JPS6150289A - Decoder circuit - Google Patents

Decoder circuit

Info

Publication number
JPS6150289A
JPS6150289A JP59171078A JP17107884A JPS6150289A JP S6150289 A JPS6150289 A JP S6150289A JP 59171078 A JP59171078 A JP 59171078A JP 17107884 A JP17107884 A JP 17107884A JP S6150289 A JPS6150289 A JP S6150289A
Authority
JP
Japan
Prior art keywords
output
write
voltage
effect transistor
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59171078A
Other languages
Japanese (ja)
Other versions
JPH0746514B2 (en
Inventor
Kiyokazu Hashimoto
潔和 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP17107884A priority Critical patent/JPH0746514B2/en
Publication of JPS6150289A publication Critical patent/JPS6150289A/en
Publication of JPH0746514B2 publication Critical patent/JPH0746514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To accelerate the discharge of a decoder circuit by discharging an electric charge, which is charged to an output in a writing or deletion mode, with the aid of a sufficiently low on-resistance. CONSTITUTION:In terms of this IGFETQ121, its drain and gate are connected to an output O' of a decoder circuit and to a signal DIS, respectively, and moreover a source and substrate are grounded. When a write or deletion mode is terminated, a pulse for becoming H for a certain period is impressed to the signal DIS. At this time, the electric charge, which is charged to a capacity added to the output O' in the write or deletion mode, is discharged to the ground by the prescribed time constant, while the voltage of the output O' comes to a power source voltage Vcc. The time width of the signal DIS can be set short when the on-resistance of the Q121 is made minimal. As a result, the discharging speed of the electric charge, which is charged to the capacity of the output O' in the write or deletion mode, is high. Then when the voltage of the output O' comes to the power source voltage Vcc, the operation becomes a read mode.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、絶縁ゲート型の構造をもつ電界効果型トラン
ジスタ (以下I GFET  と記す0)を主な栴成
要素とするものであり、大容量で高速度が要求される′
7トき込み消去可能な不揮発性記憶装置に用いられるデ
コーダ回路に関する。
[Detailed Description of the Invention] [Technical Field] The present invention uses a field effect transistor (hereinafter referred to as IGFET) having an insulated gate structure as its main component, and has a large capacity and high performance. Speed is required'
The present invention relates to a decoder circuit used in a write-erasable nonvolatile memory device.

〔従来技術〕[Prior art]

第1図は従来例(特願昭57−161861 )に係る
デコーダ回路の回路図であるO Qlllはソースが電
源CCに、ドレインが点しに、ゲートがアドレス人力a
1に接続されたPチャネル型IGFET″′c′らる。
Figure 1 is a circuit diagram of a decoder circuit according to a conventional example (Japanese Patent Application No. 57-161861).
1 is connected to P-channel type IGFET'''c'.

Q1□2は電源CCと点りの間KQlllと並例に接続
され、ゲートにアドレス人力a2がC2A売されたPチ
ャネル型IGFETである。Q1□3はドレインが点り
に。
Q1□2 is a P-channel type IGFET which is connected in parallel to KQll between the power supply CC and the ON state, and has the address input a2 connected to the gate as C2A. In Q1□3, the drain is lit.

ゲートがアドレス入力a1に、ソースが点M K接役さ
れたNチャネル型IGFETである。Ql、4はドレイ
ンが点Δ(に、ゲートがアドレス人力a2に、゛ソース
が接地に笈続されたNチャネルff1IGFETである
。Q115はソースが電源CCに、ゲートが点りに。
This is an N-channel IGFET whose gate is connected to address input a1 and whose source is connected to point MK. Ql, 4 is an N-channel ff1 IGFET whose drain is connected to the point Δ(, the gate is connected to the address input a2, and the source is connected to the ground. Q115 has the source connected to the power supply CC and the gate turned on.

ドレインが点Nに接続されたPチャネル型IGFET。A P-channel IGFET whose drain is connected to point N.

Ql、6はドレインが点Nに、ゲートが点りに、ソース
が接地に接続されたNチャネル型IGFETでちる。Q
l、7はドレインが点NK、ゲートが1jき込み又は消
去そ−ド時に′L″となシ、書き込み又は消去モードが
終了すると” H’になる信号WOEが接続されたNチ
ャネルをでディプレッション型のτIGFETである。
Ql, 6 is an N-channel type IGFET whose drain is connected to point N, gate is connected to point N, and source is connected to ground. Q
1 and 7 are depleted by the N channel connected to the signal WOE, whose drain is the point NK and whose gate is 'L' during write or erase mode, and becomes 'H' when the write or erase mode ends. It is a type τIGFET.

点pp/、cは書き込み又は消去モード時に書き込み制
御電圧Vpp’に、それ以外の場合は電源電圧Mac 
Ke ;!:= 1 ’) VC′mm−Pi−’zE
nmi5t’Lfc’A’15N源であるか、ちるいは
書き込み又は消去モード時は昇圧回路により高電圧vp
 p’になシ、それ以外の場合は電源電圧Vccになる
ように内部回路で2制御された内部1:1源である。Q
1□8はソースが点pp/。。
Points pp/, c are set to the write control voltage Vpp' in write or erase mode, and otherwise set to the power supply voltage Mac.
Ke ;! := 1') VC'mm-Pi-'zE
nmi5t'Lfc'A'15N source, or high voltage vp by a booster circuit during writing or erasing mode.
It is an internal 1:1 source controlled by an internal circuit so that p' is omitted and the power supply voltage is Vcc in other cases. Q
1□8 is the source pp/. .

に、ゲートが点0に、ドレインが点Qに、基板が点pp
/ccK接続されたPチャネル型IGFETでちる。Q
l、9はドレインが点Qに、ゲートが点0に。
, the gate is at point 0, the drain is at point Q, and the substrate is at point pp.
/ccK connected P-channel type IGFET. Q
For l, 9, the drain is at point Q and the gate is at point 0.

ソースが接地に接にされたNチャネル型IGFETであ
る。Q120はソースが点pp10cに、ゲートが点Q
に、ドレインが点OK、基板が点pp/c、に接続され
たPチャネルWIGFETである。ここでQllllQ
1121 Ql15で示すPチャネル型IGFETの基
板はすべて電源CCK接続され、Qoa * Ql□4
.Q1□6+Q119で示すNチャネルWIGFETの
基板はすべて接地に接続される。またQ117を除くす
べてのIGFETは、エンハンスメント型であり、点0
が第1図のデコーダ回路の出力である。
This is an N-channel IGFET whose source is connected to ground. Q120 has a source at point pp10c and a gate at point Q
This is a P-channel WIGFET with the drain connected to point OK and the substrate connected to point pp/c. Here QllllQ
1121 The P-channel IGFET substrates indicated by Ql15 are all connected to the power supply CCK, and Qoa * Ql□4
.. The substrates of the N-channel WIGFETs designated Q1□6+Q119 are all connected to ground. Also, all IGFETs except Q117 are enhancement type, with a point of 0.
is the output of the decoder circuit of FIG.

次に第1図と第2図を用いて、第1図のデコーダ回路の
動作を説明する。第2図は書き込み又は消去モード時、
および書き込み又は消去モードが終了して読み出しモー
ドに変化した時の信号WOE。
Next, the operation of the decoder circuit shown in FIG. 1 will be explained using FIGS. 1 and 2. Figure 2 shows when writing or erasing mode.
and signal WOE when writing or erasing mode ends and changes to reading mode.

点pp/c、 *デコーダ回路の出力O9信号READ
の電圧の時間変化を示したものである。
Point pp/c, *Decoder circuit output O9 signal READ
This shows the change in voltage over time.

i)き込み又は消去モードになると信号WOE はL#
になり (時間t21)、点pp/c、の電圧は書き込
み制御電圧vpp’ tで上昇する。アドレス入力al
、JL2が共にI Hnの時デコーダ回路は選択され点
りがI L 711点Nが′H#となる。この時Q1.
7のゲートの電圧と点Nの電圧との差は(−Vcc )
となるので、Ql17のしきい値電圧がVcci以下に
設定しであるならば点0から電源CCKは電流は流れな
い。従って出力Oの4圧は第2図に示すように書き込み
制御電圧Vp p/まで上昇する。一方a1又はa2 
 がII L 7+の時デコーダ回路は非う3択になシ
、点りがu H179点Nが@ L n、出力0は°゛
L″となる。
i) When entering write or erase mode, signal WOE becomes L#
(time t21), the voltage at point pp/c increases by the write control voltage vpp't. Address input al
, JL2 are both I Hn, the decoder circuit is selected and the point I L 711 point N becomes 'H#. At this time Q1.
The difference between the voltage at the gate of point 7 and the voltage at point N is (-Vcc)
Therefore, if the threshold voltage of Ql17 is set below Vcci, no current flows from point 0 to power supply CCK. Therefore, the output voltage O rises to the write control voltage Vp p/ as shown in FIG. On the other hand a1 or a2
When is II L 7+, the decoder circuit has only three options, the point is u H179 point N is @ L n, and the output 0 becomes °゛L''.

ところで第1図に示すデコーダ回路は一般に以下の(1
) 、 (2)を考慮して設計されている。
By the way, the decoder circuit shown in Fig. 1 generally has the following (1
), and (2) are taken into consideration.

(1) :t!!’き込み又は消去モード時、デコーダ
回路が選択された場合において、点Oに電圧(Vcc)
(例えば5V)が印加され、点Pp/ccに電圧(Vp
p’〕(例えば20v)が印加された時にQl、8とQ
119から溝底されるインバータが反転できるゲート長
をり、ゲート幅をWと記す。)をQ119のCに比べて
かなシ小さくする。
(1) :t! ! 'In write or erase mode, if the decoder circuit is selected, voltage (Vcc) is applied to point O.
(5V, for example) is applied to the point Pp/cc, and the voltage (Vp
p'] (e.g. 20v) is applied, Ql, 8 and Q
The gate length at which the inverter can be inverted is defined as the groove bottom from 119, and the gate width is indicated as W. ) is made smaller than C in Q119.

(2)書き込み又は消去モード時、デコーダ回路が選択
(出力0の電圧がVpp’)から非運択にな9、a L
 Oii LE カ” L”(Vcc:lにfz ツf
c 場合、Q1□8とQ119から描成されるインバー
タが反転でW       W       W きるように、Q120のrをQ116の℃とQ117の
rに比べてかなシ小さくする。
(2) In write or erase mode, the decoder circuit changes from selected (output 0 voltage is Vpp') to inactive9, a L
Oii LE "L" (Vcc: l to fz
In case of c, r of Q120 is made much smaller than ℃ of Q116 and r of Q117 so that the inverter drawn from Q1□8 and Q119 can be inverted W W W .

Q1□0の音=九とする必要がおる。Q1□It is necessary to make the sound of 0 = 9.

かかる榮件下での動作について説明する。WOEがパL
#から°゛H″′になプ、書き込み又は消去モードが終
了する(時間t22)と、点pp/cc電圧は電源電圧
Vccになるっ書き込み又は消去モード時に出力0の容
IJ:に充′?D;された電荷は、点pp/ccの電圧
が低下するにともない出力0の容量と、Q1□0の電流
駆動能力(以下、on抵抗と記すO)で決まる時定数で
電源に放電され、最終的には出力0の電圧は電源電圧V
ccKなる。前述したように、Q1□0のrは小さいの
で、Q12GのOn抵抗は大きくな9、出力Oの電圧が
低下する時定数は、一般に第2図のDlに示すように大
きい。出力0の電圧が電源電圧VccKなると、信号R
EADがH’ になり、読み出しモードになる(時間t
24)0以上述べたように、従来例に係るデコーダ回路
によればデコーダ回路の出力に付加された容量に充電さ
れた電荷が、高いonn抵抗抗持つIGFETを通して
放電されるので、書き込み又は消去モードから読み出し
モードに変化するタイミングの設定が覆雑で、かつ書き
込み又は消去モードから読み出しモードへ変化する時間
幅を長く設定する必要がある。従って高速度で書き込み
又は消去−読み出しサイクルを行なう用途に不適当であ
る。
The operation under such favorable conditions will be explained. WOE is par
When the write or erase mode ends (time t22), the voltage at point pp/cc becomes the power supply voltage Vcc. When the write or erase mode ends, the voltage at the point pp/cc becomes the power supply voltage Vcc. ?D; As the voltage at point pp/cc decreases, the charge is discharged to the power supply with a time constant determined by the capacitance of output 0 and the current drive capability of Q1□0 (hereinafter referred to as on resistance O). , ultimately the voltage of output 0 is the power supply voltage V
ccK becomes. As mentioned above, since r of Q1□0 is small, the on-resistance of Q12G is large9, and the time constant at which the voltage of the output O decreases is generally large as shown by Dl in FIG. 2. When the voltage of output 0 becomes the power supply voltage VccK, the signal R
EAD becomes H' and enters read mode (at time t
24) 0 As mentioned above, according to the conventional decoder circuit, the electric charge charged in the capacitance added to the output of the decoder circuit is discharged through the IGFET having a high onn resistance, so that it cannot be used in write or erase mode. Setting the timing for changing from the write mode to the read mode is complicated, and it is necessary to set a long time width for changing from the write or erase mode to the read mode. Therefore, it is unsuitable for applications that perform high-speed write or erase-read cycles.

〔発明の目的〕[Purpose of the invention]

1  本発明の目的は上記の欠点を除去し、書き込み又
は消去−読み出しサイクルを高速度で行なうことができ
、かつ書き込み又は消去そ−ドから読み出しモードに変
化するタイミングの設定が容易なデコーダ回路を提供す
ることにある。
1. An object of the present invention is to eliminate the above-mentioned drawbacks, and to provide a decoder circuit that can perform write or erase-read cycles at high speed and that can easily set the timing for changing from write or erase mode to read mode. It is about providing.

〔発明の+1゛・1成〕 本発明は、複数個のアドレスが入力されるNAND回路
と、前記NAND回路の出力が入力に接続された218
1の反転増幅器と、ドレインが前記第1の反転増幅器の
出力に接続された第1の電界効果型トランジスタと、書
き込み又は消去モード時には第1の電圧が印加され、読
み出しモード時には第2の電圧が印加される第1の節点
と、前記第1の節点と接地の間に挿入され、入力が前記
第1の電界効果型トランジスタのソースに接続された第
2の反転増幅器と、ソースが前記第1の節点に接続され
、ゲートが前記第2の反転増幅器の出力に接続された第
2の電界効果型トランジスタと、前記第1の電界効果型
トランジスタのソースと前記第2の電界効果型トランジ
スタのドレインが接続された第2の節点と、ドレイ/が
前記第2の節点に、ゲートが書き込み又は消去モードが
終了後、一定期間導通するような信号に、かつソースが
接地に接続された前記第2の電界効果型トランジスタと
逆4電型の第3の電界効果型トランジスタとを有し、前
記第2の節点を出力としたことを特徴とする。。
[+1/1 of the invention] The present invention provides a NAND circuit into which a plurality of addresses are input, and a 218 circuit in which the output of the NAND circuit is connected to the input.
a first field effect transistor having a drain connected to the output of the first inverting amplifier; a first voltage being applied during a write or erase mode; and a second voltage being applied during a read mode; a second inverting amplifier inserted between the first node and ground, the input of which is connected to the source of the first field effect transistor; a second field effect transistor connected to a node of the first field effect transistor and having a gate connected to the output of the second inverting amplifier; a source of the first field effect transistor and a drain of the second field effect transistor; is connected to a second node; and DRA/ is connected to the second node; The present invention is characterized in that it has a field effect transistor and a third field effect transistor of an inverse quadrature type, and the second node is used as an output. .

〔実施例〕〔Example〕

以下図面を参照して本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.

第3図は本発明の実施例に係るデコーダ回路の回路図で
ある。M1図の回路図における符号のものは同じものを
示している。Q121は、ドレインがデコーダ回路の出
力αに、ゲートが信号DISに、ソースが接地に接続さ
れ、基板が接地に接続されたNチャネル型でエンハンス
メント型のIGFETQ1□1である。信号DISは、
通常”L#の電圧状態にあるが、書き込み又は消去モー
ドが終了後、一定期間°゛H#になるパルスが印加され
る信号でらる0 次に実施例の動作について説明する。書き込み又は消去
モード時と読み出しモード時の実施例のデコーダ回路の
動作は、信号DIS  が@ L I+になり、Q12
1が非導通になる状態であるから従来例の場合とまった
く同一であるので、説明を省略し、書き込み又は消去モ
ードが終了して読み出しモードになるまでの動作を第3
図、第4図を用いて説明する。
FIG. 3 is a circuit diagram of a decoder circuit according to an embodiment of the present invention. The same reference numerals in the circuit diagram of FIG. M1 indicate the same components. Q121 is an N-channel enhancement type IGFET Q1□1 having a drain connected to the output α of the decoder circuit, a gate connected to the signal DIS, a source connected to the ground, and a substrate connected to the ground. The signal DIS is
Normally, the voltage state is "L#", but after the write or erase mode ends, a pulse is applied that becomes "H#" for a certain period of time.Next, the operation of the embodiment will be explained.Write or erase The operation of the decoder circuit of the embodiment in mode and read mode is that the signal DIS becomes @L I+ and Q12
1 is in a non-conductive state, so it is exactly the same as the conventional example, so the explanation will be omitted, and the operation from the end of the write or erase mode to the read mode will be described in the third example.
This will be explained using FIG.

第4図は書き込み又は消去モード時、および書き込み又
は消去モードが終了して読み出しモードに変化した時の
信号WOE、点pp/cc *デコーダ回路の出力0’
l信号DIS、信号READ  の電圧の時間変化を示
したものである。W’+Eが′L″からH#になり、書
き込み又は消去モードが終了する(時間t42)と点p
p/ccの電圧は従来例と同様に電源’iT+:圧vc
cになる。書き込み又は消去モードが終了すると、信号
DIS  には一定期間“Hsになるパルスが印加され
る。このため書き込み又は消去モード時に出力αに付加
された容量に充電された電荷は、出力0′に付加された
容量とQ121ののon抵抗で決まる時定数で接地に放
電され、出力O′の’1lfl圧は電源電圧Vccにな
る。信号DISの時間幅(t43 ”’ t42 〕は
、Q121のOn抵抗によって制御できる4、すなわち
Q121のOn抵抗を小さくすれげ時間項(t43− 
t4□〕を短く設定できるし、Q1□1のOn  抵抗
を大きくすれば局間幅〔t43−t4□〕を長く設定で
きる。
Figure 4 shows the signal WOE in write or erase mode and when the write or erase mode ends and changes to read mode, at point pp/cc *Decoder circuit output 0'
1 shows the temporal changes in the voltages of the signal DIS and the signal READ. When W'+E goes from 'L'' to H# and the write or erase mode ends (time t42), point p
The voltage of p/cc is the same as in the conventional example, the power supply 'iT+: voltage vc
It becomes c. When the write or erase mode ends, a pulse of "Hs" is applied to the signal DIS for a certain period of time. Therefore, the charge charged in the capacitor added to the output α during the write or erase mode is added to the output 0'. It is discharged to the ground with a time constant determined by the capacitance and the ON resistance of Q121, and the '1lfl voltage of the output O' becomes the power supply voltage Vcc. 4, that is, the on-resistance of Q121 can be controlled by reducing the slippage time term (t43-
t4□] can be set short, and by increasing the ON resistance of Q1□1, the inter-station width [t43-t4□] can be set long.

実施例では、時rOJ幅(t43− t42 ]を短く
設定するだめに、Q1□1の[を犬きくシOn抵抗を十
分小豆している。このため書き込み又は消去モード時に
出力0′の容量に充電された電荷が放電されるスピード
は、第4図のD2に示すように従来例に比べて速い。し
かもQ121は書き込み又は消去モードが終了後、一定
期間導通するだけであるから、Q1□1があることによ
りデコーダ回路の動作特性が、従来例の場合と変わるこ
とはない。そして出力O′の電圧が電源電圧Vccにな
ると信号READ が“H71になり、読み出しモード
になる(時間t44)0なお実施例ではNAND回路が
2人力の場合について説明したが、入力数に制限はない
。またQ1□71 ″″・’J −) d”4gMW+
 EVC’mU6it’1−fcf47’ vyシヨ、
ン型のNチャネル型IGFETの場合を示したが、ゲー
トが電源CCに接続されたNチャネル凰でエンハンスメ
ン)WのIGFETの場合においても本発明分適用でき
ることは勿論である。
In the embodiment, in order to set the timerOJ width (t43-t42) short, the on resistance of Q1□1 is sufficiently reduced.For this reason, the capacitance of output 0' is set to 0' in write or erase mode. The speed at which the charged charges are discharged is faster than that of the conventional example, as shown by D2 in FIG. Because of this, the operating characteristics of the decoder circuit do not differ from those of the conventional example.When the voltage of the output O' reaches the power supply voltage Vcc, the signal READ becomes "H71" and the read mode is entered (time t44)0 In the embodiment, the case where the NAND circuit is powered by two people has been explained, but there is no limit to the number of inputs.
EVC'mU6it'1-fcf47'
Although the case of an N-channel type IGFET has been shown, it goes without saying that the present invention can also be applied to an N-channel type IGFET whose gate is connected to the power source CC.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、書き込み又は消去
モード時に出力に元はきれた電荷が十分低いon抵抗の
IGFETにより放電されるので、放′εスピードが高
速になる。従って書き込み又は消去モードから読み出し
モードに変化するタイミングの設計が容易になる。又高
速度で省き込み又は消去−読み出しサイクルを行なう用
途に適している。
As described above, according to the present invention, the charge originally released to the output during the write or erase mode is discharged by the IGFET with a sufficiently low on-resistance, so that the discharging speed becomes high. Therefore, it becomes easy to design the timing for changing from write or erase mode to read mode. It is also suitable for applications that perform high-speed write-down or erase-read cycles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例に係るデコーダ回路の回路図。 第2図は第1図の回路動作を説明するための各部の信号
波形図、第3図は本発明の実施例に係るデコーダ回路の
回路図、第4図は第3図の回路動作を説明するだめの・
信号波形図である。Qlll 、Q112゜Ql15 
+Q118 +Q12o −Pチャネル型IGFETQ
II3 ’QQ10、Q116 ’Q1191Q121
 ””チャネ/′現IGFETQ117・・・Nチャネ
ル−ディプレッション型IGFET 第1図 土21        ・ 11N□1 ・第2図 第4図
FIG. 1 is a circuit diagram of a conventional decoder circuit. 2 is a signal waveform diagram of each part to explain the circuit operation of FIG. 1, FIG. 3 is a circuit diagram of a decoder circuit according to an embodiment of the present invention, and FIG. 4 is an explanation of the circuit operation of FIG. 3. Sudameno・
It is a signal waveform diagram. Qllll, Q112゜Ql15
+Q118 +Q12o -P channel type IGFETQ
II3 'QQ10, Q116 'Q1191Q121
""Channel/'Current IGFETQ117...N channel-depression type IGFET 1st figure 21 ・ 11N□1 ・ 2nd figure 4

Claims (1)

【特許請求の範囲】  複数個のアドレスが入力されるNAND回路と、前記
NAND回路の出力が入力に接続された第1の反転増幅
器と、 ドレインが前記第1の反転増幅器の出力に接続された第
1の電界効果型トランジスタと、 書き込み又は消去モード時には第1の電圧が印加され、
読み出しモード時には第2の電圧が印加される第1の節
点と、 前記第1の節点と接地の間に挿入され、入力が前記第1
の電界効果型トランジスタのソースに接続された第2の
反転増幅器と、 ソースが前記第1の節点に接続され、ゲートが前記第2
の反転増幅器の出力に接続された第2の電界効果型トラ
ンジスタと、 前記第1の電界効果型トランジスタのソースと前記第2
の電界効果型トランジスタのドレインが接続された第2
の節点と、 ドレインが前記第2の節点に、ゲートが書き込み又は消
去モードが終了後、一定期間導通するような信号に、か
つソースが接地に接続された前記第2の電界効果型トラ
ンジスタと逆導電型の第3の電界効果型トランジスタと
を有し、前記第2の節点を出力としたことを特徴とする
デコーダ回路。
[Scope of Claims] A NAND circuit into which a plurality of addresses are input; a first inverting amplifier to which the output of the NAND circuit is connected to the input; and a drain connected to the output of the first inverting amplifier. a first field effect transistor, to which a first voltage is applied during write or erase mode;
a first node to which a second voltage is applied in the read mode; and a first node inserted between the first node and ground, the input being connected to the first node.
a second inverting amplifier connected to the source of the field effect transistor, the source connected to the first node and the gate connected to the second field effect transistor;
a second field effect transistor connected to the output of the inverting amplifier; a source of the first field effect transistor and the second field effect transistor;
The drain of the field effect transistor is connected to the second
and the second field effect transistor, the drain of which is connected to the second node, the gate of which is connected to a signal that conducts for a certain period of time after the write or erase mode ends, and the source of which is connected to ground. a third field-effect transistor of a conductivity type, and the second node is an output.
JP17107884A 1984-08-17 1984-08-17 Decoder circuit Expired - Lifetime JPH0746514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17107884A JPH0746514B2 (en) 1984-08-17 1984-08-17 Decoder circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17107884A JPH0746514B2 (en) 1984-08-17 1984-08-17 Decoder circuit

Publications (2)

Publication Number Publication Date
JPS6150289A true JPS6150289A (en) 1986-03-12
JPH0746514B2 JPH0746514B2 (en) 1995-05-17

Family

ID=15916604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17107884A Expired - Lifetime JPH0746514B2 (en) 1984-08-17 1984-08-17 Decoder circuit

Country Status (1)

Country Link
JP (1) JPH0746514B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180400U (en) * 1986-05-06 1987-11-16
JPS6421794A (en) * 1987-07-17 1989-01-25 Oki Electric Ind Co Ltd Decoder circuit for semiconductor storage device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110334A (en) * 1980-02-05 1981-09-01 Toshiba Corp Input detection circuit
JPS57130294A (en) * 1981-02-05 1982-08-12 Toshiba Corp Semiconductor memory
JPS5952497A (en) * 1982-09-17 1984-03-27 Nec Corp Decoder circuit
JPS5968895A (en) * 1982-10-13 1984-04-18 Hitachi Ltd Sense amplifier circuit
JPS5990292A (en) * 1982-11-12 1984-05-24 Toshiba Corp Voltage converting circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110334A (en) * 1980-02-05 1981-09-01 Toshiba Corp Input detection circuit
JPS57130294A (en) * 1981-02-05 1982-08-12 Toshiba Corp Semiconductor memory
JPS5952497A (en) * 1982-09-17 1984-03-27 Nec Corp Decoder circuit
JPS5968895A (en) * 1982-10-13 1984-04-18 Hitachi Ltd Sense amplifier circuit
JPS5990292A (en) * 1982-11-12 1984-05-24 Toshiba Corp Voltage converting circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180400U (en) * 1986-05-06 1987-11-16
JPS6421794A (en) * 1987-07-17 1989-01-25 Oki Electric Ind Co Ltd Decoder circuit for semiconductor storage device

Also Published As

Publication number Publication date
JPH0746514B2 (en) 1995-05-17

Similar Documents

Publication Publication Date Title
US5701096A (en) Charge-pump type booster circuit
JP2723278B2 (en) Decoder / driver circuit for high capacitance line programming
US20070274129A1 (en) Data processing device
JPS63153799A (en) Semiconductor memory
KR940022571A (en) Nonvolatile Semiconductor Memory
JPH02177716A (en) Boosting circuit
US6147910A (en) Parallel read and verify for floating gate memory device
KR930001656B1 (en) Integrated memory circuit
JPS6240697A (en) Semiconductor memory device
TW434553B (en) Nonvolatile memory semiconductor devices having alternative programming operations
US4091360A (en) Dynamic precharge circuitry
JPS6150289A (en) Decoder circuit
JPH1011989A (en) Semiconductor device
JPH0766675B2 (en) Programmable ROM
JP2801654B2 (en) Dynamic semiconductor memory device
JP2587595B2 (en) Write circuit for nonvolatile semiconductor memory
JP2002367386A (en) Semiconductor memory
KR0146536B1 (en) Word line control circuit for semiconductor memory
JP3042203B2 (en) Static memory circuit
JPH11176153A (en) Semiconductor integrated circuit
JP3345449B2 (en) Dynamic semiconductor memory device
JPS6050697A (en) Semiconductor integrated circuit
JPS6233392A (en) Semiconductor non-volatile memory device
JPH01192093A (en) Circuit for driving read only memory
JP2553290B2 (en) Semiconductor integrated circuit