JPS6148966A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6148966A
JPS6148966A JP59170690A JP17069084A JPS6148966A JP S6148966 A JPS6148966 A JP S6148966A JP 59170690 A JP59170690 A JP 59170690A JP 17069084 A JP17069084 A JP 17069084A JP S6148966 A JPS6148966 A JP S6148966A
Authority
JP
Japan
Prior art keywords
type
layer
epitaxial layer
base
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59170690A
Other languages
Japanese (ja)
Other versions
JPH0379870B2 (en
Inventor
Hirobumi Uchida
博文 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP59170690A priority Critical patent/JPS6148966A/en
Publication of JPS6148966A publication Critical patent/JPS6148966A/en
Publication of JPH0379870B2 publication Critical patent/JPH0379870B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8222Bipolar technology
    • H01L21/8226Bipolar technology comprising merged transistor logic or integrated injection logic

Abstract

PURPOSE:To improve IIL element performance characteristics by a method wherein a high-concentration epitaxial layer is formed just under the base of a vertical type NPN transistor and a low-concentration epitaxial layer is formed on said high-concentration epitaxial layer. CONSTITUTION:An N<+> type low-resistance buried layer 2 is formed on a P type silicon substrate 1. On the substrate 1, a high-concentration N type epitaxial layer 3-1 is formed, to be followed by the formation of a low-concentration epitaxial layer 3-2 whose impurity concentration is lower than that of the epitaxial layer 3-1. A P<+> type isolating layer 4 is formed by diffusion to be deep enough to reach the substrate 1, which results in the formation of N type islands 5-1, 5-2. On the island 5-1, an injector 7-1 is formed of a P type IIL element, and then a base 7-2 of a vertical NPN transistor. On the island 5-2, a P type diffused layer 8 is formed with its diffusion shallower than the injection 7-1. An IIL element manufactured by this method is superior in performance characteristics to one manufactured by the conventional method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はI  L (I I2L : Intagra
tad InjectionLogic ) k含む集
積回路の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to I L (I I2L: Intagra
The present invention relates to a method of manufacturing an integrated circuit including InjectionLogic.

従来例の構成とその問題点 まず、従来のパイポーラエCと工2L回路全同−シリコ
ン基板上で製作する場合の製造工程を第1図(A)〜(
H)の工程類断面図を参照して説明する。以下、(A)
〜(H)の各項は第1図の(A)〜但)の各図工程と対
応して説明したものである。
The configuration of the conventional example and its problems First, the manufacturing process when manufacturing the entire conventional Pipolar E-C and E-2L circuits on a silicon substrate is shown in Figures 1 (A) to (A).
This will be explained with reference to the process cross-sectional diagram of H). Below, (A)
The items from (H) to (H) are explained in correspondence with the steps (A) to (b) in FIG. 1.

仏) P型シリコン基板1に砒素あるいはアンチモンの
熱拡散やイオン注入により埋込層2を形成する。
(France) A buried layer 2 is formed on a P-type silicon substrate 1 by thermal diffusion or ion implantation of arsenic or antimony.

(Bj  上記Si基板1上にn型の単結晶層3を成長
させる。
(Bj) An n-type single crystal layer 3 is grown on the Si substrate 1.

(c)トランジスタ相互間あるいはダイオード、抵抗の
島との分離、そして工2Lとの分離のためボロンなどに
よりP+型の分離拡散4をシリコン基板1に到達する深
さに行なう。これにより分離された島5−1.5−2を
形成する0この場合。
(c) P+ type isolation diffusion 4 is performed with boron or the like to a depth that reaches the silicon substrate 1 for isolation between transistors, diodes, resistor islands, and isolation from the silicon substrate 2L. This forms isolated islands 5-1.5-2 in this case.

5−1にはI2L素子全5−2にはバイポーラトランジ
スタを形成する予定領域である。
5-1 is a planned area in which bipolar transistors will be formed in all I2L elements 5-2.

側 次にトランジスタのコレクタ抵抗あるいはI2L素
子のエミッタ抵抗の低下等の効果を生むためにN+型型
数散層6C型埋込層2に到達するように拡散する。これ
は一般にコレクタウオールと呼ばれる。
Next, in order to produce effects such as lowering the collector resistance of the transistor or the emitter resistance of the I2L element, it is diffused so as to reach the N+ type scattering layer 6 and the C type buried layer 2. This is commonly called collectaol.

(E)  熱拡散やイオン注入法を使って、P型拡散層
7を形成し、IL素子のインジェクタ7−1゜工2L素
子の縦型NPN)ランジスタのベース7−2を形成する
。インジェクタ7−1は5−1をベース、7−2ftコ
レクタとする。PNP)ランジスタのエミッタに相当す
る。
(E) Using thermal diffusion or ion implantation, a P-type diffusion layer 7 is formed to form an injector 7-1 of the IL element and a base 7-2 of a vertical NPN transistor of a 2L element. The injector 7-1 has a base of 5-1 and a 7-2ft collector. PNP) corresponds to the emitter of a transistor.

(F′)ついで、島5−1.5−2に熱拡散やイオン注
入に使って、ボロン音用いてP型拡散層8を作υ、たて
型NPN)ランジスタのベース層を形成する。
(F') Next, a P-type diffusion layer 8 is formed using boron sound by thermal diffusion and ion implantation on the islands 5-1 and 5-2, and a base layer of a vertical NPN transistor is formed.

(G)  ’Jン又は砒素を用いてN型拡散によシバイ
ボーラトランジスタのエミッタ9−1.I2L素子(7
)NPN縦型)ランジスタのコレクタ9−2゜9−3を
形成する。I2L素子におけるNPN縦型トランジスタ
は5−1をエミッタ、7−2iベース、9−2あるいは
9−3をコレクタとする構造で、バイポーラトランジス
タのコレクターエミッタを逆にしたものとなる。
(G) Emitter 9-1 of a shibora transistor by N-type diffusion using arsenic or arsenic. I2L element (7
) NPN vertical type) transistor collectors 9-2 and 9-3 are formed. The NPN vertical transistor in the I2L element has a structure in which 5-1 is the emitter, 7-2i is the base, and 9-2 or 9-3 is the collector, which is the reverse of the collector-emitter of a bipolar transistor.

またコレクタウオール6は必要ない場合もあるのでn型
拡散9によりトランジスタのコレクタコンタクト9−4
とI2L素子のエミッタコン′タクト9−6を形成する
In addition, since the collector all 6 is not necessary in some cases, the collector contact 9-4 of the transistor is formed by an n-type diffusion 9.
and form an emitter contact 9-6 of the I2L element.

()0 しかる後、シリコン酸化膜」0の必要な箇所に
コンタクト窓を開けてアルミニウム電極11を形成する
( ) 0 After that, contact windows are opened at necessary locations in the silicon oxide film 0 to form aluminum electrodes 11 .

ところで、l2Ii素子の伝播遅延時間は工2L素子に
蓄積された電荷を充放電するのに必要な時間で与えられ
、低電流域ではI2L素子の接合容量に蓄積される電荷
が支配的となり、大電流域ではI2L素子のエミッタ領
域に蓄積される電荷が支配的となるため、低電流域での
伝播遅延時間を短かくするためにはエピタキシャル層の
濃度が低い方が良いが、−万人電流域での伝播遅延時間
を速くするにはエピタキシャル層は濃度が高い方が望ま
しい。このため、I2L素子のエミツタ層に1層を拡散
する方法もとられている。
By the way, the propagation delay time of the I2Ii element is given by the time required to charge and discharge the charge accumulated in the I2L element, and in the low current region, the charge accumulated in the junction capacitance of the I2L element becomes dominant and becomes large. In the current range, the charge accumulated in the emitter region of the I2L element becomes dominant, so in order to shorten the propagation delay time in the low current range, it is better to have a low concentration in the epitaxial layer. In order to speed up the propagation delay time in the basin, it is desirable that the epitaxial layer has a high concentration. For this reason, a method has also been adopted in which one layer is diffused into the emitter layer of the I2L element.

しかしながら、この方法では工程が増えることの他に、
一層をイオン注入法を使って形成すれば欠陥が出やすい
という欠点もある。
However, in addition to increasing the number of steps with this method,
Forming one layer using ion implantation also has the disadvantage that defects are likely to occur.

発明の目的 本発明はかかる欠点を改善すべく、工2L素子の9WN
PN)ランジスタのベース直下に高濃度のエピタキシャ
ル層を成長し、その上に連続的に低濃度のエピタキシャ
ル層を成長させ、高速動作可能な工2L素子を供給する
ことを目的としている。
Purpose of the Invention The present invention aims to improve the above drawbacks by improving the 9WN of the 2L element.
The purpose of this method is to grow a highly doped epitaxial layer directly under the base of a PN) transistor, and continuously grow a lightly doped epitaxial layer thereon to provide a 2L device capable of high-speed operation.

発明の構成 すなわち、本発明の特徴はI2L素子の縦型NPNトラ
ンジスタのベース層を、バイポーラトランジスタのベー
ス層よりも深くシ、その縦型NPN )ランジスタのベ
ースの直下部に高濃度エピタキシャル層を形成し、その
上に連続的に低濃度のエピタキシャル層を形成すること
によって、IL素子の性能を向上させるものである。
Structure of the Invention In other words, the feature of the present invention is to make the base layer of the vertical NPN transistor of the I2L element deeper than the base layer of the bipolar transistor, and form a highly doped epitaxial layer directly below the base of the vertical NPN transistor. However, by continuously forming a low concentration epitaxial layer thereon, the performance of the IL element is improved.

実施例の説明 以下本発明を第2図(ム)〜(イ)の実施例工程順断面
図をもとに説明する。第2図において第1図と同じもの
には同じ記号を用いている。
DESCRIPTION OF THE EMBODIMENTS The present invention will be described below with reference to the step-by-step sectional views of the embodiments shown in FIGS. In FIG. 2, the same symbols are used for the same parts as in FIG. 1.

(人) P型シリコン基板1に砒素あるいはアンチモン
を用いて熱拡散やイオン注入により「型低抵抗埋込層2
を形成する。
(People) Using arsenic or antimony on a P-type silicon substrate 1, a "type low resistance buried layer 2" is formed by thermal diffusion or ion implantation.
form.

■)上記基板1上に、まず高濃度のN型エピタキシャル
層3−1を形成し、引き続き3−1よシも低濃度のエピ
タキシャル層3−2を形成する。
(2) On the substrate 1, first, a highly doped N-type epitaxial layer 3-1 is formed, and then an epitaxial layer 3-2, which is lower in concentration than 3-1, is formed.

(C)トランジスタ相互間あるいはダイオード、抵抗の
島との分離、そしてI2Lとの分離のためボロン等によ
りP+型の分離拡散層4をP型基板1に到達する深さに
形成することにより分離されたN型の島5−1.6−2
を形成する。
(C) Isolation is achieved by forming a P+ type isolation diffusion layer 4 of boron or the like to a depth that reaches the P type substrate 1 for isolation between transistors, diodes, resistor islands, and isolation from I2L. N-type island 5-1.6-2
form.

(D)  高濃度のN型層であるコレクタウオール6を
作るためにリン等を用いて熱拡散やイオン注入によって
n++込層2に到達するように形成する。
(D) In order to make a collector all 6 which is a highly concentrated N-type layer, phosphorus or the like is used to form it so as to reach the n++-containing layer 2 by thermal diffusion or ion implantation.

傳)次に島5−1に熱拡散やイオン注入を使ってポロン
等を用い゛てP型のI2L素子のインジェクター7−1
及び縦型NPN )ランジスタのペース7−2を形成す
る。このとき、P型拡散層はエピタキシャル層3−2よ
りも浅くする。
傳) Next, injector 7-1 of the P-type I2L element is applied to the island 5-1 using poron or the like using thermal diffusion or ion implantation.
and a vertical NPN) transistor pace 7-2. At this time, the P type diffusion layer is made shallower than the epitaxial layer 3-2.

(ト)次いで、島6−2に熱拡散やイオン注入等を使っ
て、ボロンを用い、了−1のインジェクタよりも浅いP
型拡散層8を作り、バイポーラトランジスタのベースを
形成する。
(G) Next, we used boron to the island 6-2 using thermal diffusion, ion implantation, etc. to create a shallower P than the injector of Ryo-1.
A type diffusion layer 8 is created to form the base of a bipolar transistor.

(G)シかるのち、リンあるいは砒素を用いて、熱拡散
やイオン注入によりt層を作る。それによってバイポー
ラトランジスタのエミッタ9−1及びI2Lのnpn縦
型トランジスタのコレクタ9−2.9−3を形成する。
(G) After heating, a t-layer is formed using phosphorus or arsenic by thermal diffusion or ion implantation. This forms the emitter 9-1 of the bipolar transistor and the collector 9-2, 9-3 of the I2L npn vertical transistor.

またコレクタウオール6は必要ない場合もあるので、?
型拡散9によりトランジスタのコレクタコンタクト9−
4とIL素子のエミッタコンタクト9−5も形成する。
Also, there are cases where Collector All 6 is not necessary.
The collector contact 9- of the transistor is formed by the type diffusion 9.
4 and an emitter contact 9-5 of the IL element are also formed.

l′M)シかる後に、シリコン酸化膜510210に必
要な箇所にコンタクト窓をあけて電極11を形成する。
1'M) After the process, contact windows are opened in the silicon oxide film 510210 at necessary locations and electrodes 11 are formed.

以上の方法によれば、I2L素子のペース直下部のN型
エピタキシャル層を高濃度で形成し、その上により低濃
度のN型エピタキシャル層を形成することができるため
に、大電流域及び小電流域で工2L素子の伝播遅延時間
を速くすることができ、さラニ、バイポーラトランジス
タの耐圧も確保できる。
According to the above method, it is possible to form a highly doped N-type epitaxial layer directly below the I2L element pace, and then form a lower-doped N-type epitaxial layer on top of it. The propagation delay time of the 2L element can be made faster in the region, and the withstand voltage of the bipolar transistor can also be ensured.

発明の効果 本発明によれば、新たに工程を増やすことなしに、I2
L素子の伝播遅延時間の高速化を達成する具体的な方法
を実現するもので、高速な工2Lと通常のバイポーラト
ランジスタとの一体化形成を実現することができる。
Effects of the Invention According to the present invention, I2
This method realizes a specific method of increasing the propagation delay time of the L element, and it is possible to realize the integrated formation of a high-speed process 2L and a normal bipolar transistor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜(6)はI2L素子とNPN)ランジス
タの従来法の製造工程順断面図、第2図(A)〜虞)は
本発明の一実施例の製造工程順断面図である。 1・・・・・・p型Si基板、2・・・・・・n+型埋
込層、3・・・・・・n型エピタキシャル層、3−1・
・・・・・高濃度n型エピタキシャル層、3−2・・・
・・・低濃度n型エピタキシャル層、4・・・・・・P
型分離拡散層、5−1.6−2・・・・・・n形層、6
・・・・・・n型コレクタウオール、7−1・・・・・
・P型工2L素子インジェクタ、7−2・・・・・・P
型I2L素子の縦型NPN)ランジスタのペース、8・
・・・・・バイポーラトランジスタのベース、9−1・
・・・・・バイポーラトランジスタのエミッタ、9−2
・・・・・・IL素子のコレクタ、9−3・・・・・・
IL素子のコレクタ、9−4.9−5・・・・・・n 
拡散層、10・・・・・・二酸化シリコン膜、11・・
・・・・電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第1図 第2図
Figures 1 (A) to (6) are cross-sectional views of an I2L element and an NPN transistor in the order of the manufacturing process according to the conventional method, and Figures 2 (A) to (6) are cross-sectional views of an embodiment of the present invention in the order of the manufacturing process. be. 1...p-type Si substrate, 2...n+ type buried layer, 3...n-type epitaxial layer, 3-1.
...High concentration n-type epitaxial layer, 3-2...
...Low concentration n-type epitaxial layer, 4...P
Type separation diffusion layer, 5-1.6-2...n-type layer, 6
・・・・・・N-type collector all, 7-1・・・・・・
・P-type 2L element injector, 7-2...P
Pace of vertical NPN) transistor of type I2L element, 8.
...base of bipolar transistor, 9-1.
...Emitter of bipolar transistor, 9-2
... Collector of IL element, 9-3 ...
Collector of IL element, 9-4.9-5...n
Diffusion layer, 10...Silicon dioxide film, 11...
····electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 一導電型を有する半導体基板上に反対導電型の埋込層を
選択的に形成し、この基板上に前記反対導電型で、まず
高濃度の半導体層を形成し、引き続き低濃度の半導体層
を形成する工程と、この半導体層を分離してI^2L素
子、バイポーラトランジスタ形成用の第1、第2の島領
域を形成する工程と、前記第1の島領域に前記I^2L
素子のインジェクタ及び縦型NPNトランジスタのベー
ス層を形成する工程と、前記第2の島領域に前記バイポ
ーラトランジスタのベースを前記I^2L素子のインジ
ェクタよりも浅く形成する工程と、前記縦型トランジス
タのベース、前記バイポーラトランジスタのベースにそ
れぞれ前記I^2L素子のコレクタ前記バイポーラトラ
ンジスタのエミッタを同時形成する工程とを備えたこと
を特徴とする半導体装置の製造方法。
A buried layer of an opposite conductivity type is selectively formed on a semiconductor substrate having one conductivity type, and a high concentration semiconductor layer of the opposite conductivity type is first formed on the substrate, followed by a low concentration semiconductor layer. a step of separating this semiconductor layer to form first and second island regions for forming an I^2L element and a bipolar transistor;
a step of forming an injector of the element and a base layer of the vertical NPN transistor; a step of forming the base of the bipolar transistor in the second island region to be shallower than the injector of the I^2L element; A method for manufacturing a semiconductor device, comprising the steps of simultaneously forming a base of the I^2L element and an emitter of the bipolar transistor on the base of the bipolar transistor, respectively.
JP59170690A 1984-08-16 1984-08-16 Manufacture of semiconductor device Granted JPS6148966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59170690A JPS6148966A (en) 1984-08-16 1984-08-16 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59170690A JPS6148966A (en) 1984-08-16 1984-08-16 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS6148966A true JPS6148966A (en) 1986-03-10
JPH0379870B2 JPH0379870B2 (en) 1991-12-20

Family

ID=15909586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59170690A Granted JPS6148966A (en) 1984-08-16 1984-08-16 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6148966A (en)

Also Published As

Publication number Publication date
JPH0379870B2 (en) 1991-12-20

Similar Documents

Publication Publication Date Title
US4484388A (en) Method for manufacturing semiconductor Bi-CMOS device
US5066602A (en) Method of making semiconductor ic including polar transistors
US4180827A (en) NPN/PNP Fabrication process with improved alignment
JPS61113270A (en) Based coupled transistor logic
JP3128808B2 (en) Semiconductor device
JP3443069B2 (en) Method for manufacturing semiconductor device
JPH0547913A (en) Manufacture of semiconductor device
JPS6148966A (en) Manufacture of semiconductor device
JPS6133261B2 (en)
JPH06236989A (en) Inverse n well cathode schottky transistor and manufacture thereof
JPS6060753A (en) Semiconductor device
JPS60123062A (en) Manufacture of semiconductor integrated circuit
JPS6347965A (en) Semiconductor integrated circuit
JPH0425711B2 (en)
JPH03203333A (en) Semiconductor device and manufacture thereof
JPS6149460A (en) Manufacture of semiconductor device
JPH0345549B2 (en)
JPH09223746A (en) Semiconductor device
JPS63164356A (en) Manufacture of semiconductor integrated circuit
JPS6132823B2 (en)
JPH0470781B2 (en)
JPH0138378B2 (en)
JPS6343357A (en) Semiconductor integrated circuit
KR19990002164A (en) Bipolar transistor and method of manufacturing the same
JPS61111575A (en) Semiconductor device