JPS6149472A - Charge transfer device - Google Patents

Charge transfer device

Info

Publication number
JPS6149472A
JPS6149472A JP59171877A JP17187784A JPS6149472A JP S6149472 A JPS6149472 A JP S6149472A JP 59171877 A JP59171877 A JP 59171877A JP 17187784 A JP17187784 A JP 17187784A JP S6149472 A JPS6149472 A JP S6149472A
Authority
JP
Japan
Prior art keywords
regions
gate
pulses
gates
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59171877A
Other languages
Japanese (ja)
Other versions
JPH0682693B2 (en
Inventor
Tadashi Aoki
正 青木
Hirokuni Nakatani
中谷 博邦
Motohiro Kojima
基弘 小島
Hiroyuki Mizuno
博之 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP59171877A priority Critical patent/JPH0682693B2/en
Publication of JPS6149472A publication Critical patent/JPS6149472A/en
Publication of JPH0682693B2 publication Critical patent/JPH0682693B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • H01L29/76808Input structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • H01L29/76833Buried channel CCD
    • H01L29/76841Two-Phase CCD

Abstract

PURPOSE:To increase a transfer rate by forming three or more of reverse conduction type regions having mutually different concentration per one bit onto a substrate. CONSTITUTION:N well regions 12-14 are shaped to a P type substrate 11. The regions 12 are maximized and the regions 14 are minimized in concentration. 15, 16 represent storage gates and 17 barrier gates. An electrode P1 applying phi1 pulses and an electrode P2 applying phi2 pulses each have three gate structure, and there are differences among the potential of several electrode P1, P2 by differences among the concentration of the regions 12-14 under respective gate even when pulses phi1, phi2 are at a low level as time t1. Pulses phi1 are at a high level on the timing of time t2, and transfer charges 19 are stored under the gates 15, 16. Since pulses phi1 are at the low level and pulses phi2 at the high level at t3, charges 19 are transferred under the gates 15, 16. In the constitution, gate length is shortened even when pitches are the same. Since a transfer rate is inversely proportional to the square of gate length, the transfer rate is increased by twice or more according to the constitution.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電荷転送装置に関するものであり、特に複数個
のテップを配列した長尺の密着型CODイメージセンサ
に係わるものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a charge transfer device, and more particularly to a long contact type COD image sensor in which a plurality of steps are arranged.

従来例の構成とその問題点 近年、−次元固体撮像素子を複数個配列1−で原稿と同
じサイズにした所謂密着型イメージセンサの開発が活発
に進められており、一部実用化のレベルに達してきてい
る。
Conventional configurations and their problems In recent years, the development of so-called contact image sensors in which a plurality of -dimensional solid-state image sensors are arranged in an array 1- is the same size as a document, and some of them have reached the level of practical use. It has been reached.

第1図は従来の密着型C0D−次元固体撮像装置の転送
要部の断面図を示したものであり、第2図は第3図のタ
イミング1. 、12でのポテンシャルを示す。第1図
に於て、1はP型基板、2はNウェル領域、3はバリヤ
領域でNウェル領域2と同じ導電型であシ濃度はNウェ
ル領域2よりも小さい領域である。4は蓄積ゲート、5
はバリヤゲートであり、6はゲート酸化膜である。Pl
  はφ1.P2はφ2 パルスを印加する電極である
。なお第2図の7は転送電荷であり、左側から右側へ転
送される。密着型センサは1対1対応なので、画素のピ
ッチが集光型センサに比して大きくなり、それに従って
転送部のディメンジョンも大きくなる。例えば16画素
/ mmの場合、第1図の蓄積ゲート4のゲート長は1
9μmで、バリヤゲート6のゲート長は12.2511
mでCCD1ビツトとしては62,6μmピッチである
。又、集光型のセンサでは例えば蓄積ゲートが9μmで
バリヤゲートが5μmでCCD1ビツトとして28μm
である。
FIG. 1 shows a cross-sectional view of the main transfer part of a conventional contact-type C0D-dimensional solid-state imaging device, and FIG. 2 shows the timing 1. of FIG. 3. , 12. In FIG. 1, 1 is a P-type substrate, 2 is an N-well region, and 3 is a barrier region, which is of the same conductivity type as the N-well region 2 and has a lower concentration than the N-well region 2. 4 is an accumulation gate, 5
is a barrier gate, and 6 is a gate oxide film. Pl
is φ1. P2 is an electrode for applying the φ2 pulse. Note that 7 in FIG. 2 is a transfer charge, which is transferred from the left side to the right side. Since the contact type sensor has a one-to-one correspondence, the pixel pitch is larger than that of the condensing type sensor, and the dimension of the transfer section is accordingly larger. For example, in the case of 16 pixels/mm, the gate length of the storage gate 4 in Fig. 1 is 1
9 μm, the gate length of barrier gate 6 is 12.2511
m, which is a pitch of 62.6 μm for 1 bit of CCD. In addition, in a condensing type sensor, for example, the storage gate is 9 μm, the barrier gate is 5 μm, and the CCD has a 1 bit of 28 μm.
It is.

以上の様に密着型のCODセンサは集光型のセンサと比
較して2倍以上のゲート長が必要となり、糧 高速動作性が著しくおちることになる。
As described above, the contact type COD sensor requires a gate length that is more than twice as long as the condensing type sensor, and its high-speed operation is significantly degraded.

発明の目的 本発明は従来例の上記欠点に鑑み、よシ高速可能な電荷
転送装置を提供するものである。
OBJECTS OF THE INVENTION In view of the above-mentioned drawbacks of the prior art, the present invention provides a charge transfer device capable of higher speed.

発明の構成 この目的を達成するために、本発明の電荷転送装置は、
1ビット当りのゲート数を多くして高速動作を可能とし
た電荷転送装置である。
Structure of the Invention To achieve this object, the charge transfer device of the present invention comprises:
This is a charge transfer device that enables high-speed operation by increasing the number of gates per bit.

実施例の説明 以下本発明の実施例について図面を参照しなかものであ
る。11はP型基板、12,13,14はNウェル領域
で、濃度はNウェル領域12が一番高<、Nウェル領域
14が一番低い。15.16は蓄積ゲート、17はバリ
ヤゲートであり、18はゲート酸化膜である。P、はφ
1.P2はφ2パルスを印加する電極である。第5図は
第6図のタイミングt1〜t5の各々についてのポテン
シャルを示す。第4図〜第6図に於て、φ1電極P、及
びφ2電極P2は各々3ゲート構造になっておシ、時刻
t1  におけるようにパルスφ4.φ2がローレベル
の時にも各電極P1.P2は各々のゲート下の領域12
.13及び14の濃度の差によりポテンシャル差がつく
。次に、時刻t2のタイミングの時にはパルスφ1 が
ハイレベルとなシ、転送電荷19はゲート15及び16
の下に蓄積され、ゲート17は電荷の逆流を防ぐバリヤ
としての働きをする。次に、時刻t3  のタイミング
の場合、パルスφ、はローでパルスφ2はハイとなるの
で、転送電荷19はP2 電極のゲート15及び16の
下に転送される。第4図の実施例では、蓄積ゲート15
のゲート長は13μm1ゲート16のゲート長は10μ
mで /’< IJヤゲート17のゲート長は8.25
 μmでCGDIビットとしては62.5 p mとな
っている。従って、本実施例ではゲート長(第1図の例
では19μmが最大)が最大で13μmとなシ、ピッチ
が同一でもゲート長が小さくなる。通常転送速度はゲー
ト長の2乗に反比例するので、本実施例の電荷転送装置
は従来のものと比べて2倍以上転送速度が大きくなる利
点を有する。
DESCRIPTION OF EMBODIMENTS Reference will now be made to the drawings for embodiments of the invention. 11 is a P-type substrate, 12, 13, and 14 are N-well regions, and the concentration is the highest in the N-well region 12 and the lowest in the N-well region 14. 15 and 16 are storage gates, 17 is a barrier gate, and 18 is a gate oxide film. P, is φ
1. P2 is an electrode for applying the φ2 pulse. FIG. 5 shows potentials for each of timings t1 to t5 in FIG. In FIGS. 4 to 6, the φ1 electrode P and the φ2 electrode P2 each have a three-gate structure, and as at time t1, the pulse φ4. Even when φ2 is at low level, each electrode P1. P2 is the region 12 under each gate
.. The difference in concentration between 13 and 14 creates a potential difference. Next, at time t2, the pulse φ1 is at a high level, and the transferred charge 19 is transferred to the gates 15 and 16.
The gate 17 acts as a barrier to prevent charge backflow. Next, at time t3, the pulse φ is low and the pulse φ2 is high, so the transfer charge 19 is transferred below the gates 15 and 16 of the P2 electrode. In the embodiment of FIG. 4, the storage gate 15
The gate length of 1 gate 16 is 13μm.
m /'< The gate length of IJ Yagate 17 is 8.25
The CGDI bit in μm is 62.5 pm. Therefore, in this embodiment, the gate length (in the example of FIG. 1, the maximum is 19 μm) is 13 μm at the maximum, and even if the pitch is the same, the gate length is smaller. Since the transfer speed is normally inversely proportional to the square of the gate length, the charge transfer device of this embodiment has the advantage that the transfer speed is more than twice as high as that of the conventional device.

第7図は本発明の別の実施例に於ける密着型COD撮像
装置の転送部要部の断面図を示したもので、第4図と同
一番号は同一部分を示す。また、20は蓄積ゲートで、
21はバリヤゲートである。
FIG. 7 shows a sectional view of the main part of the transfer section of a contact type COD imaging device in another embodiment of the present invention, and the same numbers as in FIG. 4 indicate the same parts. Also, 20 is an accumulation gate,
21 is a barrier gate.

Pl及びP2は各々φ、及びφ2を印加する電極である
。第8図は第6図のタイミング上1〜t3各々について
のポテンシャルを示す。第6図〜第8図に於てφ1電極
P1及びφ2電極P2に於てともにローレベルの時、即
ちタイミングt1  のときは、Nウェル領域12.1
3及び14の各領域はNウェルの濃度差によシポテンシ
ャルに差がつく。タイミングt2 の時にはパルスφ1
 がノ・イレベルとなり、転送電荷19は蓄積ゲート2
0の下に蓄積され、バリヤゲート21は電荷の逆流を防
ぐバリヤとしての働きをする。次にタイミングt3 の
場合、パ転送電荷19はP2 電極の蓄積ゲート20の
下に転送される。第8図を見ると図中太線で示している
のがNウェル領域14下のポテンシャルで、Nウェル領
域14の上にはゲー・トがないので、ポテンシャルはN
ウェルの濃度のみに依存し、ちょうど4の領域のポテン
シャルを中心にしてパルスφ1あるいはφ2 の各ゲー
ト12及び13のポテンシャルがハイレベル及びローレ
ベルに応じて上下して電荷を転送していく様子が分る。
Pl and P2 are electrodes to which φ and φ2 are applied, respectively. FIG. 8 shows potentials for each of the timings 1 to t3 in FIG. 6. In FIGS. 6 to 8, when both the φ1 electrode P1 and the φ2 electrode P2 are at low level, that is, at timing t1, the N well region 12.1
Regions 3 and 14 have different potentials due to the difference in concentration of the N well. At timing t2, pulse φ1
becomes the no-i level, and the transferred charge 19 is transferred to the storage gate 2.
0, and the barrier gate 21 acts as a barrier to prevent charge backflow. Next, at timing t3, the P transfer charge 19 is transferred below the storage gate 20 of the P2 electrode. Looking at FIG. 8, the bold line in the figure is the potential below the N well region 14. Since there is no gate above the N well region 14, the potential is N
Depending only on the concentration of the well, the potential of each gate 12 and 13 of pulse φ1 or φ2 rises and falls according to the high level and low level, centering on the potential of region 4, and charges are transferred. I understand.

第7図の実施例では蓄積ゲートが13μm1バリヤゲー
トが10μmでゲートのないNウェル領域4の長さは8
.25μmで第4図の実施例の様に従来例と比べて2倍
以上の速度で転送出来る。
In the embodiment shown in FIG. 7, the storage gate is 13 μm, the barrier gate is 10 μm, and the length of the N-well region 4 without a gate is 8 μm.
.. With a thickness of 25 μm, data can be transferred at a speed more than twice that of the conventional example, as shown in the embodiment shown in FIG.

発明の効果 以上の様に本発明は転送部について1ビツトを従来の4
ゲート4領域構成よシ4以上ゲート6以上領域構成にす
ることにより、より高速可能な電荷転送装置を得ること
ができ、その実用的効果は犬なるものがある。
Effects of the Invention As described above, the present invention has the advantage that 1 bit in the transfer section is replaced by 4 bits in the transfer section.
By changing the structure from four gate regions to four or more gate regions and six or more gate regions, a charge transfer device capable of higher speed can be obtained, and its practical effects are significant.

第1図は従来のCOD断面図、第2図は従来のCCDの
ポテンシャル図、第3図はその駆動パルス図、第4図は
本発明の構造断面図、第5図はそのポテンシャル図、第
6図は第4図の駆動パルス図、第7図は本発明の別の実
施例の構造断面図、第8図は第7図のポテンシャル図で
ある。
Fig. 1 is a sectional view of a conventional COD, Fig. 2 is a potential diagram of a conventional CCD, Fig. 3 is a driving pulse diagram thereof, Fig. 4 is a structural sectional view of the present invention, and Fig. 5 is a potential diagram thereof. 6 is a drive pulse diagram of FIG. 4, FIG. 7 is a structural sectional view of another embodiment of the present invention, and FIG. 8 is a potential diagram of FIG. 7.

11 ・・・・P型基板、12,13.14・・・・・
・それぞれ濃度の異るNウェル領域、15〜17,20
゜21・・・・・ゲート。
11...P-type substrate, 12,13.14...
・N-well regions with different concentrations, 15 to 17, 20
゜21...Gate.

代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第4図 第5図 第6図 ノ/          ノ2    ノJ、− 第7図 I 第8図
Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 - Figure 7 I Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)一導電型基板と、この基板上に形成された1ビッ
ト当り互いに濃度の異なる3つ以上の反対導電型領域を
有し、上記3つ以上の領域のポテンシャルがそれぞれ異
なる電荷転送装置。
(1) A charge transfer device having a substrate of one conductivity type and three or more regions of opposite conductivity type formed on the substrate and having mutually different concentrations per bit, the three or more regions having different potentials.
(2)3つ以上の領域上の少なくとも2ケ所にはゲート
電極が形成されている特許請求の範囲第1項記載の電荷
転送装置。
(2) The charge transfer device according to claim 1, wherein gate electrodes are formed at at least two locations on three or more regions.
JP59171877A 1984-08-17 1984-08-17 Charge transfer device Expired - Lifetime JPH0682693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59171877A JPH0682693B2 (en) 1984-08-17 1984-08-17 Charge transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59171877A JPH0682693B2 (en) 1984-08-17 1984-08-17 Charge transfer device

Publications (2)

Publication Number Publication Date
JPS6149472A true JPS6149472A (en) 1986-03-11
JPH0682693B2 JPH0682693B2 (en) 1994-10-19

Family

ID=15931448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59171877A Expired - Lifetime JPH0682693B2 (en) 1984-08-17 1984-08-17 Charge transfer device

Country Status (1)

Country Link
JP (1) JPH0682693B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0404306A2 (en) * 1989-06-19 1990-12-27 Tektronix Inc. Trench structured charge-coupled device
US5289022A (en) * 1991-05-14 1994-02-22 Sony Corporation CCD shift register having a plurality of storage regions and transfer regions therein
KR20010003830A (en) * 1999-06-25 2001-01-15 김영환 Solid state image pickup device and method of fabricating the same
JP2010258119A (en) * 2009-04-23 2010-11-11 Sony Corp Solid-state image pickup device and manufacturing method of the same
JP2015090906A (en) * 2013-11-05 2015-05-11 浜松ホトニクス株式会社 Charge-coupled device, method for manufacturing the same, and solid-state image pickup device
JP2015090907A (en) * 2013-11-05 2015-05-11 浜松ホトニクス株式会社 Linear image sensor
CN113447616A (en) * 2021-06-22 2021-09-28 成都归谷环境科技有限责任公司 PWM output value calculation method of CO2 sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575361A (en) * 1980-06-11 1982-01-12 Toshiba Corp Charge transfer device
JPS59115556A (en) * 1982-12-22 1984-07-04 Toshiba Corp Charge transfer type shift register

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575361A (en) * 1980-06-11 1982-01-12 Toshiba Corp Charge transfer device
JPS59115556A (en) * 1982-12-22 1984-07-04 Toshiba Corp Charge transfer type shift register

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0404306A2 (en) * 1989-06-19 1990-12-27 Tektronix Inc. Trench structured charge-coupled device
JPH0327538A (en) * 1989-06-19 1991-02-05 Sony Tektronix Corp Charge coupled device
US5289022A (en) * 1991-05-14 1994-02-22 Sony Corporation CCD shift register having a plurality of storage regions and transfer regions therein
KR20010003830A (en) * 1999-06-25 2001-01-15 김영환 Solid state image pickup device and method of fabricating the same
JP2010258119A (en) * 2009-04-23 2010-11-11 Sony Corp Solid-state image pickup device and manufacturing method of the same
JP2015090906A (en) * 2013-11-05 2015-05-11 浜松ホトニクス株式会社 Charge-coupled device, method for manufacturing the same, and solid-state image pickup device
JP2015090907A (en) * 2013-11-05 2015-05-11 浜松ホトニクス株式会社 Linear image sensor
WO2015068667A1 (en) * 2013-11-05 2015-05-14 浜松ホトニクス株式会社 Linear image sensor
WO2015068668A1 (en) * 2013-11-05 2015-05-14 浜松ホトニクス株式会社 Charge-coupled device, manufacturing method therefor, and solid-state imaging element
US9967503B2 (en) 2013-11-05 2018-05-08 Hamamatsu Photonics K.K. Charge-coupled device, manufacturing method thereof, and solid-state imaging element
US10403677B2 (en) 2013-11-05 2019-09-03 Hamamatsu Photonics K.K. Linear image sensor
CN113447616A (en) * 2021-06-22 2021-09-28 成都归谷环境科技有限责任公司 PWM output value calculation method of CO2 sensor
CN113447616B (en) * 2021-06-22 2022-09-02 成都归谷环境科技有限责任公司 PWM output value calculation method of CO2 sensor

Also Published As

Publication number Publication date
JPH0682693B2 (en) 1994-10-19

Similar Documents

Publication Publication Date Title
JPS6242554B2 (en)
JPS6149472A (en) Charge transfer device
US5892251A (en) Apparatus for transferring electric charges
JP3297947B2 (en) Solid-state imaging device
JP3301176B2 (en) Charge transfer device
JP2570855B2 (en) Charge-coupled device
JPH0767153B2 (en) Driving method for solid-state imaging device
JP3450413B2 (en) Solid-state imaging device
JPS60262461A (en) Charge coupled device
JPH06268923A (en) Drive method for solid-state image pickup device
JP2768312B2 (en) Charge transfer device, driving method and manufacturing method thereof
JPH07335854A (en) Solid-state image sensing element and its drive method
JP3277385B2 (en) Solid-state imaging device
JP2000196964A (en) Solid-state image pickup element and driving method therefor
JPH079982B2 (en) Charge transfer device
JP2500438B2 (en) Solid-state image sensor and driving method thereof
JPS61145974A (en) Solid-state image pickup device and its driving method
JPH0697669B2 (en) Charge coupled device
JP2624334B2 (en) Driving method of solid-state imaging device
JP2951672B2 (en) Interline solid-state imaging device
JPS60120557A (en) Solid state image pick-up device having antiblooming structure
JPH0443358B2 (en)
JPH0437628B2 (en)
JPH07106545A (en) Solid-state image sensing element
JPH0760895B2 (en) Charge coupled device and driving method thereof