JPH03146659A - Method and device for vacuum vapor deposition - Google Patents

Method and device for vacuum vapor deposition

Info

Publication number
JPH03146659A
JPH03146659A JP28561689A JP28561689A JPH03146659A JP H03146659 A JPH03146659 A JP H03146659A JP 28561689 A JP28561689 A JP 28561689A JP 28561689 A JP28561689 A JP 28561689A JP H03146659 A JPH03146659 A JP H03146659A
Authority
JP
Japan
Prior art keywords
substrate
sample
molecular beam
electron gun
tilting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28561689A
Other languages
Japanese (ja)
Inventor
Kenichi Aketagawa
明田川 賢一
Shunichi Murakami
俊一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP28561689A priority Critical patent/JPH03146659A/en
Publication of JPH03146659A publication Critical patent/JPH03146659A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To lessen the change in the intensity distribution of the molecular beam by gouging of an evaporating sample by an electron gun by tilting the evaporating sample toward a filament side as the molecular beam intensity detected on the filament side of an electron gun type evaporating source decreases. CONSTITUTION:After the inside of a vacuum vessel is evacuated to a vacuum, the electron gun type evaporating source 1 is operated and the evaporating sample 9 is irradiated with the electron beam to form the thin film of the sample 9 on the surface of a substrate 17. The part of the sample 9 irradiated with the electron beam is gouged along an electron orbit 8 and the intensity distribution of the molecular beam on the substrate 17 changes according to the continuation or repetition of such vapor deposition. The intensity change is detected by a crystal resonator sensor 2 and the sample 9 is tilted in an arrow 16 direction to maintain the molecular beam intensity detected by the sensor 2 at approximately the specified intensity. As a result, the specified intensity distribution of the molecular beam is obtd. even on the substrate 17 and, therefore, the thickness distribution of the thin film on the substrate 17 is uniformized as the substrate 17 is provided with a specified rotating motion by a known substrate driving mechanism.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、電子銃式の蒸発源を用いた真空蒸着方法お
よび装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a vacuum evaporation method and apparatus using an electron gun type evaporation source.

(従来の技術) 従来、真空蒸着装置(分子線エピタキシーを含む)にお
いて、蒸気圧の低い試料を蒸発させる場合に、電子銃式
の蒸発源を用いることが知られていた。一般に電子銃式
蒸発源を用いる場合、蒸発物が電子線の発生源・である
電子銃に飛来することを避ける為に、磁場により前記電
子線を角度偏向させて蒸発試料&;照射するようにして
いる。
(Prior Art) Conventionally, in a vacuum evaporation apparatus (including molecular beam epitaxy), it has been known to use an electron gun type evaporation source when evaporating a sample with a low vapor pressure. Generally, when an electron gun type evaporation source is used, the electron beam is angularly deflected by a magnetic field and irradiated with the evaporated sample in order to prevent the evaporated matter from flying into the electron gun, which is the source of the electron beam. ing.

(発明が解決しようとする課題) 前記のような電子銃式蒸発源を用いて、蒸気圧の低い試
料を蒸発させるようにした従来の真空蒸着装置では、電
子線を磁界により偏向して蒸発試料へ照射する為に、蒸
発初期には、蒸発試料に対して垂直に入射していた電子
線も、蒸発を継続又は繰り返すにつれて、蒸発試料の電
子線照射部が、電子線の軌道に沿って試料内に掘り込ま
れ、電子線が蒸発試料に垂直に入射しなくなると共に、
電子線照射部の上側フィラメント(電子線発生源)側に
、溶融しない突起が形成されるに至っていた。
(Problem to be Solved by the Invention) In a conventional vacuum evaporation apparatus that uses an electron gun type evaporation source as described above to evaporate a sample with a low vapor pressure, an electron beam is deflected by a magnetic field to evaporate the evaporated sample. During the initial stage of evaporation, the electron beam was incident perpendicularly to the evaporated sample, but as evaporation continues or is repeated, the electron beam irradiated part of the evaporated sample moves along the trajectory of the electron beam. The electron beam is no longer incident perpendicularly to the evaporated sample, and
A protrusion that did not melt was formed on the upper filament (electron beam generation source) side of the electron beam irradiation section.

この結果、薄膜が蒸着されるべき基板上においては、前
記突起側の分子線量が減少していき、基板上における膜
厚分布が不均一になっていくと共に、複数の基板間にお
ける再現性も得られない問題点となっていた。
As a result, on the substrate on which the thin film is to be deposited, the molecular dose on the protrusion side decreases, the film thickness distribution on the substrate becomes uneven, and reproducibility between multiple substrates is also improved. This was a problem that could not be solved.

この発明は上記のような問題点を解決し、蒸発試料の電
子線による掘れ込みて分子線の強度分布が変化するのを
低減し、基板上で常に同一の膜厚分布が得られる真空蒸
着方法および装置を提供することを目的としている。
This invention solves the above-mentioned problems and provides a vacuum evaporation method that reduces changes in the intensity distribution of molecular beams due to the electron beam digging into the evaporated sample, and that always provides the same film thickness distribution on the substrate. and equipment.

(課題を解決する為の手段) 即ちこの発明の真空蒸着方法は、電子銃式蒸発源に基板
を対向させて、前記電子銃式蒸発源の蒸発試料の薄膜を
基板に蒸着する方法において、蒸着空間内の、前記電子
銃式蒸発源のフィラメント側で検出した分子線強度の低
下に従って、前記蒸発試料を前記フィラメント側へ傾動
させることを特徴としている。
(Means for Solving the Problems) That is, the vacuum evaporation method of the present invention is a method of evaporating a thin film of an evaporated sample from the electron gun evaporation source onto the substrate with the substrate facing the electron gun evaporation source. The method is characterized in that the evaporation sample is tilted toward the filament side in accordance with a decrease in the molecular beam intensity detected on the filament side of the electron gun type evaporation source in the space.

そして上記の方法を実施するこの発明の真空蒸着装置は
、電子銃式蒸発源と、該蒸発源の上方一側に設置された
分子線モニターとを備えてなる真空蒸着装置において、
前記分子線モニターが電子銃式蒸発源のフィラメント側
上方に設置されていると共に、前記蒸発源は蒸発試料を
支持する為の傾動台と、該傾動台を傾動させる為の傾動
機構を有しており、前記傾動機構が、分子線モニターの
出力を受けた傾動制御器で制御されていることを特徴と
している。
A vacuum evaporation apparatus of the present invention for carrying out the above method includes an electron gun type evaporation source and a molecular beam monitor installed on one side above the evaporation source.
The molecular beam monitor is installed above the filament side of the electron gun type evaporation source, and the evaporation source has a tilting table for supporting the evaporated sample and a tilting mechanism for tilting the tilting table. The tilting mechanism is controlled by a tilting controller that receives an output from a molecular beam monitor.

(作  用) この発明の真空蒸着方法および装置によれば、蒸発源に
おける基板に対する分子線の強度分布は、蒸着を継続又
は繰り返しても、路間−の余弦則に従った分布にするこ
とができる。
(Function) According to the vacuum evaporation method and apparatus of the present invention, the intensity distribution of the molecular beam with respect to the substrate in the evaporation source can be made to follow the cosine law of the path even if the evaporation is continued or repeated. can.

(実施例) 以下、この発明を270度偏向型の電子銃式蒸発源を用
いた実施例について、図面を参照して説明する。
(Embodiments) Hereinafter, embodiments of the present invention using a 270-degree deflection type electron gun type evaporation source will be described with reference to the drawings.

第1図は実施例の真空蒸着装置における真空容器(図示
していない)内部の構成を示したもので、270度偏向
型の電子銃式蒸発源1の上方に分子線モニターとしての
水晶振動子センサー2が設置しである。前記電子銃式蒸
発源1は、フィラメント3が定電流電源4で赤熱される
と共に、フィラメント3とグリッド5間に定電圧電源6
より印加された電圧によって、前記フィラメント3より
電子が引き出され、かつ加速されるようになっている。
FIG. 1 shows the internal configuration of a vacuum container (not shown) in the vacuum evaporation apparatus of this embodiment. Sensor 2 is installed. In the electron gun type evaporation source 1, the filament 3 is heated by a constant current power source 4, and a constant voltage power source 6 is connected between the filament 3 and the grid 5.
Electrons are extracted from the filament 3 and accelerated by the applied voltage.

そして、加速された電子は偏向磁場7で偏向される結果
、8のような電子軌道で270度偏向されて、蒸発試料
9に照射されるようになっている。
The accelerated electrons are deflected by the deflection magnetic field 7, and as a result are deflected by 270 degrees along an electron trajectory 8, and are irradiated onto the evaporated sample 9.

前記蒸発試料9は、前記偏向磁場7の方向と平行の水平
軸10の回りで矢示10aの如く回動可能とした傾動台
11に支承されており、傾動台11は、回動の為の傾動
機構12(例えば偏心輪のようなカム機構で構成する)
で回動が制御されるようになっている。
The evaporated sample 9 is supported on a tilting table 11 that can be rotated as shown by an arrow 10a around a horizontal axis 10 parallel to the direction of the deflecting magnetic field 7. Tilting mechanism 12 (for example, composed of a cam mechanism such as an eccentric wheel)
Rotation is controlled by .

一方前記水晶振動子センサー2は、制御器13と接続さ
れて膜厚計が構成され、前記制御器13で演算により求
められる蒸着速度信号14が、前記傾動機構12を制御
する傾動制御器15に与えられている。
On the other hand, the crystal oscillator sensor 2 is connected to a controller 13 to form a film thickness meter, and a deposition rate signal 14 calculated by the controller 13 is sent to a tilting controller 15 that controls the tilting mechanism 12. It is given.

前記傾動制御器15は比較器を主要な回路要素とするも
ので、予め設定された蒸着速度と膜厚計から与えられた
蒸着速度信号14とが略一定となるように傾動機構12
を制御するもので、前記比較器の出力に応じて、傾動機
構12を介して傾動台11を矢示16の方向に傾動する
ように構成しである。
The tilting controller 15 has a comparator as a main circuit element, and controls the tilting mechanism 12 so that the preset deposition rate and the deposition rate signal 14 given from the film thickness meter are approximately constant.
The tilting table 11 is configured to be tilted in the direction of an arrow 16 via a tilting mechanism 12 in accordance with the output of the comparator.

上記の実施例において、真空容器内を真空に排気した後
、電子銃式蒸発源1を動作させると、電子線が蒸発試料
9に照射されて、蒸発試料9の薄膜を基板17の表面に
形成することができる。
In the above embodiment, when the electron gun type evaporation source 1 is operated after evacuating the inside of the vacuum container, the evaporation sample 9 is irradiated with an electron beam, and a thin film of the evaporation sample 9 is formed on the surface of the substrate 17. can do.

このような蒸着を継続して、または繰返して行なうと、
蒸発試料9の電子線照射部が電子軌道8に沿うように掘
れ込んで行き、基板17に対する分子線の強度分布が変
化するが、分子線の強度変化が水晶振動子センサー2を
介して検出され、蒸発試料9は矢示16の方向に傾動さ
れて、水晶振動子センサー2で検出される分子線強度が
略一定に保たれる。この結果、基板17上においても分
子線の強度分布は略一定となるので、基板17は公知の
基板駆動機構(例えばプラネタリ−機構など)によって
一定の回転運動を与えることで、基板上の薄膜の膜厚分
布を均一にすることができる。
If such deposition is continued or repeated,
The electron beam irradiation part of the evaporation sample 9 digs in along the electron trajectory 8, and the intensity distribution of the molecular beam with respect to the substrate 17 changes, but the change in the intensity of the molecular beam is detected via the crystal oscillator sensor 2. , the evaporated sample 9 is tilted in the direction of the arrow 16, and the molecular beam intensity detected by the quartz crystal sensor 2 is kept approximately constant. As a result, the intensity distribution of the molecular beam is approximately constant on the substrate 17, so that the substrate 17 can be rotated by a known substrate drive mechanism (for example, a planetary mechanism) to drive the thin film on the substrate. The film thickness distribution can be made uniform.

第2図は実施例において、固定基板上の膜厚分布を調べ
たものである。基板17の中心法線を蒸発試料9の中心
法線より20m+gフィラメント3側にオフセットし、
基板17を回転することなく蒸着を行った。n1定は基
板17上を、電子銃式蒸発源1のフィラメント3側から
蒸発試料9側に向って行った。第2図(alが1枚目の
基板の膜厚分布であり、第2図(b)が30枚目の基板
の膜厚分布である。固定基板上の膜厚分布は蒸発試料9
より基板17に対する分子線強度の分布に対応している
もので、1枚目から30枚目に亘って、分子線の強度分
布が略均−に保たれていることを確認できた。
FIG. 2 shows an investigation of the film thickness distribution on the fixed substrate in the example. The center normal of the substrate 17 is offset from the center normal of the evaporation sample 9 to the filament 3 side by 20 m+g,
Vapor deposition was performed without rotating the substrate 17. The n1 constant was performed on the substrate 17 from the filament 3 side of the electron gun type evaporation source 1 toward the evaporation sample 9 side. Figure 2 (al is the film thickness distribution of the first substrate, and Figure 2 (b) is the film thickness distribution of the 30th substrate. The film thickness distribution on the fixed substrate is evaporated sample 9.
It was confirmed that this corresponds to the distribution of the molecular beam intensity with respect to the substrate 17, and that the molecular beam intensity distribution was maintained approximately uniform from the first to the 30th substrate.

第2図(C)は蒸発試料9を傾動させることなく蒸着を
繰返した場合の30枚目の基板の膜厚分布であって、電
子線照射によって掘れ込んだ側(フィラメント3側)の
膜厚が薄く、分子線の強度が低下していることが判る。
Figure 2 (C) shows the film thickness distribution of the 30th substrate when evaporation was repeated without tilting the evaporation sample 9, and the film thickness on the side dug by electron beam irradiation (filament 3 side). It can be seen that the beam is thinner and the intensity of the molecular beam is lower.

第2図(a)、(b)の膜厚分布(面内分布)は余弦則
に従った分子線分布によるもので、基板回転をすること
で、均一な面内膜厚分布が得られることは言うまでもな
い。即ちこの発明の真空蒸着方法および装置において、
基板回転を行うことにより常に均一な膜厚分布を得るこ
とができる。
The film thickness distribution (in-plane distribution) in Figures 2 (a) and (b) is due to the molecular beam distribution according to the cosine law, and a uniform in-plane thickness distribution can be obtained by rotating the substrate. Needless to say. That is, in the vacuum deposition method and apparatus of the present invention,
By rotating the substrate, a uniform film thickness distribution can always be obtained.

(発明の効果) 以上に説明したように、この発明によれば、蒸発源にお
ける基板に対する分子線強度分布を一定にできるので、
蒸発試料の交換をすることなく、均一な薄膜を基板に対
して繰り返し形成でき、再現性が得られる効果がある。
(Effects of the Invention) As explained above, according to the present invention, the molecular beam intensity distribution with respect to the substrate in the evaporation source can be made constant;
A uniform thin film can be repeatedly formed on a substrate without replacing the evaporation sample, which has the effect of providing reproducibility.

特に分子線エピタキシーにおいては、蒸発試料の交換の
為の真空容器の大気開放頻度が減り、不純物が少なく、
かつ結晶欠陥の少ない高品質の薄膜が形成できる効果が
ある。
In particular, in molecular beam epitaxy, the frequency of opening the vacuum container to the atmosphere for exchanging evaporated samples is reduced, and there are fewer impurities.
Moreover, it has the effect of forming a high-quality thin film with few crystal defects.

4、4,

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を実施した装置の断面図、第2図(a
)乃至(C)は膜厚分布のグラフで第2図(a)は実施
例における1枚目の基板の膜厚分布のグラフ、第2図(
b)は同じ〈実施例における30枚目の膜厚分布のグラ
フ、第2図(C)は蒸発試料を傾動させない場合の30
枚目の膜厚分布のグラフである。 1・・・電子銃式蒸発源 2・・・水晶振動子センサー
3・・・フィラメント  8・・・電子軌道9・・・蒸
発試料   11・・・傾動台12・・・傾動機構  
 15・・・傾動制御器17・・・基 板
Figure 1 is a cross-sectional view of a device embodying this invention, and Figure 2 (a
) to (C) are graphs of the film thickness distribution, and FIG. 2(a) is a graph of the film thickness distribution of the first substrate in the example.
b) is the same (the 30th film thickness distribution graph in Example), and Figure 2 (C) is the 30th film thickness distribution graph in the case where the evaporation sample is not tilted.
This is a graph of the film thickness distribution. 1...Electron gun type evaporation source 2...Crystal oscillator sensor 3...Filament 8...Electron trajectory 9...Evaporation sample 11...Tilt table 12...Tilt mechanism
15... Tilt controller 17... Board

Claims (1)

【特許請求の範囲】 1 電子銃式蒸発源に基板を対向させて、前記電子銃式
蒸発源の蒸発試料の薄膜を基板に蒸着する方法において
、蒸着空間内の、前記電子銃式蒸発源のフィラメント側
で検出した分子線強度の低下に従って、前記蒸発試料を
前記フィラメント側へ傾動させることを特徴とした真空
蒸着方法 2 電子銃式蒸発源と、該蒸発源の上方一側に設置され
た分子線モニターとを備えてなる真空蒸着装置において
、前記分子線モニターが電子銃式蒸発源のフィラメント
側上方に設置されていると共に、前記蒸発源は蒸発試料
を支持する為の傾動台と、該傾動台を傾動させる為の傾
動機構を有しており、前記傾動機構が、分子線モニター
の出力を受けた傾動制御器で制御されていることを特徴
とした真空蒸着装置
[Scope of Claims] 1. In a method of depositing a thin film of an evaporated sample of the electron gun evaporation source onto the substrate by placing the substrate facing the electron gun evaporation source, Vacuum deposition method 2, characterized in that the evaporated sample is tilted toward the filament side in accordance with a decrease in the molecular beam intensity detected on the filament side.An electron gun type evaporation source and molecules installed on one side above the evaporation source. In the vacuum evaporation apparatus, the molecular beam monitor is installed above the filament side of an electron gun type evaporation source, and the evaporation source includes a tilting table for supporting the evaporated sample, and a tilting table for supporting the evaporation sample. A vacuum evaporation apparatus characterized in that it has a tilting mechanism for tilting the table, and the tilting mechanism is controlled by a tilting controller that receives an output from a molecular beam monitor.
JP28561689A 1989-11-01 1989-11-01 Method and device for vacuum vapor deposition Pending JPH03146659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28561689A JPH03146659A (en) 1989-11-01 1989-11-01 Method and device for vacuum vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28561689A JPH03146659A (en) 1989-11-01 1989-11-01 Method and device for vacuum vapor deposition

Publications (1)

Publication Number Publication Date
JPH03146659A true JPH03146659A (en) 1991-06-21

Family

ID=17693834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28561689A Pending JPH03146659A (en) 1989-11-01 1989-11-01 Method and device for vacuum vapor deposition

Country Status (1)

Country Link
JP (1) JPH03146659A (en)

Similar Documents

Publication Publication Date Title
US4999096A (en) Method of and apparatus for sputtering
US4919968A (en) Method and apparatus for vacuum vapor deposition
JP3551851B2 (en) X-ray phosphor manufacturing method and substrate for forming X-ray phosphor
US5785763A (en) Electron-gun evaporation system having evaporation-source stream regulator
US4652357A (en) Apparatus for and a method of modifying the properties of a material
JPH03146659A (en) Method and device for vacuum vapor deposition
JP3203286B2 (en) Thin film forming apparatus, crucible for evaporation source thereof, and method for forming thin film of sublimable evaporation material
JPH04174514A (en) Plasma processing equipment
US20220011636A1 (en) Inorganic alignment film forming apparatus for lcos display
JPH0246667B2 (en) HAKUMAKUJOCHAKUSOCHI
JPS60251269A (en) Method and apparatus for ionic plating
JPH0499173A (en) Sputtering system
JPS6176662A (en) Method and device for forming thin film
JP2002146525A (en) Sputter deposition system
JPS61210190A (en) Thin film forming device
JP3937272B2 (en) Sputtering apparatus and sputtering method
JPH0598429A (en) Method for manufacturing transparent electrically conductive film and apparatus for manufacturing transparent electrically conductive film
JP2687468B2 (en) Thin film forming equipment
JP2939756B2 (en) Evaporation source of vacuum deposition equipment
JP2000124209A (en) Apparatus and method for sputtering
JPS59153882A (en) Vapor deposition method by sputtering
JPS6196067A (en) High-frequency ion plating device
JP2000016839A (en) Formation of transparent conductive oxide thin film and device therefor
JPH11131222A (en) Ion plating device
JPH03267366A (en) Thin film formation device and its operation