JPS6147223B2 - - Google Patents

Info

Publication number
JPS6147223B2
JPS6147223B2 JP57130913A JP13091382A JPS6147223B2 JP S6147223 B2 JPS6147223 B2 JP S6147223B2 JP 57130913 A JP57130913 A JP 57130913A JP 13091382 A JP13091382 A JP 13091382A JP S6147223 B2 JPS6147223 B2 JP S6147223B2
Authority
JP
Japan
Prior art keywords
film thickness
vapor deposition
thickness sensor
evaporation
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57130913A
Other languages
Japanese (ja)
Other versions
JPS5920467A (en
Inventor
Toshinori Urade
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13091382A priority Critical patent/JPS5920467A/en
Publication of JPS5920467A publication Critical patent/JPS5920467A/en
Publication of JPS6147223B2 publication Critical patent/JPS6147223B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/546Controlling the film thickness or evaporation rate using measurement on deposited material using crystal oscillators

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は蒸着装置に係り、さらに詳しくは蒸着
槽で蒸着膜を形成中にその膜厚を連続的に測定す
る蒸着膜厚センサの減衰器の改良に関する。
[Detailed Description of the Invention] (a) Technical Field of the Invention The present invention relates to a vapor deposition apparatus, and more particularly to an attenuator for a vapor deposition film thickness sensor that continuously measures the thickness of a vapor deposited film while it is being formed in a vapor deposition tank. Regarding the improvement of

(b) 技術の背景 情報産業の急速な発展に伴い各種表示装置の開
発が進められている中で、EL表示パネルやPDP
パネルの需要が著しく増加している。その製造過
程において例えばMgO,Al2O3、バイコールガラ
スなどの酸化物の蒸着膜を形成する工程が頻繁に
現れている。
(b) Technology background With the rapid development of the information industry, various display devices are being developed.
Demand for panels has increased significantly. In the manufacturing process, a step of forming a vapor-deposited film of oxides such as MgO, Al 2 O 3 and Vycor glass frequently appears.

量産的にこの蒸着膜をガラス板などの基板上に
形成するには、真空に排気した蒸着槽の中で複数
の該基板を回転枠に保持して順次所定位置に移動
するか、連続的に回転させ、この上に蒸着試料を
蒸着する方法がとられている。この際蒸着膜の膜
厚を管理することは当該製品の品質と信頼性を維
持する点より特に重要なことである。
In order to form this vapor-deposited film on a substrate such as a glass plate in mass production, a plurality of the substrates are held in a rotating frame in an evacuated vapor deposition tank and moved one after another to a predetermined position, or the substrates are continuously moved to a predetermined position. A method is used in which the evaporation sample is evaporated onto the rotating evaporator. At this time, controlling the thickness of the deposited film is particularly important from the standpoint of maintaining the quality and reliability of the product.

(c) 従来の技術と問題点 前記の酸化物を基板上に形成する量産的な方法
の一例を概念的に第1図の断面図に示す。
(c) Prior Art and Problems An example of a mass-production method for forming the above-mentioned oxide on a substrate is conceptually shown in the sectional view of FIG.

真空槽1は基台2を介して真空に排気され、該
真空槽1内に設けられた回転自在の回転枠3に、
複数個のガラス基板4が規則的に保持されてい
て、外部よりの機械的駆動で一蒸着工程毎に1組
の前記ガラス基板4を所定の蒸着位置に移動する
か連続的に回転させている。蒸着試料(MgOな
ど)は蒸着試料容器5(この場合は2個)に納め
られ、ヒータ6で予備加熱された基板4に蒸着さ
れる。蒸着試料はその表面を図に示してない電子
ビームガンより発射された電子ビームの衝撃によ
り蒸発しガラス基板4に蒸着膜を形成する。
The vacuum chamber 1 is evacuated to a vacuum via the base 2, and a rotatable rotating frame 3 provided within the vacuum chamber 1 has a
A plurality of glass substrates 4 are held regularly, and one set of glass substrates 4 is moved to a predetermined deposition position or continuously rotated for each deposition process by external mechanical drive. . A vapor deposition sample (MgO, etc.) is placed in vapor deposition sample containers 5 (two in this case), and is vapor deposited onto a substrate 4 that has been preheated by a heater 6 . The surface of the vapor-deposited sample is evaporated by the impact of an electron beam emitted from an electron beam gun (not shown), forming a vapor-deposited film on the glass substrate 4.

蒸着膜厚は真空槽1の上部に設けられた2個の
膜厚センサ7で常に測定され所定の膜厚が得られ
たら自動的に蒸着を停止するシステムになつてい
る。膜厚センサ7の前面には後述する回転式減衰
器8が設けられている。
The thickness of the deposited film is constantly measured by two film thickness sensors 7 provided at the top of the vacuum chamber 1, and the system automatically stops the deposition when a predetermined film thickness is obtained. A rotary attenuator 8, which will be described later, is provided in front of the film thickness sensor 7.

MgOやAl2O3のような酸化物の蒸着膜の膜厚セ
ンサには水晶板が用いられている。その動作原理
を次に述べよう。
A quartz plate is used as a film thickness sensor for vapor deposited films of oxides such as MgO and Al 2 O 3 . The operating principle will be described next.

周知のようにある適切な角度で切断した水晶は
その機械的特性で決まる一定の電気的固有発振周
波数fを有する。一般に結晶にはピエゾ効果があ
り、機械的エネルギーと電気的エネルギーとの間
にエネルギーのやりとりがある。特に物質(質
量)が結晶面上に加わると、前記固有発振周波数
が減少する特性がある。蒸着物の質量をM、水
晶発振子の機械的構造で決まる常数をKとする
と、水晶発振子の固有発振周波数との間に次の
関係がある。
As is well known, a crystal cut at a certain appropriate angle has a certain electric natural oscillation frequency f determined by its mechanical properties. Generally, crystals have a piezoelectric effect, and there is an exchange of energy between mechanical energy and electrical energy. In particular, when a substance (mass) is added to the crystal plane, the natural oscillation frequency decreases. When the mass of the deposit is M and the constant determined by the mechanical structure of the crystal oscillator is K, the following relationship exists between the mass and the natural oscillation frequency of the crystal oscillator.

=K/M (1) 従つて水晶板の固有発振周波数を測定するこ
とにより(1)式より水晶板に蒸着された蒸着膜の質
量、従つてその膜厚を算出することができる。
=K/M (1) Therefore, by measuring the natural oscillation frequency of the crystal plate, the mass of the vapor deposited film deposited on the crystal plate, and hence the film thickness, can be calculated from equation (1).

ところが膜厚センサ7の水晶板上の蒸着膜厚が
ある程度以上の厚さを越えると、蒸着層内にスト
レスを生じ水晶板との密着した部分の一部が剥離
するにいたる。その結果水晶発振子の固有発振周
波数は不安定になり膜厚センサの用をなさなく
なり該膜厚センサの寿命終止点とみなされる。
However, when the thickness of the vapor deposited film on the crystal plate of the film thickness sensor 7 exceeds a certain thickness, stress is generated in the vapor deposited layer, causing part of the portion in close contact with the crystal plate to peel off. As a result, the natural oscillation frequency of the crystal oscillator becomes unstable, and the film thickness sensor becomes useless and is considered to be at the end of its life.

それ故蒸着膜厚が厚い場合や蒸着膜形成作業を
多数回反復する場合は、膜厚センサの寿命を延ば
すために前記の減衰器を膜厚センサの前面に設け
る。これは一種のスリツトである。第1図の場合
はスリツトのある円板で、膜厚センサ7の水晶板
上に均一な分布で蒸着試料を蒸着させるために、
膜厚センサ7の前面で回転させる。該膜厚センサ
7の水晶板上に蒸着する蒸着試料の質量は基板1
上の質量より一定の比率即ちその遮蔽率だけ少な
くなり、それだけ該膜厚センサ7の寿命を延長す
ることが出来る。
Therefore, when the deposited film is thick or the deposited film formation operation is repeated many times, the attenuator is provided in front of the film thickness sensor in order to extend the life of the film thickness sensor. This is a kind of slit. In the case of FIG. 1, a disk with slits is used to deposit the sample on the crystal plate of the film thickness sensor 7 in a uniform distribution.
Rotate it in front of the film thickness sensor 7. The mass of the vapor deposition sample deposited on the crystal plate of the film thickness sensor 7 is equal to that of the substrate 1.
The mass is reduced by a certain ratio, that is, the shielding rate, and the life of the film thickness sensor 7 can be extended accordingly.

ところで、第1図の場合は減衰器8は大きな回
転スリツト板を有する上に、その回転機構には厖
大な歯車部9を含むので、蒸着の妨げにならぬよ
うに蒸着試料容器5と基板4との間の空間を避け
て真空槽1の斜め上方に設けてある。
By the way, in the case of FIG. 1, the attenuator 8 has a large rotating slit plate, and its rotating mechanism includes a huge gear part 9, so that the evaporation sample container 5 and the substrate 4 are arranged so as not to interfere with evaporation. It is provided diagonally above the vacuum chamber 1, avoiding the space between the two.

次に電子ビーム衝撃による酸化物の蒸発の方向
性について述べよう。第2図のa図は生常な蒸発
状態を示す概念図で、電子ビーム10により衝撃
された蒸着試料11の蒸発量の方向分布は矢印で
示すように大体コーサイン法則に従つている。し
かるにここに扱う酸化物などのように蒸発時の高
い粘性と表面張力を有する物質、あるいは昇華性
の物質の場合には、蒸着試料容器5内の蒸着試料
の表面には部分的に深い穴ができ易く、そのため
電子ビーム10による蒸着試料の蒸発量の方向分
布はb,c図に示すように一方に偏つてくる。こ
れは電子ビーム10をスイープさせて、その蒸着
試料の表面の衝撃点を色々調整してもなかなか避
け難い。以上の理由から蒸着試料容器5内の蒸着
試料11の表面が電子ビームの衝撃でその形を変
えるに伴い、該蒸着試料の蒸発方向分布が変るの
では、膜厚センサ7が検知する該膜厚センサ7の
水晶板上の蒸着試料の膜厚は必ずしも基板4上の
膜厚を代表するとは言い難く、膜厚センサ7の指
示値の信頼性が低くなるという問題がある。
Next, we will discuss the direction of evaporation of oxides due to electron beam bombardment. FIG. 2A is a conceptual diagram showing a normal evaporation state, and the directional distribution of the amount of evaporation of the evaporation sample 11 bombarded by the electron beam 10 roughly follows the cosine law, as shown by the arrows. However, in the case of substances that have high viscosity and surface tension during evaporation, such as the oxides treated here, or substances that sublimate, deep holes may be formed partially on the surface of the evaporation sample in the evaporation sample container 5. Therefore, the directional distribution of the amount of evaporation of the sample deposited by the electron beam 10 is biased to one side as shown in figures b and c. This is difficult to avoid even if the electron beam 10 is swept and the impact point on the surface of the evaporation sample is adjusted in various ways. For the above reasons, as the surface of the vapor deposition sample 11 in the vapor deposition sample container 5 changes its shape due to the impact of the electron beam, the evaporation direction distribution of the vapor deposition sample changes. It is difficult to say that the film thickness of the vapor deposition sample on the quartz plate of the sensor 7 is necessarily representative of the film thickness on the substrate 4, and there is a problem that the reliability of the indicated value of the film thickness sensor 7 becomes low.

(d) 発明の目的 本発明は前述の点に鑑みなされたもので、真空
槽内での酸化物などの電子ビーム衝撃による該蒸
着試料の蒸発分向分布の不安定に起因する膜厚セ
ンサの指示値とガラス基板1上の蒸着膜厚とのく
いちがいをできるだけ減少させて測定値の信頼性
を向上しようとするものである。
(d) Purpose of the Invention The present invention has been made in view of the above-mentioned points. The purpose is to reduce the discrepancy between the indicated value and the thickness of the deposited film on the glass substrate 1 as much as possible to improve the reliability of the measured value.

(e) 発明の構成 上記の発明の目的は、水晶発振子より構成され
た膜厚センサを蒸着試料容器の上方に配設し、且
つ該膜厚センサの前面において、往復運動をなす
スリツト部分と蒸着試料容器と被蒸着物体表面と
の間の蒸着空間部の外に設けられた該スリツト部
分を駆動する駆動部より構成された前記膜厚セン
サの減衰器を有することを特徴とする蒸着装置を
使用することにより容易に達成される。
(e) Structure of the Invention The object of the invention described above is to provide a film thickness sensor composed of a crystal oscillator above a vapor deposition sample container, and to provide a slit portion that reciprocates in front of the film thickness sensor. A vapor deposition apparatus characterized in that it has an attenuator for the film thickness sensor, which is constituted by a drive section that drives the slit section provided outside the vapor deposition space between the vapor deposition sample container and the surface of the object to be vapor deposited. This is easily achieved by using

(f) 発明の実施例 種々の実験の結果、蒸発源の真上方向の蒸発方
向分布は蒸着試料11の形の変化に余り関係なく
略一定であることを見出した。この事実を利用し
て膜厚センサ7を蒸着試料容器5の真上に設けれ
ばよいことに着目する。この場合には膜厚センサ
7は小型であるが、減衰器8の機構が大きいので
その遮蔽効果による基板4上の蒸着膜厚の分布不
均一が懸念される。これらの欠点を解消した本発
明の実施例につき、以下図面を参照して説明す
る。
(f) Embodiments of the Invention As a result of various experiments, it has been found that the evaporation direction distribution in the direction directly above the evaporation source is substantially constant regardless of changes in the shape of the evaporation sample 11. Taking advantage of this fact, attention is paid to the fact that the film thickness sensor 7 may be provided directly above the vapor deposition sample container 5. In this case, although the film thickness sensor 7 is small, the attenuator 8 has a large mechanism, so there is a concern that the thickness of the deposited film on the substrate 4 may be unevenly distributed due to its shielding effect. Embodiments of the present invention that eliminate these drawbacks will be described below with reference to the drawings.

第3図は本発明に基づく新しい減衰器を備えた
蒸着装置の構造を示す概念的な断面図である。
FIG. 3 is a conceptual cross-sectional view showing the structure of a vapor deposition apparatus equipped with a new attenuator based on the present invention.

図に見るように本発明においては膜厚センサ7
は2個ともそれぞれ蒸着試料容器5の真上に配設
してある。膜厚センサ7自体も蒸着試料容器5か
ら蒸発する蒸着試料の一部を妨げてガラス基板4
上の蒸着膜厚の不均一を招くことが懸念されるけ
れども、膜厚センサ7が小型であるのでその遮蔽
効果が少なく、従来の場合にガラス基板4の蒸発
源の真上の部分の膜厚が厚気味であつたのが修正
された形となつて、膜厚分布が平坦になり、却つ
てよい結果を得ている。
As shown in the figure, in the present invention, the film thickness sensor 7
Both are arranged directly above the vapor deposition sample container 5, respectively. The film thickness sensor 7 itself also prevents a part of the vapor deposition sample from evaporating from the vapor deposition sample container 5 and
Although there is a concern that the thickness of the vapor deposited film on the glass substrate 4 may become non-uniform, since the film thickness sensor 7 is small, its shielding effect is small, and in the conventional case, the film thickness of the portion directly above the evaporation source of the glass substrate 4 is The film was slightly thick, but the shape has been corrected, and the film thickness distribution has become flat, giving a rather good result.

問題は減衰器であるが、所定方向に往復自在な
スリツト部分13を導入した。これによりガラス
基板4上への蒸着試料の蒸着を妨げないように減
衰器12のスリツト部分13とその駆動部14を
離し、駆動部14はガラス基板4と蒸着試料容器
5との間の蒸着空間部の外に設け、スリツト部分
13のみ膜厚センサの前面に配置することが可能
になつた。
The problem is the attenuator, but a slit portion 13 that can reciprocate in a predetermined direction has been introduced. As a result, the slit portion 13 of the attenuator 12 and its driving section 14 are separated so as not to interfere with the deposition of the evaporation sample onto the glass substrate 4, and the driving section 14 is moved into the evaporation space between the glass substrate 4 and the evaporation sample container 5. This makes it possible to arrange only the slit portion 13 in front of the film thickness sensor.

図に見るようにスリツト部分13は所定の遮蔽
率を有する平板状の2部分よりなり、各々はそれ
ぞれの膜厚センサ7を遮蔽している。また両部分
は蒸着の妨げにならないよう細い輪状の連結部1
3Aで連結されている。
As shown in the figure, the slit portion 13 consists of two plate-shaped portions having a predetermined shielding rate, each of which shields its respective film thickness sensor 7. In addition, both parts have a thin ring-shaped connecting part 1 so as not to interfere with the vapor deposition.
Connected by 3A.

第4図は前記スリツト部分13と駆動部14の
構造の一実施例を示す斜視図である。駆動部14
のリンク機構15は、真空槽1の外部より駆動回
転される回転軸16により駆動され、スリツト部
分13に図示の矢印で示す方向の往復運動を与え
る。スリツト部分13の一端はリンク機構15に
連結され、他端は遊動支持部17で往復自在に支
持されている。
FIG. 4 is a perspective view showing an embodiment of the structure of the slit portion 13 and the drive portion 14. Drive section 14
The link mechanism 15 is driven by a rotating shaft 16 that is driven and rotated from outside the vacuum chamber 1, and gives the slit portion 13 reciprocating motion in the direction shown by the arrow in the figure. One end of the slit portion 13 is connected to the link mechanism 15, and the other end is supported by a floating support portion 17 in a reciprocating manner.

スリツト部分13は上記往復運動と直角方向の
粗い矩形の複数のスリツト群18を有する。スリ
ツト部分13には細かいメツシユ構造が考えられ
るが、この形式は蒸着試料の蒸着により目詰りを
起し易い欠点があり適当でない。
The slit portion 13 has a plurality of rough rectangular slit groups 18 in a direction perpendicular to the reciprocating motion. Although a fine mesh structure is conceivable for the slit portion 13, this type is unsuitable because it has the drawback of being easily clogged by the deposition of the deposition sample.

以上の説明においては、蒸発源を2個備えた場
合であるが、勿論1個でも3個以上でも差支えは
ないし、蒸着試料を蒸着すべき基板の材料の種類
の如何を問うものでもない。
In the above description, two evaporation sources are provided, but of course there is no problem with one or three or more evaporation sources, and the type of material of the substrate on which the evaporation sample is to be evaporated does not matter.

またスリツト部分13の構造も往復運動を伴う
平板形のものとしたが、第5図に示すようにスリ
ツト列を有し運動軸16を中心に自動車のワイパ
状の扇形往復運動を伴う構造のスリツト部分18
でもよい。
In addition, the structure of the slit portion 13 is a flat plate with reciprocating motion, but as shown in FIG. part 18
But that's fine.

さらに上記の説明では本発明を真空中での電子
ビーム衝撃による蒸着工程に適用した場合につい
て述べたが、スパツタリング法、イオンビーム法
あるいは蒸着試料を加熱蒸発させる熱蒸着法の場
合についても同様に適用し得るのである。
Furthermore, in the above explanation, the present invention was applied to a vapor deposition process using electron beam bombardment in a vacuum, but it is also applicable to sputtering, ion beam, or thermal evaporation methods in which a deposition sample is heated and evaporated. It is possible.

(g) 発明の効果 以上の説明から明らかなように、蒸着試料を蒸
発させてある物体表面に蒸着膜を形成する場合、
本発明による蒸着装置を使用すると、正確に測定
し管理された信頼性の高い蒸着膜が形成出来ると
いう効果がある。
(g) Effects of the invention As is clear from the above explanation, when a vapor deposition film is formed on the surface of an object by vaporizing a vapor deposition sample,
Use of the vapor deposition apparatus according to the present invention has the advantage that a highly reliable vapor deposition film that is accurately measured and controlled can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の量産用の蒸着装置の構造を、第
3図は本発明による新しい構造の膜厚センサの減
衰器を備えた蒸着装置の構造をそれぞれ概念的に
示す正面断面図と側面断面図、第2図は電子ビー
ムの衝撃による蒸着試料の蒸発方向分布を示す説
明図、第4図は本発明による新しい減衰器の構造
を示す斜視図、第5図は第4図に示した減衰器の
構造の一変形を示す斜視図である。 1は真空槽、2は基台、3は回転枠、4はガラ
ス基板、5は蒸着試料容器、6はヒータ、7は膜
厚センサ、8,12は減衰器、9は歯車部、10
は電子ビーム、11は蒸着試料、13はスリツト
部分、14は駆動部、15はリンク機構、16は
回転軸、17は遊動支持部、18はスリツト群、
Fは電子ビーム源をそれぞれ示す。
Fig. 1 shows the structure of a conventional vapor deposition apparatus for mass production, and Fig. 3 conceptually shows the structure of a vapor deposition apparatus equipped with an attenuator for a film thickness sensor with a new structure according to the present invention. Figure 2 is an explanatory diagram showing the evaporation direction distribution of the deposited sample due to the impact of the electron beam, Figure 4 is a perspective view showing the structure of the new attenuator according to the present invention, and Figure 5 is the attenuation shown in Figure 4. It is a perspective view showing a modification of the structure of the vessel. 1 is a vacuum chamber, 2 is a base, 3 is a rotating frame, 4 is a glass substrate, 5 is a vapor deposition sample container, 6 is a heater, 7 is a film thickness sensor, 8 and 12 are attenuators, 9 is a gear unit, 10
11 is an electron beam, 11 is a vapor deposition sample, 13 is a slit portion, 14 is a driving portion, 15 is a link mechanism, 16 is a rotating shaft, 17 is a floating support portion, 18 is a group of slits,
F indicates an electron beam source, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 水晶発振子より構成された膜厚センサを備え
てなる蒸着装置において、前記膜厚センサを蒸着
試料容器の上方に前記蒸着試料容器に直接対向し
て配設し、且つ該膜厚センサの全面において往復
運動をなすスリツト部分と蒸着試料容器と被蒸着
物体表面との間の蒸着空間部の外に設けられた該
スリツト部分を駆動する駆動部より構成された前
記膜厚センサの減衰器を有することを特徴とする
蒸着装置。
1. In a vapor deposition apparatus equipped with a film thickness sensor composed of a crystal oscillator, the film thickness sensor is disposed above the vapor deposition sample container directly facing the vapor deposition sample container, and the entire surface of the film thickness sensor an attenuator for the film thickness sensor, comprising a slit portion that makes reciprocating motion in the slit portion and a drive portion that drives the slit portion provided outside the evaporation space between the evaporation sample container and the surface of the object to be evaporated; A vapor deposition apparatus characterized by:
JP13091382A 1982-07-26 1982-07-26 Vapor deposition device Granted JPS5920467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13091382A JPS5920467A (en) 1982-07-26 1982-07-26 Vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13091382A JPS5920467A (en) 1982-07-26 1982-07-26 Vapor deposition device

Publications (2)

Publication Number Publication Date
JPS5920467A JPS5920467A (en) 1984-02-02
JPS6147223B2 true JPS6147223B2 (en) 1986-10-17

Family

ID=15045661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13091382A Granted JPS5920467A (en) 1982-07-26 1982-07-26 Vapor deposition device

Country Status (1)

Country Link
JP (1) JPS5920467A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5734079B2 (en) * 2011-04-28 2015-06-10 株式会社アルバック Electron beam evaporation system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865845U (en) * 1971-11-30 1973-08-21
JPS53106759U (en) * 1977-01-31 1978-08-28

Also Published As

Publication number Publication date
JPS5920467A (en) 1984-02-02

Similar Documents

Publication Publication Date Title
US6475557B1 (en) Method for manufacturing optical filter
KR20030024824A (en) Method and Device for Forming Film
JP2001108832A5 (en)
JPH11222670A (en) Film thickness monitor and film forming device using this
JPS6147223B2 (en)
JP4843873B2 (en) Oblique deposition apparatus and oblique deposition method
US3752691A (en) Method of vacuum evaporation
JPS5619030A (en) Production of liquid crystal display element
JPH04221061A (en) Thin film forming device
JP2548373B2 (en) Liquid crystal alignment film manufacturing method and manufacturing apparatus
JP2006070330A (en) Thin film vapor deposition system
JP3081844B2 (en) Optical filter manufacturing method
JP4316265B2 (en) Manufacturing method of liquid crystal display panel
JPH0151814B2 (en)
JP2752409B2 (en) Vacuum deposition equipment
JP3979745B2 (en) Film forming apparatus and thin film forming method
JP2002365639A (en) Apparatus for manufacturing alignment layer of liquid crystal display element and method for manufacturing alignment layer of liquid crystal display element
JP2548387B2 (en) Liquid crystal alignment film manufacturing equipment
JPS63297549A (en) Vacuum deposition device
JP4193951B2 (en) Method of depositing an antireflection film on an optical substrate
JPH0792569B2 (en) Liquid crystal alignment layer deposition method and apparatus
JPH0373630B2 (en)
JPH03146659A (en) Method and device for vacuum vapor deposition
JPH05152878A (en) Electrode film forming device for crystal oscillator
JPH07244285A (en) Production of liquid crystal oriented film, liquid crystal element and light-modulating element