JP3979745B2 - Film forming apparatus and thin film forming method - Google Patents

Film forming apparatus and thin film forming method Download PDF

Info

Publication number
JP3979745B2
JP3979745B2 JP10249299A JP10249299A JP3979745B2 JP 3979745 B2 JP3979745 B2 JP 3979745B2 JP 10249299 A JP10249299 A JP 10249299A JP 10249299 A JP10249299 A JP 10249299A JP 3979745 B2 JP3979745 B2 JP 3979745B2
Authority
JP
Japan
Prior art keywords
substrate
film
substrate holder
source
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10249299A
Other languages
Japanese (ja)
Other versions
JP2000297360A (en
Inventor
瞬 三上
秀行 清水
敏男 兼重
照男 渡辺
則雄 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futaba Corp
Ulvac Inc
Original Assignee
Futaba Corp
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futaba Corp, Ulvac Inc filed Critical Futaba Corp
Priority to JP10249299A priority Critical patent/JP3979745B2/en
Publication of JP2000297360A publication Critical patent/JP2000297360A/en
Application granted granted Critical
Publication of JP3979745B2 publication Critical patent/JP3979745B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は成膜装置の技術分野にかかり、特に、FED(Field Emission Display)の製造に用いられる真空蒸着装置に関する。
【0002】
【従来の技術】
図4の符号101に、従来の真空蒸着装置の一例を示す。この真空蒸着装置101は、真空槽102と、蒸発源103と、基板ホルダー104とを有している。
蒸発源103は真空槽102の内部底面に配置されており、蒸発源103の上方には基板ホルダー104が配置されている。
【0003】
予め基板ホルダー104に基板110を保持させて、基板110の表面を蒸発源103に対向させ、不図示の真空排気系で真空槽102内を真空排気した状態で、蒸発源103から蒸着材料を蒸発させる。
蒸発した蒸着材料は基板110の表面に到達し、蒸着材料からなる薄膜が基板110の表面に成膜される。
【0004】
最近、表示装置として注目されているFEDに用いられる電極基板を製造する際には、基板上に高アスペクト比の微小孔を形成する。この微小孔の底部にコーン形状のMoエミッタを蒸着法で形成する工程と、ゲート上に被着したMoを剥離するための剥離層もゲート上だけに形成するために底部に成膜しない工程とが必要になる。
【0005】
微小孔の底部にエミッタを形成するには、基板表面に対してほぼ垂直に蒸着材料を入射させる必要があり、他方、微小孔の底部に成膜せずに、ゲート上だけに成膜するには、基板表面に対して斜め方向から蒸着材料を入射させる必要がある。
【0006】
基板上に斜め方向と垂直方向の両方から蒸着材料を入射させることができる真空処理装置として、図5に示すような蒸着装置111が提案されている。
この蒸着装置111は、真空槽112と、蒸発源113と、基板ホルダー114とを有している。
蒸発源113は真空槽112の内部底面に配置されており、蒸発源113の上方には基板ホルダー114が対向して配置されている。
【0007】
基板ホルダー114は、真空槽112の側壁から水平に突出した軸(図示せず)に取付られ、その軸を中心にして揺動できるように構成されており、水平な状態と、蒸発源113に対して傾いた状態とのいずれか一方をとることができる。
【0008】
基板ホルダー114が傾いた状態を図5(a)に、水平な状態を図5(b)に示す。図5(a)の基板ホルダー114が傾いた状態では、蒸着材料の基板110に対する入射角δ1が大きいため斜め方向に蒸着材料を入射させることができ、他方、図5(b)の基板ホルダー114が水平な状態では、蒸着材料の基板110に対する入射角δ2が小さいため、ほぼ垂直方向に蒸着材料を入射させることができる。
【0009】
近年微細化が進み、上述した微小孔も小さくなっている。このため、蒸着材料を微小孔の底面に確実に到達させるようにするには、蒸着材料を垂直方向に入射させる際の入射角δ2をできるだけ小さくする必要があり、基板110上で少なくとも入射角δ2が0°以上10°以下の範囲に収まるようにしなければならない。
【0010】
従来では基板110と蒸発源114との間の距離150を大きくとることで、入射角δ2を小さくしていたが、FEDに用いられる基板は大きいので、基板端部においても入射角δ2を小さくしようとすると、蒸発源114と基板110との距離150は非常に大きくなる。
【0011】
一般に、蒸発源と基板との間の距離が大きくなると、成膜速度は小さくなる。この場合に蒸着材料を斜め方向から入射させると、垂直方向から入射させた場合に比して成膜速度がさらに小さくなる。従って、成膜に要する時間が長くなってしまい、蒸着装置の生産性が低下してしまうという問題が生じていた。
【0012】
【発明が解決しようとする課題】
本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、垂直入射蒸着と斜め入射蒸着の両方をすることができ、かつ基板表面への成膜速度を大きくすることができる技術を提供することにある。
【0013】
【課題を解決するための手段】
上記課題を解決するために、請求項1記載の発明は、真空槽と、前記真空槽内に設けられ、基板を保持する基板ホルダーと、前記基板ホルダーに対し、所定距離に配置された第1の成膜源と、前記基板ホルダーに対し、前記第1の成膜源よりも遠い位置に配置された第2の成膜源とを有し、前記基板ホルダーに保持された前記基板の表面と前記第1の成膜源とを結ぶ線分と、前記基板の表面の法線とが成す角度を前記基板ホルダーの傾き角度としたとき、前記基板ホルダーを傾けて前記傾き角度を変更する揺動装置が設けられたことを特徴とする。
請求項2記載の発明は、請求項1記載の成膜装置であって、前記揺動装置は、前記基板の表面に前記第1の成膜源によって第1の薄膜を形成する際の前記傾き角度を、前記基板の表面に前記第2の成膜源によって第2の薄膜を形成する際の前記傾き角度よりも大きくするように構成されたことを特徴とする
請求項3記載の発明は、請求項1又は請求項2のいずれか1項記載の成膜装置であって、前記第1の成膜源は、前記第2の成膜源から前記基板ホルダーに向けて飛行する成膜物質を遮らない位置に配置されたことを特徴とする。
請求項4記載の発明は、請求項1乃至請求項3のいずれか1項記載の成膜装置であって、前記第2の成膜源は、前記真空槽内の下方に配置され、前記基板ホルダーは、前記第2の成膜源の上方に配置され、少なくとも前記第2の成膜源に対して水平な状態と、前記第1の成膜源に対して傾いた状態との両方をとることができるように構成されている。
請求項5記載の発明は、請求項1乃至請求項4のいずれか1項記載の成膜装置であって、前記第1、第2の成膜源内には第1、第2の金属材料がそれぞれ配置され、前記第1、第2の金属材料を加熱し、前記真空槽内に前記第1、第2の金属材料からなる蒸気を放出できるように構成されたことを特徴とする。
請求項6記載の発明は、請求項1乃至請求項5のいずれか1項記載の成膜装置であって、前記基板の表面の法線と平行な方向の中心軸線を回転中心にして前記基板ホルダーを回転させる回転装置が設けられている。
請求項7記載の発明は、真空槽と、前記真空槽内に配置された第1、第2の成膜源と基板ホルダーを有する成膜装置を用い、表面に微細孔を有する基板を前記基板ホルダーに保持させ、前記基板ホルダーを、中心軸線回りに回転させながら前記第1、第2の成膜源によって前記基板の前記表面に第1、第2の薄膜を形成する薄膜形成方法であって、前記基板ホルダーに対し、前記第1の成膜源よりも前記第2の成膜源を遠い位置に配置しておき、前記基板ホルダーに保持された前記基板の表面と前記第1の成膜源とを結ぶ線分と、前記基板の表面の法線とが成す角度を前記基板ホルダーの傾き角度としたとき、前記第1の薄膜の形成時には、前記基板ホルダーを傾け、前記第2の薄膜形成時よりも前記傾き角度を大きくすることを特徴とする。
請求項8記載の発明は、請求項7記載の薄膜形成方法であて、前記傾き角度を調整して前記微細孔の底面には前記第1の薄膜の原料を到達させず、前記第2の薄膜の原料を到達させて前記微細孔の底面に前記第2の薄膜を成長させる。
【0014】
本発明の成膜装置によれば、第1、第2の成膜源が、加熱されることで第1、第2の金属材料の蒸気を真空槽内に放出する蒸発源である場合には、基板ホルダーを傾けた状態にして、第1の成膜源から第1の金属材料の蒸気を放出することにより、基板表面に斜め方向から第1の金属材料を入射させることができる。
【0015】
他方、基板ホルダーを水平な状態にして、第2の成膜源から第2の金属材料の蒸気を放出することにより、基板表面に対する蒸着材料の入射角ができるだけ小さくするようにして、ほぼ垂直に蒸着材料を入射させることができる。
【0016】
一般に、蒸発源と基板との間の距離が小さくなると、成膜速度は大きくなる。第1の成膜源は、第2の成膜源より基板ホルダーに近い位置に配置されているので、第1、第2の成膜源のそれぞれから、基板表面に垂直方向に第1、第2の金属材料を入射させると、第1の成膜源による成膜速度は、第2の成膜源による成膜速度よりも大きくなる。
【0017】
このように、垂直方向で入射させる場合では、第1の成膜源の成膜速度は、第2の成膜源の成膜速度よりも大きい。斜め方向に入射する際の成膜速度は垂直方向に入射する際の成膜速度より小さくなるものの、第2の成膜源を用いて垂直方向から蒸着材料を入射させた場合の成膜速度に比して、大きくなることはあっても小さくなることはない。
【0018】
従って、斜め方向に蒸着材料を入射させる場合の成膜速度が、垂直方向に入射させる場合の成膜速度よりも小さくなっていた従来と異なり、成膜に要する時間を短縮でき、蒸着装置の生産性を向上させることができる。
【0019】
【発明の実施の形態】
以下で図面を参照し、本発明の実施形態について説明する。
図1の符号1に、本発明の実施形態の真空蒸着装置を示す。真空蒸着装置1は真空槽2と、第1、第2の蒸発源31、32と、基板ホルダー4とを有している。
【0020】
第2の蒸発源32は真空槽2の内部底面に配置され、第2の蒸発源32の上方には板状の基板ホルダー4が配置されている。
基板ホルダー4は、真空槽2の側壁から水平に突出し、所定角度回転可能な軸(図示せず)に取り付られており、軸が所定角度回転することで、水平な状態と、第2の蒸発源32に対して傾いた状態とのいずれか一方をとることができるようにされている。また、基板ホルダー4は、その法線方向の中心軸線60を中心にして、回転できるようにされている。
【0021】
基板ホルダー4の斜め下方には、第1の蒸着源31が配置されている。第1の蒸着源31と基板ホルダー4との距離51は、第2の蒸着源32と基板ホルダー4との距離52に比して小さくなるようにされており、第1の蒸着源31は第2の蒸発源32より基板ホルダー4に近い位置に配置されている。ここでは、第1の蒸着源31と基板ホルダー4との距離51は、第2の蒸着源32と基板ホルダー4との距離52の半分以下にされているものとする。
【0022】
第1、第2の蒸着源31、32には、それぞれ第1、第2の金属材料(Al、Mo)が配置されており、図示しない電子銃から電子ビームを各第1、第2の金属材料へ照射すると、第1、第2の金属材料が加熱されて蒸発し、その蒸気が真空槽2内に放出させることができるようにされている。
【0023】
上述の真空蒸着装置1を用いて、FEDに用いられる電極基板を製造するには、図3(a)に示すように、予めガラスからなる基板10の表面に、Nbを蒸着で成膜後、フォトリソの手段で図示しないカソード導体にパターン化し、その表面にアモルファスシリコン層22と、SiO2層と、図示しないNb層とを順次積層した後に、フォトリソの手段でSiO2層とNb層に複数の微小孔30を形成し、ゲート電極23を形成する。微小孔30の底面には、アモルファスシリコン層22が露出した状態になっている。
【0024】
真空蒸着装置1では、まず、予め不図示の真空排気系で真空槽2内を真空状態にし、基板ホルダー4を水平な状態にしておく。この状態で、上述の基板10を真空状態を維持しながら真空槽2内に運び入れ、図2(a)に示すように基板ホルダー4に保持させる。
【0025】
その後、軸を所定角度回転させ、基板10を第1の蒸発源31と第2の蒸発源32に対して所定角度傾ける。次いで、基板ホルダー4の法線方向の中心軸線60を中心にして、基板10を回転させながら、基板ホルダー4に近い第1の蒸発源31に電子ビームを照射し、第1の金属材料を蒸発させると、第1の金属材料の蒸気は、図2(b)に示すように基板表面に対して入射角δ1で入射する。この入射角δ1は大きく、第1の金属材料は基板表面に対して斜め方向から入射されることになる。ここでは入射角δ1が75°程度であるものとする。このため第1の金属材料は、ゲート電極23の表面には到達するが、微小孔30の底部には到達できないので、ゲート電極23の表面にのみ第1の金属材料が蒸着され、第1の金属膜24が成膜される。
ゲート電極23の表面に第1の金属膜24が所定膜厚に形成されたら、電子ビームの照射を終了させる。
【0026】
次いで、軸を所定角度回転させ、基板10を水平状態にさせる。
この状態で、基板ホルダー4から遠い第2の蒸発源32に電子ビームを照射すると、第2の蒸発源32から第2の金属材料が蒸発する。蒸発した第2の金属材料は、図2(c)に示すように基板表面に対し入射角δ2で入射される。
【0027】
この入射角δ2は小さく、第2の金属材料は、ほぼ垂直に基板10の表面に入射される。ここでは入射角δ2は10°程度であるものとする。第2の金属材料は基板表面にほぼ垂直に入射されるので、第1の金属膜24の表面に到達するだけでなく、微小孔30内に入り、微小孔30の底面から露出するアモルファスシリコン層22にも到達し、図3(c)に示すようにアモルファスシリコン層22の表面には第2の金属材料からなるコーン状のエミッタ(以下でエミッタコーンと称する。)251が形成されるとともに、第1の金属膜24の上には第2の金属膜252が形成される。
【0028】
エミッタコーン251及び第2の金属膜252が所定膜厚に成膜されたら、電子ビームの照射を終了させ、真空雰囲気を維持したまま、基板10を取り出す。そして、真空槽2から他の装置へ運ぶ。他の装置でエッチング処理がなされると、前記第1の金属膜24が溶けて、FEDに用いられるカソード電極基板が完成する。
【0029】
一般に、基板表面に斜め方向から蒸着材料が入射されるときの成膜速度は、垂直方向から蒸着材料が入射される場合の成膜速度に比して小さくなる。他方、蒸発源と基板との間の距離が小さくなると、成膜速度は大きくなることも知られている。このとき成膜速度は基板と蒸発源との間の距離の逆数の二乗に比例して大きくなる。
【0030】
上述したように、第1の成膜源31は、蒸着材料を基板表面に斜め方向に入射させており、このときの成膜速度は、蒸着材料を基板表面に垂直方向に入射させる場合に比して小さくなる。
【0031】
しかし、基板10と第1の蒸発源31との間の距離51は、第2の蒸着源32と基板ホルダー4との距離52よりも小さいので、第1の成膜源31による成膜速度は、その分第2の成膜源32による成膜速度よりも大きくなる。ここでは、基板10と第1の蒸発源31との間の距離51は、第2の蒸着源32と基板ホルダー4との距離52の半分以下になっているので、第1の成膜源31による成膜速度は、第2の成膜源32による成膜速度の4倍以上になる。従って、第1の成膜源31を用いて蒸着材料を基板表面に斜め方向に入射させる際の成膜速度は、第2の成膜源32を用いて垂直方向から蒸着材料を入射させた場合の成膜速度に比して大きくなることはあっても、小さくなることはない。
【0032】
従って、斜め方向に蒸着材料を入射させる場合の成膜速度が、垂直方向に入射させる場合の成膜速度よりもさらに小さくなっていた従来と異なり、成膜に要する時間が短くなるので、蒸着装置の生産性を向上させることができる。
【0033】
なお、本実施形態では成膜装置を真空蒸着装置として説明したが本発明はこれに限らず、例えば第1、第2の成膜源をスパッタリングターゲットとして、スパッタリング装置を構成してもよい。
【0034】
また、FEDに用いる電極基板の製造について説明したが、本発明はこれに限られるものではなく、蒸着材料を基板表面の垂直方向と斜め方向のいずれにも入射させることができる装置であればよい。
【0035】
さらに、本実施形態では第1の金属材料をAlとし、第2の金属材料をMoとしているが、本発明の第1、第2の金属材料はこれに限られるものではない。
さらにまた、第1、第2の成膜源31、32に異なる金属材料を配置して、異なる材料の第1、第2の金属膜24、25を成膜しているが、本発明はこれに限らず、第1、第2の成膜源31、32に同一の金属材料を配置して、同じ材料からなる第1、第2の金属膜24、25を成膜してもよい。
【0036】
【発明の効果】
成膜に要する時間を短縮して、成膜装置の生産性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の真空蒸着装置を説明する断面図
【図2】(a):本発明の一実施形態の真空蒸着装置の動作を説明する第1の断面図
(b):本発明の一実施形態の真空蒸着装置の動作を説明する第2の断面図
(c):本発明の一実施形態の真空蒸着装置の動作を説明する第3の断面図
【図3】(a):本発明の一実施形態の蒸着工程を説明する第1の断面図
(b):本発明の一実施形態の蒸着工程を説明する第2の断面図
(c):本発明の一実施形態の蒸着工程を説明する第3の断面図
【図4】従来の真空蒸着装置を説明する断面図
【図5】(a):従来の他の真空蒸着装置を説明する第1の断面図
(b):従来の他の真空蒸着装置を説明する第2の断面図
【符号の説明】
1……成膜装置 2……真空槽 31……第1の蒸発源 32……第2の蒸発源 4……基板ホルダー 51……基板と第1の蒸発源との距離 52……基板と第2の蒸発源との距離 60……基板ホルダーの法線方向の中心軸線 δ1……第1の金属材料の基板表面への入射角 δ2……第2の金属材料の基板表面への入射角
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technical field of a film forming apparatus, and more particularly to a vacuum evaporation apparatus used for manufacturing a field emission display (FED).
[0002]
[Prior art]
Reference numeral 101 in FIG. 4 shows an example of a conventional vacuum deposition apparatus. The vacuum evaporation apparatus 101 includes a vacuum chamber 102, an evaporation source 103, and a substrate holder 104.
The evaporation source 103 is disposed on the inner bottom surface of the vacuum chamber 102, and a substrate holder 104 is disposed above the evaporation source 103.
[0003]
The substrate 110 is held in advance by the substrate holder 104, the surface of the substrate 110 is opposed to the evaporation source 103, and the vapor deposition material is evaporated from the evaporation source 103 in a state where the vacuum chamber 102 is evacuated by an unillustrated evacuation system. Let
The evaporated vapor deposition material reaches the surface of the substrate 110, and a thin film made of the vapor deposition material is formed on the surface of the substrate 110.
[0004]
Recently, when manufacturing an electrode substrate used for an FED which has been attracting attention as a display device, a micropore having a high aspect ratio is formed on the substrate. A step of forming a cone-shaped Mo emitter on the bottom of the microhole by vapor deposition, and a step of not forming a film on the bottom to form a release layer for peeling Mo deposited on the gate only on the gate. Is required.
[0005]
In order to form the emitter at the bottom of the microhole, it is necessary to make the vapor deposition material enter substantially perpendicular to the substrate surface. On the other hand, the film is formed only on the gate without forming the film at the bottom of the microhole. Requires that the vapor deposition material be incident on the substrate surface from an oblique direction.
[0006]
A vapor deposition apparatus 111 as shown in FIG. 5 has been proposed as a vacuum processing apparatus capable of allowing a vapor deposition material to enter the substrate from both an oblique direction and a vertical direction.
The vapor deposition apparatus 111 includes a vacuum chamber 112, an evaporation source 113, and a substrate holder 114.
The evaporation source 113 is disposed on the inner bottom surface of the vacuum chamber 112, and a substrate holder 114 is disposed above the evaporation source 113 so as to face it.
[0007]
The substrate holder 114 is attached to a shaft (not shown) that protrudes horizontally from the side wall of the vacuum chamber 112, and is configured to be able to swing around the shaft. Either one of the tilted state can be taken.
[0008]
FIG. 5A shows a state in which the substrate holder 114 is tilted, and FIG. 5B shows a horizontal state. In the state in which the substrate holder 114 in FIG. 5A is inclined, since the incident angle δ 1 of the vapor deposition material with respect to the substrate 110 is large, the vapor deposition material can be incident in an oblique direction, while the substrate holder in FIG. In a state where 114 is horizontal, since the incident angle δ 2 of the vapor deposition material with respect to the substrate 110 is small, the vapor deposition material can be incident in a substantially vertical direction.
[0009]
In recent years, miniaturization has progressed, and the above-mentioned micropores have also become smaller. For this reason, in order to ensure that the vapor deposition material reaches the bottom surface of the minute hole, it is necessary to make the incident angle δ 2 when the vapor deposition material is incident in the vertical direction as small as possible, and at least the incident angle on the substrate 110. δ 2 must be within a range of 0 ° to 10 °.
[0010]
Conventionally, the incident angle δ 2 is reduced by increasing the distance 150 between the substrate 110 and the evaporation source 114. However, since the substrate used in the FED is large, the incident angle δ 2 is also increased at the substrate edge. In order to reduce the distance, the distance 150 between the evaporation source 114 and the substrate 110 becomes very large.
[0011]
In general, as the distance between the evaporation source and the substrate increases, the film formation rate decreases. In this case, when the vapor deposition material is incident from an oblique direction, the film formation rate is further reduced as compared with the case where the vapor deposition material is incident from the vertical direction. Therefore, the time required for film formation becomes long, and there has been a problem that productivity of the vapor deposition apparatus is lowered.
[0012]
[Problems to be solved by the invention]
The present invention was created to solve the above-described disadvantages of the prior art, and its purpose is to allow both normal incidence deposition and oblique incidence deposition, and to increase the deposition rate on the substrate surface. It is to provide a technology that can.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a first aspect of the present invention is a vacuum chamber, a substrate holder that is provided in the vacuum chamber and holds a substrate, and is arranged at a predetermined distance from the substrate holder. a deposition source, with respect to the substrate holder, and the second possess a deposition source disposed at a position farther than the first deposition source, the surface of the substrate held by the substrate holder Swing that changes the tilt angle by tilting the substrate holder, where the tilt angle of the substrate holder is the angle formed by the line connecting the first film forming source and the normal of the surface of the substrate A device is provided .
Invention of Claim 2 is the film-forming apparatus of Claim 1 , Comprising : The said rocking | fluctuation apparatus WHEREIN: The said inclination when forming a 1st thin film with the said 1st film-forming source on the surface of the said board | substrate The angle is configured to be larger than the inclination angle when the second thin film is formed on the surface of the substrate by the second film forming source .
A third aspect of the present invention is the film forming apparatus according to the first or second aspect , wherein the first film forming source is supplied from the second film forming source to the substrate holder. It is characterized in that it is arranged at a position where it does not block the film-forming substance that flies toward it.
According to a fourth aspect of the present invention, there is provided the film formation apparatus according to any one of the first to third aspects , wherein the second film formation source is disposed below the vacuum chamber, and the substrate The holder is disposed above the second film formation source, and takes at least a state that is horizontal with respect to the second film formation source and a state that is inclined with respect to the first film formation source. It is configured to be able to.
According to a fifth aspect of the present invention, there is provided the film forming apparatus according to any one of the first to fourth aspects , wherein the first and second metal materials are contained in the first and second film forming sources. The first and second metal materials are arranged respectively so that the first and second metal materials can be heated and the vapor made of the first and second metal materials can be discharged into the vacuum chamber.
A sixth aspect of the present invention is the film forming apparatus according to any one of the first to fifth aspects, wherein the substrate is centered on a central axis in a direction parallel to a normal to the surface of the substrate. A rotating device for rotating the holder is provided.
The invention described in claim 7 uses a film forming apparatus having a vacuum chamber, first and second film forming sources and a substrate holder disposed in the vacuum chamber, and a substrate having a fine hole on the surface is used as the substrate. A thin film forming method in which first and second thin films are formed on the surface of the substrate by the first and second film forming sources while being held by a holder and rotating the substrate holder around a central axis. The second film formation source is disposed farther than the first film formation source with respect to the substrate holder, and the surface of the substrate held by the substrate holder and the first film formation are disposed. When the angle formed by the line segment connecting the source and the normal of the surface of the substrate is the tilt angle of the substrate holder, the substrate holder is tilted during the formation of the first thin film, and the second thin film is formed. The tilt angle is larger than that at the time of formation.
The invention according to claim 8 is the thin film forming method according to claim 7, wherein the inclination angle is adjusted so that the raw material of the first thin film does not reach the bottom surface of the fine hole, and the second thin film is formed. The second thin film is grown on the bottom surface of the fine hole.
[0014]
According to the film forming apparatus of the present invention, when the first and second film forming sources are evaporation sources that release the vapors of the first and second metal materials into the vacuum chamber by being heated. When the substrate holder is tilted and the vapor of the first metal material is emitted from the first film formation source, the first metal material can be incident on the substrate surface from an oblique direction.
[0015]
On the other hand, by making the substrate holder horizontal and releasing the vapor of the second metal material from the second film-forming source, the incident angle of the vapor deposition material with respect to the substrate surface is made as small as possible, so that it is almost vertical. A vapor deposition material can be incident.
[0016]
In general, when the distance between the evaporation source and the substrate is reduced, the deposition rate is increased. Since the first film-forming source is disposed at a position closer to the substrate holder than the second film-forming source, the first and second film-forming sources are perpendicular to the substrate surface from the first and second film-forming sources. When the second metal material is incident, the deposition rate by the first deposition source becomes higher than the deposition rate by the second deposition source.
[0017]
As described above, when the light is incident in the vertical direction, the film formation speed of the first film formation source is higher than the film formation speed of the second film formation source. Although the film formation speed when entering in the oblique direction is smaller than the film formation speed when entering in the vertical direction, the film formation speed when the vapor deposition material is incident from the vertical direction using the second film formation source. In comparison, it can be larger but not smaller.
[0018]
Therefore, unlike the conventional method in which the deposition rate when the deposition material is incident obliquely is smaller than the deposition rate when the deposition material is incident in the vertical direction, the time required for deposition can be shortened, and the deposition apparatus can be produced. Can be improved.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
Reference numeral 1 in FIG. 1 shows a vacuum deposition apparatus according to an embodiment of the present invention. The vacuum vapor deposition apparatus 1 includes a vacuum chamber 2, first and second evaporation sources 3 1 , 3 2, and a substrate holder 4.
[0020]
The second evaporation source 3 2 is disposed on the inner bottom surface of the vacuum chamber 2, and a plate-like substrate holder 4 is disposed above the second evaporation source 3 2 .
The substrate holder 4 protrudes horizontally from the side wall of the vacuum chamber 2 and is attached to a shaft (not shown) that can be rotated by a predetermined angle. it is to be able to take either the inclined state with respect to the evaporation source 3 2. Further, the substrate holder 4 is configured to be rotatable about a central axis 60 in the normal direction.
[0021]
The obliquely below the substrate holder 4, a first vapor deposition source 3 1 is disposed. Distance 5 1 between the first deposition source 3 1 and the substrate holder 4 is to be smaller than the distance 5 2 and the second deposition source 3 2 and the substrate holder 4, a first vapor deposition The source 3 1 is arranged closer to the substrate holder 4 than the second evaporation source 3 2 . Here, the distance 5 1 between the first deposition source 3 1 and the substrate holder 4 is assumed to be the following distance 5 2 halves of the second deposition source 3 2 and the substrate holder 4.
[0022]
The first and second vapor deposition sources 3 1 and 3 2 are respectively provided with first and second metal materials (Al, Mo), and an electron beam is emitted from an electron gun (not shown) to each of the first and second metal materials. When this metal material is irradiated, the first and second metal materials are heated and evaporated, and the vapor can be discharged into the vacuum chamber 2.
[0023]
In order to manufacture an electrode substrate used for FED using the above-described vacuum evaporation apparatus 1, as shown in FIG. 3A, after Nb is formed on the surface of the substrate 10 made of glass in advance by vapor deposition, A cathode conductor (not shown) is patterned by photolithography means, and an amorphous silicon layer 22, an SiO 2 layer, and an Nb layer (not shown) are sequentially laminated on the surface, and then a plurality of SiO 2 layers and Nb layers are formed by photolithography means. A microhole 30 is formed, and a gate electrode 23 is formed. The amorphous silicon layer 22 is exposed on the bottom surface of the minute hole 30.
[0024]
In the vacuum deposition apparatus 1, first, the inside of the vacuum chamber 2 is evacuated in advance by an unillustrated evacuation system, and the substrate holder 4 is placed in a horizontal state. In this state, the above-described substrate 10 is carried into the vacuum chamber 2 while maintaining a vacuum state, and is held by the substrate holder 4 as shown in FIG.
[0025]
Thereafter, the shaft is rotated by a predetermined angle, and the substrate 10 is tilted by a predetermined angle with respect to the first evaporation source 3 1 and the second evaporation source 3 2 . Then, it centered on the normal direction of the central axis 60 of the substrate holder 4, while rotating the substrate 10 is irradiated with an electron beam in a first evaporation source 3 1 closer to the substrate holder 4, the first metallic material When evaporated, the vapor of the first metal material enters the substrate surface at an incident angle δ 1 as shown in FIG. The incident angle δ 1 is large, and the first metal material is incident on the substrate surface from an oblique direction. Here, it is assumed that the incident angle δ 1 is about 75 °. For this reason, the first metal material reaches the surface of the gate electrode 23, but cannot reach the bottom of the microhole 30, so that the first metal material is deposited only on the surface of the gate electrode 23, and the first metal material is deposited. A metal film 24 is formed.
When the first metal film 24 is formed on the surface of the gate electrode 23 to a predetermined thickness, the electron beam irradiation is terminated.
[0026]
Next, the shaft is rotated by a predetermined angle to bring the substrate 10 into a horizontal state.
In this state, when the second evaporation source 3 2 far from the substrate holder 4 is irradiated with an electron beam, the second metal material evaporates from the second evaporation source 3 2 . The evaporated second metal material is incident on the substrate surface at an incident angle δ 2 as shown in FIG.
[0027]
The incident angle δ 2 is small, and the second metal material is incident on the surface of the substrate 10 substantially perpendicularly. Here, the incident angle δ 2 is assumed to be about 10 °. Since the second metal material is incident on the substrate surface substantially perpendicularly, the amorphous silicon layer not only reaches the surface of the first metal film 24 but also enters the microhole 30 and is exposed from the bottom surface of the microhole 30. also reached 22, with the surface of the amorphous silicon layer 22 is (referred to as the emitter cone below.) conical emitter of a second metallic material 25 1 is formed as shown in FIG. 3 (c) A second metal film 25 2 is formed on the first metal film 24.
[0028]
When the emitter cone 25 1 and the second metal film 25 2 are formed to a predetermined film thickness, the electron beam irradiation is terminated, and the substrate 10 is taken out while maintaining the vacuum atmosphere. And it conveys from the vacuum chamber 2 to another apparatus. When the etching process is performed by another apparatus, the first metal film 24 is melted to complete the cathode electrode substrate used for the FED.
[0029]
In general, the deposition rate when the deposition material is incident on the substrate surface from an oblique direction is smaller than the deposition rate when the deposition material is incident from the vertical direction. On the other hand, it is also known that the deposition rate increases as the distance between the evaporation source and the substrate decreases. At this time, the deposition rate increases in proportion to the square of the reciprocal of the distance between the substrate and the evaporation source.
[0030]
As described above, the first deposition source 3 1 is made incident obliquely on the substrate surface deposition material, the deposition speed at this time, the deposition material in the case where the incident in a direction perpendicular to the substrate surface It becomes smaller than that.
[0031]
However, since the distance 5 1 between the substrate 10 and the first evaporation source 3 1 is smaller than the distance 5 2 between the second vapor deposition source 3 2 and the substrate holder 4, the first film formation source 3 1. The film formation rate due to is higher than the film formation rate by the second film formation source 3 2 accordingly. Here, the distance 5 1 between the substrate 10 and the first evaporation source 3 1 is less than half of the distance 5 2 between the second vapor deposition source 3 2 and the substrate holder 4, so that the first The deposition rate by the deposition source 3 1 is four times or more the deposition rate by the second deposition source 3 2 . Accordingly, the deposition rate when the deposition material is incident on the substrate surface in an oblique direction using the first deposition source 3 1 is such that the deposition material is incident from the vertical direction using the second deposition source 3 2. In this case, the film forming speed may be larger than the film forming speed but may not be smaller.
[0032]
Therefore, since the deposition rate when the deposition material is incident in the oblique direction is further smaller than the deposition rate when the deposition material is incident in the vertical direction, the deposition time is shortened. Productivity can be improved.
[0033]
In the present embodiment, the film forming apparatus is described as a vacuum vapor deposition apparatus. However, the present invention is not limited to this, and the sputtering apparatus may be configured using, for example, the first and second film forming sources as sputtering targets.
[0034]
In addition, the manufacture of the electrode substrate used for the FED has been described, but the present invention is not limited to this, and any device that can cause the vapor deposition material to enter both the vertical direction and the oblique direction of the substrate surface may be used. .
[0035]
Furthermore, in the present embodiment, the first metal material is Al and the second metal material is Mo, but the first and second metal materials of the present invention are not limited to this.
Furthermore, different metal materials are arranged in the first and second film formation sources 3 1 and 3 2 to form the first and second metal films 24 and 25 made of different materials. The first and second metal films 24 and 25 made of the same material are formed by arranging the same metal material in the first and second film formation sources 3 1 and 3 2. Also good.
[0036]
【The invention's effect】
The time required for film formation can be shortened, and the productivity of the film formation apparatus can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a vacuum vapor deposition apparatus according to an embodiment of the present invention. FIG. 2A is a first cross-sectional view illustrating the operation of the vacuum vapor deposition apparatus according to an embodiment of the present invention.
(b): Second sectional view for explaining the operation of the vacuum vapor deposition apparatus of one embodiment of the present invention.
(c): Third sectional view for explaining the operation of the vacuum deposition apparatus according to one embodiment of the present invention. FIG. 3 (a): First sectional view for explaining the deposition step according to one embodiment of the present invention.
(b): Second sectional view for explaining the vapor deposition process of one embodiment of the present invention.
(c): Third sectional view for explaining the vapor deposition process of one embodiment of the present invention [FIG. 4] Cross sectional view for explaining a conventional vacuum vapor deposition apparatus [FIG. 5] (a): Another conventional vacuum vapor deposition apparatus First sectional view for explaining
(b): Second sectional view for explaining another conventional vacuum vapor deposition apparatus.
DESCRIPTION OF SYMBOLS 1 ... Film-forming apparatus 2 ... Vacuum chamber 3 1 ... 1st evaporation source 3 2 ... 2nd evaporation source 4 ... Substrate holder 5 1 ... Distance between substrate and 1st evaporation source 5 2 …… Distance between substrate and second evaporation source 60 …… Center axis in the normal direction of substrate holder δ 1 …… An incident angle of the first metal material to the substrate surface δ 2 …… of the second metal material Incident angle to substrate surface

Claims (8)

真空槽と、
前記真空槽内に設けられ、基板を保持する基板ホルダーと、
前記基板ホルダーに対し、所定距離に配置された第1の成膜源と、
前記基板ホルダーに対し、前記第1の成膜源よりも遠い位置に配置された第2の成膜源とを有し、
前記基板ホルダーに保持された前記基板の表面と前記第1の成膜源とを結ぶ線分と、前記基板の表面の法線とが成す角度を前記基板ホルダーの傾き角度としたとき、
前記基板ホルダーを傾けて前記傾き角度を変更する揺動装置が設けられたことを特徴とする成膜装置。
A vacuum chamber;
A substrate holder provided in the vacuum chamber and holding the substrate;
A first film-forming source disposed at a predetermined distance with respect to the substrate holder;
With respect to the substrate holder, it has a second deposition source is located farther than the first deposition source,
When an angle formed by a line segment connecting the surface of the substrate held by the substrate holder and the first film forming source and a normal line of the surface of the substrate is an inclination angle of the substrate holder,
A film forming apparatus, comprising: a swinging device that tilts the substrate holder to change the tilt angle .
前記揺動装置は、前記基板の表面に前記第1の成膜源によって第1の薄膜を形成する際の前記傾き角度を、前記基板の表面に前記第2の成膜源によって第2の薄膜を形成する際の前記傾き角度よりも大きくするように構成されたことを特徴とする請求項1記載の成膜装置。 The oscillating device defines the tilt angle when the first thin film source forms the first thin film on the surface of the substrate, and the second thin film by the second film source on the surface of the substrate. The film forming apparatus according to claim 1, wherein the film forming apparatus is configured to be larger than the inclination angle when forming the film. 前記第1の成膜源は、前記第2の成膜源から前記基板ホルダーに向けて飛行する成膜物質を遮らない位置に配置されたことを特徴とする請求項1又は請求項2のいずれか1項記載の成膜装置。The first deposition source of any of claims 1 or claim 2, characterized in that from the second deposition source arranged at a position not blocking the film forming material to fly toward the substrate holder The film forming apparatus according to claim 1 . 前記第2の成膜源は、前記真空槽内の下方に配置され、
前記基板ホルダーは、前記第2の成膜源の上方に配置され、少なくとも前記第2の成膜源に対して水平な状態と、前記第1の成膜源に対して傾いた状態との両方をとることができるように構成された請求項1乃至請求項3のいずれか1項記載の成膜装置。
The second film formation source is disposed below the vacuum chamber,
The substrate holder is disposed above the second film formation source, and is at least both horizontal with respect to the second film formation source and inclined with respect to the first film formation source. The film-forming apparatus of any one of Claim 1 thru | or 3 comprised so that it could take.
前記第1、第2の成膜源内には第1、第2の金属材料がそれぞれ配置され、前記第1、第2の金属材料を加熱し、前記真空槽内に前記第1、第2の金属材料からなる蒸気を放出できるように構成されたことを特徴とする請求項1乃至請求項4のいずれか1項記載の成膜装置。First and second metal materials are respectively disposed in the first and second film forming sources, the first and second metal materials are heated, and the first and second metal materials are heated in the vacuum chamber. deposition apparatus according to any one of claims 1 to 4, characterized in that it is configured to emit steam made of a metal material. 前記基板の表面の法線と平行な方向の中心軸線を回転中心にして前記基板ホルダーを回転させる回転装置が設けられた請求項1乃至請求項5のいずれか1項記載の成膜装置。The film forming apparatus according to claim 1, further comprising: a rotating device that rotates the substrate holder about a central axis in a direction parallel to a normal line of the surface of the substrate. 真空槽と、A vacuum chamber;
前記真空槽内に配置された第1、第2の成膜源と基板ホルダーを有する成膜装置を用い、Using a film forming apparatus having first and second film forming sources and a substrate holder disposed in the vacuum chamber,
表面に微細孔を有する基板を前記基板ホルダーに保持させ、前記基板ホルダーを、中心軸線回りに回転させながら前記第1、第2の成膜源によって前記基板の前記表面に第1、第2の薄膜を形成する薄膜形成方法であって、A substrate having a fine hole on the surface is held by the substrate holder, and the first and second film forming sources are provided on the surface of the substrate by the first and second film forming sources while the substrate holder is rotated around a central axis. A thin film forming method for forming a thin film,
前記基板ホルダーに対し、前記第1の成膜源よりも前記第2の成膜源を遠い位置に配置しておき、The second film-forming source is disposed farther than the first film-forming source with respect to the substrate holder,
前記基板ホルダーに保持された前記基板の表面と前記第1の成膜源とを結ぶ線分と、前記基板の表面の法線とが成す角度を前記基板ホルダーの傾き角度としたとき、When the angle formed by the line segment connecting the surface of the substrate held by the substrate holder and the first film forming source and the normal of the surface of the substrate is the tilt angle of the substrate holder,
前記第1の薄膜の形成時には、前記基板ホルダーを傾け、前記第2の薄膜形成時よりも前記傾き角度を大きくすることを特徴とする薄膜形成方法。A method of forming a thin film, wherein the substrate holder is tilted when forming the first thin film, and the tilt angle is made larger than that when forming the second thin film.
前記傾き角度を調整して前記微細孔の底面には前記第1の薄膜の原料を到達させず、前記第2の薄膜の原料を到達させて前記微細孔の底面に前記第2の薄膜を成長させる請求項7記載の薄膜形成方法。The tilt angle is adjusted so that the raw material of the first thin film does not reach the bottom surface of the micro hole, and the second thin film material reaches the bottom surface of the micro hole to grow the second thin film on the bottom surface of the micro hole The thin film forming method according to claim 7.
JP10249299A 1999-04-09 1999-04-09 Film forming apparatus and thin film forming method Expired - Lifetime JP3979745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10249299A JP3979745B2 (en) 1999-04-09 1999-04-09 Film forming apparatus and thin film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10249299A JP3979745B2 (en) 1999-04-09 1999-04-09 Film forming apparatus and thin film forming method

Publications (2)

Publication Number Publication Date
JP2000297360A JP2000297360A (en) 2000-10-24
JP3979745B2 true JP3979745B2 (en) 2007-09-19

Family

ID=14328931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10249299A Expired - Lifetime JP3979745B2 (en) 1999-04-09 1999-04-09 Film forming apparatus and thin film forming method

Country Status (1)

Country Link
JP (1) JP3979745B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101826998B1 (en) 2011-03-25 2018-02-07 호야 가부시키가이샤 Film forming method, mask blank manufacturing method, transfer mask manufacturing method, and film forming device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4921320B2 (en) * 2007-11-07 2012-04-25 新明和工業株式会社 Vacuum deposition system
CN103112169B (en) * 2013-01-28 2015-09-23 宁波绿海电子材料有限公司 A kind of preparation method of induction cooker capacitor metalized film
CN104004996B (en) * 2014-04-15 2016-01-13 京浜光学制品(常熟)有限公司 A kind of low temperature AF plated film evaporation unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101826998B1 (en) 2011-03-25 2018-02-07 호야 가부시키가이샤 Film forming method, mask blank manufacturing method, transfer mask manufacturing method, and film forming device

Also Published As

Publication number Publication date
JP2000297360A (en) 2000-10-24

Similar Documents

Publication Publication Date Title
JP4540746B2 (en) Optical thin film deposition apparatus and optical thin film manufacturing method
US4179528A (en) Method of making silicon device with uniformly thick polysilicon
JP3979745B2 (en) Film forming apparatus and thin film forming method
JP4072570B2 (en) Material deposition system by vapor deposition on large area substrate
FR2748847A1 (en) Field emitting cold cathode manufacturing method for flat display panel
US20070224342A1 (en) Apparatus and method for forming antireflection film
JP2000243272A (en) Manufacture of x-ray image intensifying tube
US4228452A (en) Silicon device with uniformly thick polysilicon
JPH0594765A (en) Patterning method
JP2009007651A (en) Method of film-coating neutral-density filter, apparatus for forming neutral-density filter, neutral-density filter using the same, and image pick-up light quantity diaphragm device
JP3152018B2 (en) Method of manufacturing field emission device
JP3080096B2 (en) Fabrication method of large area thin film
JPS5916973A (en) Formation of multilayered optical film
JP2625107B2 (en) Manufacturing method of exposure mask
JPH1171671A (en) Vacuum deposition device
US5908340A (en) Method for fabricating an array of conical electron emitters
JP2000144384A (en) Production of low stress molybdenum vapor deposition film
JP3163773B2 (en) Thin film manufacturing method
JPH06158294A (en) Thin film producing device
JPH08313415A (en) Sample production method of transmission electron microscope and converged ion beam processing apparatus
JPH1138206A (en) Production of elliptical gradation nd filter
EP1088341A2 (en) Method of producing a structured surface
KR100312187B1 (en) Method for fabrication field emission devices with diamond
JPH0446082A (en) Formation of high-quality oxide superconducting thin film
JP2000138184A (en) METHOD FOR MANUFACTURING Al DEPOSITION FILM FOR LIFT-OFF

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060907

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term