JP2001108832A5 - - Google Patents

Download PDF

Info

Publication number
JP2001108832A5
JP2001108832A5 JP1999288430A JP28843099A JP2001108832A5 JP 2001108832 A5 JP2001108832 A5 JP 2001108832A5 JP 1999288430 A JP1999288430 A JP 1999288430A JP 28843099 A JP28843099 A JP 28843099A JP 2001108832 A5 JP2001108832 A5 JP 2001108832A5
Authority
JP
Japan
Prior art keywords
film
thin film
birefringent element
substrate
obliquely deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1999288430A
Other languages
Japanese (ja)
Other versions
JP2001108832A (en
JP4009044B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP28843099A priority Critical patent/JP4009044B2/en
Priority claimed from JP28843099A external-priority patent/JP4009044B2/en
Publication of JP2001108832A publication Critical patent/JP2001108832A/en
Publication of JP2001108832A5 publication Critical patent/JP2001108832A5/ja
Application granted granted Critical
Publication of JP4009044B2 publication Critical patent/JP4009044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【特許請求の範囲】
【請求項1】
基板上に斜め方向から蒸発物質を入射させて形成した斜め蒸着膜を有する薄膜複屈折素子であって、
上記斜め蒸着膜は膜厚及び複屈折量が制御された単層膜構造の蒸着膜であることを特徴とする薄膜複屈折素子。
【請求項2】
基板上に斜め方向から蒸発物質を入射させて形成した斜め蒸着膜を有する薄膜複屈折素子であって、
上記斜め蒸着膜は膜厚及び複屈折量が制御された単層膜構造の蒸着膜であり、基板表面と上記斜め蒸着膜の間もしくは上記斜め蒸着膜上のいずれか一方もしくは両方に、密着性、耐環境性及び光学特性を向上させることを目的とする薄膜を有することを特徴とする薄膜複屈折素子。
【請求項3】
請求項1または2記載の薄膜複屈折素子において、
上記斜め蒸着膜もしくは斜め蒸着膜上の薄膜に熱処理(アニール)を施して膜の状態を改質し、環境変化による複屈折量を始めとする光学特性の変動を抑えたことを特徴とする薄膜複屈折素子。
【請求項4】
請求項1記載の薄膜複屈折素子あるいは請求項2記載の薄膜複屈折素子あるいは請求項3記載の薄膜複屈折素子を、2個以上貼り合わせて構成したことを特徴とする薄膜複屈折素子。
【請求項5】
請求項1記載の薄膜複屈折素子を作製する際の薄膜複屈折素子の製造方法であって、
1以上の基板を保持した基板ホルダーを自転運動と公転運動からなる遊星回転機構で蒸着装置内を回転させ、上記基板ホルダーと蒸発源の間の基板ホルダー近傍に開口部を有する遮蔽板を配置した状態で、蒸発物質を蒸発させる蒸発源と蒸発装置内にプラズマ状態を形成するプラズマ源もしくはイオン源を用いて蒸発物質をイオン化して基板方向に飛翔させ、上記遮蔽板の開口部を介して基板上に斜め方向から蒸発物質を入射させて斜め蒸着膜を形成することを特徴とする薄膜複屈折素子の製造方法。
【請求項6】
請求項1記載の薄膜複屈折素子を作製する際の薄膜複屈折素子の製造方法であって、
1以上の基板を公転機構で保持し、該公転機構の公転運動により基板を蒸着装置内で回転させた状態で、蒸着物質を蒸発させる蒸発源と蒸発装置内にプラズマ状態を形成するプラズマ源もしくはイオン源を用いて蒸発物質をイオン化して基板方向に飛翔させ、基板上に斜め方向から蒸発物質を入射させて斜め蒸着膜を形成することを特徴とする薄膜複屈折素子の製造方法。
【請求項7】
請求項5記載の薄膜複屈折素子の製造方法において、斜め方向からの蒸着により単層膜構造の斜め蒸着膜を形成すると共に、基板内において上記斜め蒸着膜の膜厚及び複屈折量を均一な状態に制御することを特徴とする薄膜複屈折素子の製造方法。
【請求項8】
請求項6記載の薄膜複屈折素子の製造方法において、斜め方向からの蒸着により単層膜構造の斜め蒸着膜を形成すると共に、その斜め蒸着膜の基板内の位置と複屈折量の関係が勾配を持って分布するように制御することを特徴とする薄膜複屈折素子の製造方法。
【請求項9】
請求項5〜8のいずれか一つに記載の薄膜複屈折素子の製造方法において、基板上に目的とする膜厚及び/または複屈折量の蒸着膜を形成するために、蒸着装置内にダミー基板を配置し、さらに蒸着装置外部に監視窓で接する投光部と受光部からなる光学式膜厚計及び/または該光学式膜厚計と同等の光学系の投光部と受光部の途中に偏光子を追加した構成の複屈折量測定器を用いて、加工中のダミー基板もしくは基板の透過光量もしくは反射光量の変化を監視することにより、斜め蒸着中の蒸着膜の光学的膜厚及び/または複屈折量を監視し、所望の膜厚及び/または複屈折量と成るよう蒸着条件及び時間を制御することを特徴とする薄膜複屈折素子の製造方法。
【請求項10】
請求項2記載の薄膜複屈折素子を作製する際の薄膜複屈折素子の製造方法であって、
基板上の斜め蒸着膜は請求項5〜9のいずれか一つに記載された製造方法で形成し、その斜め蒸着膜を形成する前の基板表面、もしくは斜め蒸着膜形成後の斜め蒸着膜上のいずれか一方もしくは両方に、密着性、耐環境性及び光学特性を向上させることを目的とする薄膜を蒸着膜もしくは塗膜により形成することを特徴とする薄膜複屈折素子の製造方法。
【請求項11】
請求項3記載の薄膜複屈折素子を作製する際の薄膜複屈折素子の製造方法であって、
請求項5〜9のいずれか一つに記載された製造方法で基板上に斜め蒸着膜を形成した薄膜複屈折素子あるいは請求項10に記載された製造方法で形成した薄膜複屈折素子の斜め蒸着膜もしくは斜め蒸着膜上の薄膜に、レーザー光を走査しながら照射してレーザー熱処理(レーザーアニール)を行い膜の状態を改質し、環境変化による複屈折量を始めとする光学特性の変動を抑えることを特徴とする薄膜複屈折素子の製造方法。
【請求項12】
請求項4記載の薄膜複屈折素子を作製する際の薄膜複屈折素子の製造方法であって、
請求項5〜9のいずれか一つに記載された製造方法で基板上に斜め蒸着膜を形成した薄膜複屈折素子あるいは請求項10に記載された製造方法で形成した薄膜複屈折素子あるいは請求項11に記載された製造方法で形成した薄膜複屈折素子を、2個以上貼り合わせることを特徴とする薄膜複屈折素子の製造方法。
【請求項13】
請求項1〜4のいずれか一つに記載の薄膜複屈折素子の斜め蒸着膜の形成に用いられる薄膜複屈折素子の製造装置であって、
蒸発物質を蒸発させる蒸発源とプラズマ状態を形成するためのプラズマ源もしくはイオン源を有する蒸着装置と、その蒸着装置内において1以上の基板を保持する基板ホルダーと、該基板ホルダーを自転運動と公転運動とにより上記蒸着装置内で回転させる遊星回転機構と、上記基板ホルダーと蒸発源の間の基板ホルダー近傍に配置され蒸発物質を通過させうる開口部を有する遮蔽板とを備え、上記蒸発源とプラズマ源もしくはイオン源を用いて蒸発物質をイオン化して基板方向に飛翔させ、上記遮蔽板の開口部を介して基板上に斜め方向から蒸発物質を入射させて斜め蒸着膜を形成すること特徴とする薄膜複屈折素子の製造装置。
【請求項14】
請求項1〜4のいずれか一つに記載の薄膜複屈折素子の斜め蒸着膜の形成に用いられる薄膜複屈折素子の製造装置であって、
蒸発物質を蒸発させる蒸発源とプラズマ状態を形成するためのプラズマ源もしくはイオン源を有する蒸着装置と、その蒸着装置内において1以上の基板を保持し該基板を公転運動で蒸着装置内を回転させる公転機構とを備え、上記蒸発源とプラズマ源もしくはイオン源を用いて蒸発物質をイオン化して基板方向に飛翔させ、基板上に斜め方向から蒸発物質を入射させて斜め蒸着膜を形成することを特徴とする薄膜複屈折素子の製造装置。
【請求項15】
請求項13または14記載の薄膜複屈折素子の製造装置において、
蒸着装置の外部に設けられ監視窓で接する投光部と受光部からなる光学式膜厚計及び/または該光学式膜厚計と同等の光学系の投光部と受光部の途中に偏光子を追加した複屈折量測定器を備え、上記光学式膜厚計及び/または複屈折量測定器を用いて、加工中の基板の透過光量もしくは反射光量の変化を監視することにより、斜め蒸着中の蒸着膜の光学的膜厚及び/または複屈折量を監視し、所望の膜厚及び/または複屈折量と成るよう蒸着条件及び時間を制御することを特徴とする薄膜複屈折素子の製造装置。
[Claims]
(1)
A thin film birefringent element having an obliquely deposited film formed by allowing an evaporating substance to enter the substrate from an oblique direction,
The obliquely deposited film is a deposited film having a single-layer structure in which the film thickness and the amount of birefringence are controlled.
(2)
A thin film birefringent element having an obliquely deposited film formed by allowing an evaporating substance to enter the substrate from an oblique direction,
The obliquely deposited film is a deposited film having a single-layer film structure in which the film thickness and the amount of birefringence are controlled, and has an adhesive property between the substrate surface and the obliquely deposited film or on one or both of the obliquely deposited films. And a thin film birefringent element having a thin film for improving environmental resistance and optical characteristics.
(3)
The thin-film birefringent element according to claim 1 or 2,
A thin film characterized in that heat treatment (annealing) is applied to the obliquely deposited film or the thin film on the obliquely deposited film to modify the state of the film, thereby suppressing fluctuations in optical characteristics such as birefringence due to environmental changes. Birefringent element.
(4)
A thin-film birefringent element comprising two or more thin-film birefringent elements according to claim 1 or two or more thin-film birefringent elements according to claim 3.
(5)
A method for producing a thin film birefringent element when producing the thin film birefringent element according to claim 1,
A substrate holder holding one or more substrates was rotated in a vapor deposition apparatus by a planetary rotation mechanism consisting of rotation and orbital motion, and a shielding plate having an opening was disposed near the substrate holder between the substrate holder and the evaporation source. In this state, the evaporating substance is ionized using an evaporation source for evaporating the evaporating substance and a plasma source or an ion source for forming a plasma state in the evaporator, and is made to fly toward the substrate. A method for manufacturing a thin film birefringent element, comprising forming an obliquely deposited film by injecting an evaporating substance from above in an oblique direction.
6.
A method for producing a thin film birefringent element when producing the thin film birefringent element according to claim 1,
One or more substrates are held by a revolving mechanism, and in a state where the substrate is rotated in the evaporating apparatus by the revolving motion of the orbiting mechanism, an evaporation source for evaporating a deposition material and a plasma source for forming a plasma state in the evaporating apparatus or A method for manufacturing a thin-film birefringent element, comprising ionizing an evaporating substance using an ion source, causing the substance to fly toward a substrate, and causing the evaporating substance to enter the substrate from an oblique direction to form an obliquely deposited film.
7.
6. The method for manufacturing a thin film birefringent element according to claim 5, wherein the obliquely deposited film having a single-layer film structure is formed by evaporation from an oblique direction, and the thickness and the amount of birefringence of the obliquely deposited film are uniform in a substrate. A method for producing a thin film birefringent element, characterized in that the state is controlled.
Claim 8.
7. The method for manufacturing a thin film birefringent element according to claim 6, wherein the obliquely deposited film having a single-layer structure is formed by evaporation from an oblique direction, and the relationship between the position of the obliquely deposited film in the substrate and the amount of birefringence is a gradient. A method for manufacturing a thin film birefringent element, characterized in that the element is controlled so as to be distributed with a difference.
9.
The method for manufacturing a thin film birefringent element according to any one of claims 5 to 8, wherein a dummy film is formed in a vapor deposition apparatus to form a vapor deposition film having a target film thickness and / or birefringence amount on a substrate. An optical film thickness meter composed of a light projecting unit and a light receiving unit that is placed on a substrate and is in contact with the outside of the vapor deposition apparatus through a monitoring window, and / or in the middle of a light projecting unit and a light receiving unit of an optical system equivalent to the optical film thickness meter By using a birefringence measuring instrument with a configuration in which a polarizer is added to the substrate, monitoring the change in the amount of transmitted light or reflected light of the dummy substrate or the substrate being processed, the optical film thickness of the deposited film during oblique deposition and And / or monitoring the amount of birefringence, and controlling the deposition conditions and time so as to achieve a desired film thickness and / or amount of birefringence.
10.
A method for producing a thin film birefringent element when producing the thin film birefringent element according to claim 2,
The obliquely deposited film on the substrate is formed by the manufacturing method according to any one of claims 5 to 9, and on the substrate surface before forming the obliquely deposited film or on the obliquely deposited film after forming the obliquely deposited film. A method for producing a thin film birefringent element, wherein a thin film for improving adhesion, environmental resistance and optical properties is formed on one or both of them by a vapor deposition film or a coating film.
11.
A method for producing a thin film birefringent element when producing the thin film birefringent element according to claim 3,
An oblique deposition of a thin film birefringent element having an obliquely deposited film formed on a substrate by the manufacturing method according to any one of claims 5 to 9, or a thin film birefringent element formed by a manufacturing method according to claim 10. Irradiating the film or the thin film on the obliquely deposited film while scanning it with laser light to perform laser heat treatment (laser annealing) to modify the state of the film and reduce fluctuations in optical characteristics such as birefringence due to environmental changes. A method of manufacturing a thin film birefringent element, characterized by suppressing.
12.
A method for producing a thin film birefringent element when producing the thin film birefringent element according to claim 4,
A thin film birefringent element formed by forming an obliquely deposited film on a substrate by the manufacturing method according to any one of claims 5 to 9, or a thin film birefringent element formed by a manufacturing method according to claim 10. a thin film birefringent element formed using the described manufacturing method 11, the method of manufacturing the thin film birefringent element, characterized in that the combining Ri stuck on two or more.
Claim 13
An apparatus for manufacturing a thin film birefringent element used for forming an obliquely deposited film of the thin film birefringent element according to any one of claims 1 to 4,
A vapor deposition apparatus having an evaporation source for evaporating the vaporized substance and a plasma source or an ion source for forming a plasma state, a substrate holder for holding at least one substrate in the vapor deposition apparatus, and rotating and revolving the substrate holder. A planetary rotation mechanism that rotates in the vapor deposition device by movement, and a shielding plate that is disposed near the substrate holder between the substrate holder and the evaporation source and that has an opening through which evaporable substances can pass, and the evaporation source The method is characterized in that the vaporized substance is ionized by using a plasma source or an ion source, and is made to fly toward the substrate, and the vaporized substance is incident on the substrate from an oblique direction through the opening of the shielding plate to form an obliquely deposited film. For manufacturing thin film birefringent elements.
14.
An apparatus for manufacturing a thin film birefringent element used for forming an obliquely deposited film of the thin film birefringent element according to any one of claims 1 to 4,
A vapor deposition apparatus having an evaporation source for evaporating an evaporating substance and a plasma source or an ion source for forming a plasma state, holding one or more substrates in the vapor deposition apparatus, and rotating the substrates in a revolving motion in the vapor deposition apparatus A revolving mechanism, ionizing the vaporized material using the above-mentioned evaporation source and a plasma source or an ion source to fly toward the substrate, and incident the vaporized material on the substrate from an oblique direction to form an obliquely deposited film. Characteristic equipment for manufacturing thin film birefringent elements.
15.
The apparatus for manufacturing a thin film birefringent element according to claim 13 or 14,
An optical film thickness meter comprising a light projecting portion and a light receiving portion provided outside the vapor deposition device and in contact with a monitoring window, and / or a polarizer in the middle of the light projecting portion and the light receiving portion of an optical system equivalent to the optical film thickness meter. By adding a birefringence measuring device to which is added, and observing a change in the transmitted light amount or reflected light amount of the substrate being processed by using the optical film thickness meter and / or the birefringence amount measuring device, oblique deposition is performed. An apparatus for monitoring the optical film thickness and / or the amount of birefringence of a vapor-deposited film, and controlling the vapor deposition conditions and time so as to obtain a desired film thickness and / or the amount of birefringence. .

請求項10に係る発明は、請求項2記載の薄膜複屈折素子を作製する際の薄膜複屈折素子の製造方法であって、基板上の斜め蒸着膜は請求項5〜9のいずれか一つに記載された製造方法で形成し、その斜め蒸着膜を形成する前の基板表面、もしくは斜め蒸着膜形成後の斜め蒸着膜上のいずれか一方もしくは両方に、密着性、耐環境性及び光学特性を向上させることを目的とする薄膜(アンダーコート膜またはオーバーコート膜)を蒸着膜もしくは塗膜により形成することを特徴としており、密着性、耐環境性及び光学特性が向上された薄膜複屈折素子を作製することが可能となる。
また、請求項11に係る発明は、請求項3記載の薄膜複屈折素子を作製する際の薄膜複屈折素子の製造方法であって、請求項5〜9のいずれか一つに記載された製造方法で基板上に斜め蒸着膜を形成した薄膜複屈折素子あるいは請求項10に記載された製造方法で形成した薄膜複屈折素子の斜め蒸着膜もしくは斜め蒸着膜上の薄膜に、レーザー光を走査しながら照射してレーザー熱処理(レーザーアニール)を行い膜の状態を改質し、環境変化による複屈折量を始めとする光学特性の変動を抑えることを特徴としており、密着性、耐環境性、光学特性及びその安定性が向上された薄膜複屈折素子を作製することが可能となる。
さらにまた、請求項12に係る発明は、請求項4記載の薄膜複屈折素子を作製する際の薄膜複屈折素子の製造方法であって、請求項5〜9のいずれか一つに記載された製造方法で基板上に斜め蒸着膜を形成した薄膜複屈折素子あるいは請求項10に記載された製造方法で形成した薄膜複屈折素子あるいは請求項11に記載された製造方法で形成した薄膜複屈折素子を、2個以上貼り合わせることを特徴としており、密着性、耐環境性、光学特性及びその安定性がさらに向上された薄膜複屈折素子を作製することが可能となる。

The invention according to claim 10 is a method for producing a thin film birefringent element when producing the thin film birefringent element according to claim 2, wherein the obliquely deposited film on the substrate is any one of claims 5 to 9 Formed on the substrate surface before forming the obliquely deposited film, or on one or both of the obliquely deposited films after the obliquely deposited film is formed, adhesion, environmental resistance and optical characteristics A thin film birefringent element characterized by forming a thin film (undercoat film or overcoat film) with the purpose of improving the adhesion, environmental resistance, and optical characteristics by forming a thin film (undercoat film or overcoat film) by a vapor deposition film or a coating film. Can be produced.
The invention according to claim 11 is a method for producing a thin film birefringent element when producing the thin film birefringent element according to claim 3, wherein the production method according to any one of claims 5 to 9 is provided. A laser beam is scanned on a thin film birefringent element having an obliquely deposited film formed on a substrate by the method or an obliquely deposited film of the thin film birefringent element formed by the manufacturing method according to claim 10 or a thin film on the obliquely deposited film. It is characterized by laser irradiation (laser annealing) to modify the state of the film and suppress fluctuations in optical characteristics such as birefringence due to environmental changes. It is possible to produce a thin film birefringent element having improved characteristics and stability.
Furthermore, the invention according to claim 12 is a method for manufacturing a thin film birefringent element when producing the thin film birefringent element according to claim 4, and is described in any one of claims 5 to 9. A thin film birefringent element formed by forming a diagonally deposited film on a substrate by a manufacturing method, a thin film birefringent element formed by a manufacturing method according to claim 10, or a thin film birefringent element formed by a manufacturing method according to claim 11. and is characterized by combining Ri stuck on two or more, adhesion, environmental resistance, it is possible to manufacture the optical characteristics and its stability was further improved thin film birefringent element.

JP28843099A 1999-10-08 1999-10-08 Thin-film birefringent element and method and apparatus for manufacturing the same Expired - Fee Related JP4009044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28843099A JP4009044B2 (en) 1999-10-08 1999-10-08 Thin-film birefringent element and method and apparatus for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28843099A JP4009044B2 (en) 1999-10-08 1999-10-08 Thin-film birefringent element and method and apparatus for manufacturing the same

Publications (3)

Publication Number Publication Date
JP2001108832A JP2001108832A (en) 2001-04-20
JP2001108832A5 true JP2001108832A5 (en) 2006-11-24
JP4009044B2 JP4009044B2 (en) 2007-11-14

Family

ID=17730123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28843099A Expired - Fee Related JP4009044B2 (en) 1999-10-08 1999-10-08 Thin-film birefringent element and method and apparatus for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4009044B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003248124A1 (en) * 2003-07-25 2005-02-14 Fujitsu Limited Optical filter, imager, and method for manufacturing optical filter
JP2007025572A (en) * 2005-07-21 2007-02-01 Fujifilm Holdings Corp Polarization beam splitter and reflection type liquid crystal projector
CN100413995C (en) * 2005-10-27 2008-08-27 中山大学 Optical film plating polarization spectrum monitoring system
US8094270B2 (en) * 2005-12-06 2012-01-10 Jds Uniphase Corporation Thin-film optical retarders
JP2009075459A (en) 2007-09-21 2009-04-09 Fujifilm Corp Method for manufacturing biaxial birefringent material, biaxial birefringent material and liquid crystal projector
JP2009161843A (en) * 2008-01-10 2009-07-23 Fujinon Corp Work supporting member, optical element, phase difference element, and polarization beam splitter
JP2012008363A (en) * 2010-06-25 2012-01-12 Sony Chemical & Information Device Corp Method for manufacturing wavelength plate
JP5318079B2 (en) * 2010-12-08 2013-10-16 富士フイルム株式会社 Method for producing biaxial birefringent body
JP6105849B2 (en) 2011-05-16 2017-03-29 デクセリアルズ株式会社 Phase difference element
JP2014149316A (en) * 2011-06-02 2014-08-21 Asahi Glass Co Ltd Method for manufacturing retardation plate and retardation plate
CN113488603B (en) * 2021-07-07 2023-08-25 业成科技(成都)有限公司 Method for manufacturing optical display device
CN113337802A (en) * 2021-07-14 2021-09-03 苏州佑伦真空设备科技有限公司 Window without dead angle

Similar Documents

Publication Publication Date Title
JP2001108832A5 (en)
JP2742631B2 (en) Manufacturing method of amorphous magnetic film
US5501911A (en) Copper crystal film coated organic substrate
JP2001108832A (en) Thin film birefringence element, method and device for manufacturing it
JP2010095745A (en) Film-forming method and film-forming apparatus
JPH11222670A (en) Film thickness monitor and film forming device using this
WO2004042110A1 (en) Method of forming film on substrate
JP4555638B2 (en) Thin film deposition equipment
JPS6115964A (en) Vacuum deposition device
JP3439993B2 (en) Magnetron sputtering equipment
JP2009007651A (en) Method of film-coating neutral-density filter, apparatus for forming neutral-density filter, neutral-density filter using the same, and image pick-up light quantity diaphragm device
KR102579090B1 (en) Ion Beam Sputtering Apparatus for Manufacturing a Wire Grid Polarizer
JP4396885B2 (en) Magnetron sputtering equipment
JP2890686B2 (en) Laser sputtering equipment
JPH0151814B2 (en)
JP3227768B2 (en) Method for controlling crystal orientation of copper thin film
JP2756309B2 (en) Laser PVD equipment
JPH01247570A (en) Formation of film of multicomponent substance by beam sputtering
JPH02294472A (en) Vacuum deposition device
KR20050109766A (en) Apparatus for depositing having curved surface target
JP2001115259A (en) Magnetron sputtering system
JPS6130026B2 (en)
JPH03274257A (en) Method and apparatus for producing thin oxide film
JPS63227769A (en) Method and device for forming thin film
JPS6338425B2 (en)