JPS6149460A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6149460A
JPS6149460A JP59171863A JP17186384A JPS6149460A JP S6149460 A JPS6149460 A JP S6149460A JP 59171863 A JP59171863 A JP 59171863A JP 17186384 A JP17186384 A JP 17186384A JP S6149460 A JPS6149460 A JP S6149460A
Authority
JP
Japan
Prior art keywords
type
base
layer
shaped
bipolar transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59171863A
Other languages
Japanese (ja)
Inventor
Hirobumi Uchida
博文 内田
Tetsuo Toyooka
豊岡 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP59171863A priority Critical patent/JPS6149460A/en
Publication of JPS6149460A publication Critical patent/JPS6149460A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8222Bipolar technology
    • H01L21/8226Bipolar technology comprising merged transistor logic or integrated injection logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the current amplification factor beta of an I<2>L element, and to enhance manufacturing properties by simultaneously forming regions having different impurity concentration by using an ion implantation method. CONSTITUTION:n<+> type resistance layers 2 are shaped to a p type Si substrate 1. An n type epitaxial layer 3 is formed onto the substrate 1. p<+> type isolation diffusion layers 5 are shaped, and isolated n type island regions 6-1, 6-2 are each formed. n type collector walls 7 are shaped so as to reach the layers 2. B ions are implanted into regions 6-1, 6-2, and B ions are implanted into the region 6-2 while using the upper surface of the region 6-1 as a mask, thus forming an injector 8-1 for an I<2>L element, a base 8-2 in a vertical type npn transistor (Tr) and a base 8-3 in a bipolar Tr at a stroke. An n<+> layer is shaped. Consequently, an emitter 9-1 in the bipolar Tr and collectors 9-2, 9-3 in the vertical type npn Tr are formed. According to said method, impurity concentration in the base 8-2 can be lowered, and impurity concentration in the base 8-3 can be increased, thus improving the beta of the I<2>L element.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置の製造方法、特に、一つのする。[Detailed description of the invention] Industrial applications The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a semiconductor device.

従来例の構成とその問題点 半導体集積回路において、115回路はバイポーラトラ
ンジスタと同一製造工程で作ることができる。従ってI
Cの集積密度の増大をはかる上でアナログ信号部はバイ
ポーラエCで、ディジタル信号部はIIL回路で構成す
ることは非常に有効な方法である。
Conventional configuration and its problems In a semiconductor integrated circuit, a 115 circuit can be manufactured in the same manufacturing process as a bipolar transistor. Therefore I
In order to increase the integration density of C, it is very effective to configure the analog signal section with bipolar E-C and the digital signal section with IIL circuit.

まず、従来のバイポーラICとIIL回路を同一シリコ
ン基板上に製作する場合の製造工程を第1図を参照して
説明する。以下の(A)〜(5)の各項は第1図(A)
〜(6)の工程図に対応する。
First, the manufacturing process for manufacturing a conventional bipolar IC and an IIL circuit on the same silicon substrate will be explained with reference to FIG. Each of the following items (A) to (5) is shown in Figure 1 (A).
This corresponds to the process diagram of ~(6).

(A)  P型シリコン基板1に砒素あるいはアンチモ
ンの熱拡散やイオン注入によシ埋込層2を形成する。
(A) A buried layer 2 is formed on a P-type silicon substrate 1 by thermal diffusion or ion implantation of arsenic or antimony.

(B)Si基板1上の全域にn型の単結晶エピタキシャ
ル層3を成長させる。
(B) An n-type single crystal epitaxial layer 3 is grown over the entire area on the Si substrate 1.

(C)  上記n型単結晶層の一部分にN+拡散により
N−ウエル領域4を形成する。
(C) An N- well region 4 is formed in a portion of the n-type single crystal layer by N+ diffusion.

■) トランジスタ相互間、あるいはダイオード、抵抗
等の島領域との分離、そしてIILとの分離のためにボ
ロンなどによりP′″型の分離拡散領域5をシリコン基
板1に到達する深さに行なう。
(2) A P''' type isolation diffusion region 5 is formed with boron or the like to a depth that reaches the silicon substrate 1 for isolation between transistors or from island regions such as diodes and resistors, and for isolation from IIL.

これによシ分離された島領域6−1.6−2を形成する
。この場合、島領域6−1にはIIL素子を、島領域6
−2にはバイポーラトランジスタを形成する予定領域で
ある。
This forms isolated island regions 6-1 and 6-2. In this case, an IIL element is provided in the island region 6-1, and an IIL element is provided in the island region 6-1.
-2 is an area where a bipolar transistor is to be formed.

(E)次にトランジヌタのコレクタ抵抗あるいはIIL
素子のエミッタ抵抗の低下等の効果を生むためにN+型
型数散層7N++埋込層2に到達するように拡散する。
(E) Next, the transistor collector resistance or IIL
In order to produce effects such as lowering the emitter resistance of the device, the N+ type scattering layer 7 is diffused so as to reach the N++ buried layer 2.

これは一般にコレクタウオールと呼ばれる。This is commonly called collectaol.

り)熱拡散やイオン注入法を使って島領域6−1゜6−
2内に、各々、P型拡散層として、IIL素子のインジ
ェクタ8−1.NIL素子の縦型NPN )ラン゛ジヌ
タのベース8−2.バイポーラトランジスタのベース8
−3をそれぞれ形成する。インジェクタ8−1はN型島
領域6−1をベース、P型拡散層8−2をコレクタとす
るPNP トランジスタのエミッタに相当する。
ri) Island region 6-1゜6- using thermal diffusion or ion implantation method
2, each injector 8-1.2 of the IIL element serves as a P-type diffusion layer. NIL element vertical NPN) base of the transistor 8-2. Bipolar transistor base 8
-3 respectively. The injector 8-1 corresponds to the emitter of a PNP transistor having the N-type island region 6-1 as a base and the P-type diffusion layer 8-2 as a collector.

(G)  次いで、リン又は砒素を用いて「型拡散層と
して、バイポーラトランジスタのエミッタ9−1、II
L素子の縦型NPN l−ランジスタのコレクタ9−2
.9−3を、それぞれ、形成する。
(G) Next, phosphorus or arsenic is used to form the emitter 9-1, II of the bipolar transistor as a type diffusion layer.
Collector 9-2 of vertical NPN l-transistor with L element
.. 9-3, respectively.

IIL素子における縦型NPNトランジスタは島領域6
−1をエミッタP型拡散層8−2をベース、「型拡散層
9−2.ならびに同9−3をそれぞれコレクタとする構
造であり、この構造は通常のバイポーラトランジスタの
コレクタ。
The vertical NPN transistor in the IIL element has an island region 6
-1 has a structure in which the emitter P-type diffusion layer 8-2 is the base and the "type diffusion layers 9-2 and 9-3 are the collectors, respectively. This structure is the collector of a normal bipolar transistor.

エミッタを逆にしたものとなる。It is an inverted emitter.

(6) しかる後、シリコン酸化膜10を全域に設けた
のち、同シリコン酸化膜1oの必要な箇所にコンタクト
窓を開けてアルシミニウム電甑11を形成する。
(6) Thereafter, a silicon oxide film 10 is provided over the entire area, and then contact windows are opened at necessary locations in the silicon oxide film 1o to form an aluminum electric pot 11.

ところで、IIL素子はエビタキンヤlv層3をエミッ
タとしているだめに注入効率が低く、電流増幅率βが小
さい。そこで、IIL素子領域のみにN−ウェル層4を
形成し、III、素子の縦型NPNトランジスタのベー
ス層の不純物濃度を下げ、βを上げている。
By the way, since the IIL element uses the Evita Kinya lv layer 3 as an emitter, the injection efficiency is low and the current amplification factor β is small. Therefore, the N-well layer 4 is formed only in the IIL element region, the impurity concentration of the base layer of the vertical NPN transistor of the III element is lowered, and β is increased.

しかしながらこの方法では、N−ウェル層4を形成する
工程が増えることの他に、このN−ウェル層4をイオン
注入法で形成すれば、欠陥が発生しやすいという欠点も
ある。
However, this method has the drawback that not only does the number of steps for forming the N-well layer 4 increase, but also that defects are likely to occur if the N-well layer 4 is formed by ion implantation.

発明の目的 本発明はかかる欠点を改善すべく、イオン注入法を使い
、不純物濃度の異なる領域を同時に形成することにより
、半導体装置たとえばIIL集積回路のより簡便な製造
方法を提供することを目的とする。
Purpose of the Invention In order to improve the above-mentioned drawbacks, the present invention aims to provide a simpler manufacturing method for semiconductor devices, such as IIL integrated circuits, by simultaneously forming regions with different impurity concentrations using an ion implantation method. do.

発明の構成 上記目的を達成するために、本発明は、IIL素子、パ
イポーラトランジスタ共存型集積回路の製造工程ておい
て、IIL素子のインジェクタと縦型N P N ) 
ランジヌタのベース及ヒy<イホーyトランジスタのベ
ースをイオン注入法を用いて、異雇った不純物濃度とな
るように同時に形成する工程をそなえたものであり、こ
れにより、IIL素子の電流増幅率βの向上と製造性の
改善とが一挙に実現できる。
Structure of the Invention In order to achieve the above object, the present invention provides an injector of an IIL element and a vertical type N P N
It has a step of simultaneously forming the base of the transistor and the base of the transistor using an ion implantation method so that they have different impurity concentrations, thereby increasing the current amplification factor β of the IIL element. Improvements in performance and manufacturability can be achieved all at once.

実施例の説明 以下実施例について第2図(A)〜(G)の工程順断面
図を用いて具体的に説明する。以下の説明で(λ)〜(
G>の各項は同図の(人)〜(G)の各工程に対応して
いる。
DESCRIPTION OF EMBODIMENTS Examples will be specifically described below using step-by-step sectional views of FIGS. 2(A) to 2(G). In the following explanation, (λ) ~ (
Each term of G> corresponds to each process of (person) to (G) in the figure.

なお、第2図において、第1図と同じものは同じ記号を
用いている。
In FIG. 2, the same symbols are used for the same parts as in FIG. 1.

ンを用いて熱拡散やイオン注入によりN゛型嶽抗層2を
形成する。
The N-type resistive layer 2 is formed by thermal diffusion or ion implantation using a metal.

(B)  上記基板1にN型のエビタキンヤル層3を形
成する。
(B) Form an N-type Evita core layer 3 on the substrate 1.

(C)トランジスタ相互間あるいはダイオード、抵抗等
の島領域との分離、そしてIILとの分離のため、ボロ
ン等によりP“型の分離拡散層5をP型基板1に到達す
る深さに形成し、こnによリ、分離されたN型の島領域
6−1.6−2をそれぞれ形成する。
(C) A P" type isolation diffusion layer 5 is formed with boron or the like to a depth that reaches the P type substrate 1 for isolation between transistors or from island regions such as diodes and resistors, and for isolation from IIL. , thereby forming separated N-type island regions 6-1 and 6-2, respectively.

■)高濃度のN型層であるコレクタウオール7を、リン
等を用いて熱拡散やイオン注入によって、n4型埋込層
2に到達するように形成する。
(2) Collector all 7, which is a highly concentrated N-type layer, is formed using phosphorus or the like by thermal diffusion or ion implantation so as to reach the N4-type buried layer 2.

α)  次に島fi域6−1.6−2にイオン注入法を
用いてボロンイオンを注入し、次に一方の島領域6−1
の上面をマスクして、他方の島領域ら−2にもう一度ポ
ロンイオンを注入し、IIL素子のインジェクタ8−1
.IIL素子の逆型NPN トランジスタのベー78−
2及びそれらよシもP型不純物濃度の高いバイポーラト
ランジスタのベース8−3を一挙に形成する。このとき
、島領域6−10上面に設けたマスクは二度目のイオン
注入を防止するためのものである。
α) Next, boron ions are implanted into the island fi region 6-1, 6-2 using an ion implantation method, and then one of the island regions 6-1
Masking the upper surface of the injector 8-1 of the IIL element, poron ions are implanted once again into the other island region et al.-2.
.. IIL element inverted NPN transistor base 78-
2 and the base 8-3 of a bipolar transistor having a higher concentration of P-type impurities are formed all at once. At this time, the mask provided on the top surface of the island region 6-10 is for preventing the second ion implantation.

(F)シかるのち、リンあるいは砒素を用いて熱拡散や
イオン注入によりN+層を作る。それによって、バイポ
ーラトランジスタのエミッタ9−1゜IIL素子の縦型
NPN トランジスタのコレクタ9−2.同9−3を形
成する。また、コレクタウオー/I/7は必要ない場合
もあるので、N“型拡散によりトランジスタのコレクタ
コンタクト9−4およびIIL素子のエミッタコンタク
ト9−5もこの工程で同時に形成する。
(F) After heating, an N+ layer is formed by thermal diffusion or ion implantation using phosphorus or arsenic. Thereby, the emitter of the bipolar transistor 9-1.degree., the collector of the vertical NPN transistor of the IIL element 9-2. Form 9-3. Further, since the collector O/I/7 may not be necessary, the collector contact 9-4 of the transistor and the emitter contact 9-5 of the IIL element are also formed at the same time in this step by N" type diffusion.

ρ) しかる後に、7リコン酸化膜SiO□10にを形
成し、さらに、これ必要な箇所にコンタクト窓を開けて
アルミニウム電極11を形成する。
ρ) Thereafter, a silicon oxide film SiO□ 10 is formed, contact windows are opened at necessary locations, and aluminum electrodes 11 are formed.

以上の方法により、IIL素子の縦型NPNトランンヌ
タのベースは不純物濃度を低くシ、バイポーラトランジ
スタのベースはそれよシネ鈍物濃度を高くなるように、
作ることができ、IIL素子の電流増幅率βを大きくす
ることができるとともにバイポーラトランジスタの耐圧
も十分に確保することができる。
By the above method, the base of the vertical NPN transistor of the IIL element has a low impurity concentration, and the base of the bipolar transistor has a high cine impurity concentration.
The current amplification factor β of the IIL element can be increased, and the withstand voltage of the bipolar transistor can also be sufficiently ensured.

発明の効果 本発明によれば、従来法よりも少ない工程で、簡便に、
電流増幅率の高いIIL素子と通常のバイポーラトラン
ジスタの一体化形成を実現することができ、製造工程の
簡略化、短期化という点で大きな効果がある。
Effects of the Invention According to the present invention, the process can be easily carried out with fewer steps than the conventional method.
It is possible to realize the integrated formation of an IIL element with a high current amplification factor and a normal bipolar transistor, which has a great effect in terms of simplifying and shortening the manufacturing process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜(6)は従来法の製造工程順断面図、第
2図(A)〜(G)は本発明の一実施例工程順断面図で
ある。 1・・・・・・p−3i基板、2・・・・・n“埋込層
、 3・・・・・n5工ピタキシヤル層、4・・・・・
n−ウニlVFm、5・・・・・・pアインレーション
W、6−1・川・・n型Fjt、6−2 ・・・・n型
層、了・・・・・・n″型コレクタウオール層、8・・
−・・P型拡散層、8−1・・ P型IIL素子のイン
ジェクタ、8−2・・・・P型rL素子の縦5NPNl
−ランジスタのベース、8−3 ・・・バイポーラトラ
ンジスタのベース、9−1 山・・バイポーラトランジ
スタのエミッタ、9−2−・・・・・IILlo・・・
・ンリコン酸化膜、11・・・・・アルミニウム電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第1図 第2図 第2図
FIGS. 1A to 6 are cross-sectional views in the order of manufacturing steps of a conventional method, and FIGS. 2A to 2G are cross-sectional views in the order of steps of an embodiment of the present invention. 1...P-3i substrate, 2...N" buried layer, 3...N5 pitaxial layer, 4...
n-uni lVFm, 5... p inlation W, 6-1... n-type Fjt, 6-2... n-type layer, end... n''-type collector Wall layer, 8...
-... P-type diffusion layer, 8-1... Injector of P-type IIL element, 8-2... Vertical 5NPNl of P-type rL element
-Base of transistor, 8-3...Base of bipolar transistor, 9-1 Mountain...Emitter of bipolar transistor, 9-2-...IILlo...
・Licon oxide film, 11...aluminum electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 1 Figure 2 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 一導電型を有する半導体基板上に逆導電型の埋込層を選
択的に形成したのち、全域に逆導電型のエピタキシャル
層を形成する工程と、この半導体層を分離して第1、第
2の島領域を形成する工程と、前記第1の島領域にII
L素子のインジェクタ及び縦型NPNトランジスタのベ
ースおよび前記第2の島領域にバイポーラトランジスタ
のベースを形成するための不純物イオンを注入した後に
、前記第2の島領域の前記バイポーラトランジスタのベ
ースを形成するための不純物イオンを追加注入する工程
と、前記縦型NPNトランジスタのベース内および前記
バイポーラトランジスタのベース内にそれぞれ前記II
L素子のコレクタおよび前記バイポーラトランジスタの
エミッタを同時形成する工程とを備えたことを特徴とす
る半導体装置の製造方法。
After selectively forming a buried layer of the opposite conductivity type on a semiconductor substrate having one conductivity type, forming an epitaxial layer of the opposite conductivity type over the entire area, and separating this semiconductor layer to form a first and a second buried layer. forming an island region in the first island region;
After implanting impurity ions to form the base of the bipolar transistor in the injector of the L element, the base of the vertical NPN transistor, and the second island region, the base of the bipolar transistor in the second island region is formed. a step of additionally implanting impurity ions into the base of the vertical NPN transistor and the base of the bipolar transistor, respectively.
A method of manufacturing a semiconductor device, comprising the step of simultaneously forming a collector of an L element and an emitter of the bipolar transistor.
JP59171863A 1984-08-17 1984-08-17 Manufacture of semiconductor device Pending JPS6149460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59171863A JPS6149460A (en) 1984-08-17 1984-08-17 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59171863A JPS6149460A (en) 1984-08-17 1984-08-17 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6149460A true JPS6149460A (en) 1986-03-11

Family

ID=15931180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59171863A Pending JPS6149460A (en) 1984-08-17 1984-08-17 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6149460A (en)

Similar Documents

Publication Publication Date Title
US4484388A (en) Method for manufacturing semiconductor Bi-CMOS device
CA1048656A (en) Fabricating high performance integrated bipolar and complementary field effect transistors
JPS6322070B2 (en)
JPS62277745A (en) Semiconductor integrated circuit
JPS6149460A (en) Manufacture of semiconductor device
JP3327658B2 (en) Manufacturing method of vertical bipolar transistor
JPS6060753A (en) Semiconductor device
JP2817210B2 (en) Method for manufacturing semiconductor device
JPS59149045A (en) Semiconductor device
JPH0271526A (en) Semiconductor integrated circuit and manufacture thereof
JPS60123062A (en) Manufacture of semiconductor integrated circuit
JPH07273127A (en) Semiconductor device
JPS6343357A (en) Semiconductor integrated circuit
JPH09223746A (en) Semiconductor device
JPH01187868A (en) Semiconductor device
JPS6148966A (en) Manufacture of semiconductor device
JPS6347965A (en) Semiconductor integrated circuit
JPH01225155A (en) Bipolar semiconductor integrated circuit device and manufacture thereof
JPH03203333A (en) Semiconductor device and manufacture thereof
JPH02232929A (en) Semiconductor device with buried layer
JPH0470781B2 (en)
JPS6174366A (en) Manufacture of semiconductor device
JPS6020555A (en) Semiconductor device
JPH0281438A (en) Bipolar integrated circuit
JPS61125070A (en) Manufacture of semiconductor device