発明になるデイジタル乗算回路
は、乗算すべき係数を整数部分と小数部分との和
又は差に分割し、この小数部分の値を左若しくは
右へビツトシフトして得た値の係数を係数器より
乗算器へ出力すると共に、乗算器の入力又は出力
ビツトシフト分だけ右若しくは左へシフトし、乗
算すべき係数の整数部分の値に関連して入力離散
的デイジタル信号系列をビツトシフトした又はビ
ツトシフトすることなく取り出したデイジタル信
号系列を、乗算器による乗算と上記シフトレジス
タによるビツトシフトとが夫々行なわれたデイジ
タル信号系列と演算器により夫々演算して演算器
より乗算出力信号を出力するよう構成したため、
係数器の出力係数の語長が短かくても係数の情報
が失なわれることがなく、よつて従来にくらべて
係数量子化誤差を大幅に低減することができると
共に、乗算による演算誤差も少なくすることがで
き、また係数誤長が短かくて済むため乗算器が容
易に、しかも安価、かつ、小型に構成することが
できる等の特長を有するものである。
It may also be expressed as the sum of [Formula] and multiple integers (M represents the number of separations). Also, when the coefficient value is converted into a decimal number, for example, if it is between 1 and 1.5, the coefficient is set to 1 + α, and when it is between 1.5 and 2, the coefficient is set to 2 -
It is preferable to perform multiplication as α according to the arithmetic algorithm described above because the number of quantization bits is small. Note that the shift register 9 may be unnecessary depending on the value of the integer L of the coefficient (for example, if the coefficient is expressed as 2-α, the value of the integer L is equal to the maximum normalization value 2). Since they are equal, x o is a direct operator 10
is supplied to ). It is also possible to heavily shift the value α of the decimal part to the right. As described above, the digital multiplication circuit according to the present invention divides the coefficient to be multiplied into the sum or difference of an integer part and a decimal part, and bit-shifts the value of the decimal part to the left or right to obtain a coefficient. is output from the coefficient unit to the multiplier and shifted to the right or left by the input or output bit shift of the multiplier, and the input discrete digital signal sequence is bit-shifted or This is because the digital signal sequence taken out without bit shifting is calculated by the arithmetic unit on the digital signal sequence which has been multiplied by the multiplier and bit shifted by the shift register, respectively, and the multiplied output signal is output from the arithmetic unit. ,
Even if the word length of the output coefficients of the coefficient unit is short, the coefficient information is not lost, and as a result, coefficient quantization errors can be significantly reduced compared to conventional methods, and calculation errors due to multiplication are also reduced. Moreover, since the coefficient error length can be shortened, the multiplier can be constructed easily, inexpensively, and compactly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来回路の一例を示すブロツク系統
図、第2図及び第3図は夫々本発明回路の各実施
例を示すブロツク系統図である。 1,5……離散的デイジタル信号系列入力端
子、2,6,13……乗算器、3,7,14……
係数器、4,11……離散的デイジタル信号系列
出力端子、8,9,12……シフトレジスタ、1
0……演算器。
FIG. 1 is a block system diagram showing an example of a conventional circuit, and FIGS. 2 and 3 are block system diagrams showing respective embodiments of the circuit of the present invention. 1, 5... Discrete digital signal sequence input terminal, 2, 6, 13... Multiplier, 3, 7, 14...
Coefficient unit, 4, 11... Discrete digital signal sequence output terminal, 8, 9, 12... Shift register, 1
0...Arithmetic unit.

Claims (1)

【特許請求の範囲】[Claims] 1 係数器よりの一定有限語長の係数と入力離散
的デイジタル信号系列とを夫々乗算器に供給して
乗算出力信号を得るデイジタル乗算回路におい
て、乗算すべき係数を整数部分と小数部分との和
又は差に分割し、該小数部分の値を左若しくは右
へビツトシフトして得た値の係数を上記係数器よ
り上記乗算器へ出力すると共に、該乗算器の入力
又は出力デイジタル信号系列をシフトレジスタに
より上記ビツトシフト分だけ右若しくは左へシフ
トし、該乗算すべき係数の該整数部分の値に関連
して入力離散的デイジタル信号系列をビツトシフ
トした又はビツトシフトすることなく取り出した
デイジタル信号系列を、該乗算器による乗算と該
シフトレジスタによるビツトシフトとが夫々行な
われたデイジタル信号系列と演算器により夫々演
算して該演算器より乗算出力信号を出力するよう
構成したことを特徴とするデイジタル乗算回路。
1. In a digital multiplication circuit that obtains a multiplier output signal by supplying a coefficient of a certain finite word length from a coefficient unit and an input discrete digital signal sequence to a multiplier, the coefficient to be multiplied is calculated by calculating the sum of an integer part and a decimal part. The coefficient of the value obtained by bit-shifting the value of the decimal part to the left or right is output from the coefficient unit to the multiplier, and the input or output digital signal sequence of the multiplier is transferred to a shift register. The input discrete digital signal sequence is shifted to the right or left by the above bit shift amount, and the input discrete digital signal sequence is bit-shifted or extracted without bit-shifting in relation to the value of the integer part of the coefficient to be multiplied. 1. A digital multiplication circuit characterized in that a digital signal sequence subjected to multiplication by a multiplier and a bit shift by a shift register is operated on by an arithmetic unit, and a multiplication output signal is output from the arithmetic unit.
JP56132305A 1981-08-24 1981-08-24 Digital multiplication circuit Granted JPS5833754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56132305A JPS5833754A (en) 1981-08-24 1981-08-24 Digital multiplication circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56132305A JPS5833754A (en) 1981-08-24 1981-08-24 Digital multiplication circuit

Publications (2)

Publication Number Publication Date
JPS5833754A JPS5833754A (en) 1983-02-28
JPS6155689B2 true JPS6155689B2 (en) 1986-11-28

Family

ID=15078188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56132305A Granted JPS5833754A (en) 1981-08-24 1981-08-24 Digital multiplication circuit

Country Status (1)

Country Link
JP (1) JPS5833754A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287873A (en) * 1989-04-28 1990-11-27 Toshiba Corp Product sum arithmetic unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100945A (en) * 1976-02-20 1977-08-24 Toshiba Corp Multiplication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100945A (en) * 1976-02-20 1977-08-24 Toshiba Corp Multiplication system

Also Published As

Publication number Publication date
JPS5833754A (en) 1983-02-28

Similar Documents

Publication Publication Date Title
US5726924A (en) Exponentiation circuit utilizing shift means and method of using same
EP0146984B1 (en) Data processor for processing word wise receivable data
JPH0235348B2 (en)
US4366549A (en) Multiplier with index transforms modulo a prime or modulo a fermat prime and the fermat prime less one
US6279020B1 (en) Programmable circuit for realizing a digital filter
AU569928B2 (en) A method to compensate for the truncation error in a sampled signal and a device for carrying out the method
US5798954A (en) Digital filter device having a bit shifter unit
JPH09325955A (en) Square root arithmetic circuit for sum of squares
JPS6155689B2 (en)
US20080225937A1 (en) Method and system of providing a high speed tomlinson-harashima precoder
US6058404A (en) Apparatus and method for a class of IIR/FIR filters
JPS6027024A (en) Arithmetic device
US4737925A (en) Method and apparatus for minimizing a memory table for use with nonlinear monotonic arithmetic functions
JP3041563B2 (en) Finite impulse response filter
JPH0831024B2 (en) Arithmetic processor
JP3523104B2 (en) Fixed-point multiplier / adder
JPS5970308A (en) Digital filter
JP4196434B2 (en) Data rounding method and data rounding device
KR20220037361A (en) Filter and Method with Multiplication Operation Approximation Capability
JPS6363130B2 (en)
JPS5952361A (en) Arithmetic system for picture signal processing
JP3159774B2 (en) Digital attenuator
JPH05313856A (en) Arithmetic processing method for digital filter
WO1996027831A1 (en) Floating point conversion circuit
JPH0689300A (en) Data processing method for lti system