JPH08313415A - Sample production method of transmission electron microscope and converged ion beam processing apparatus - Google Patents

Sample production method of transmission electron microscope and converged ion beam processing apparatus

Info

Publication number
JPH08313415A
JPH08313415A JP11884295A JP11884295A JPH08313415A JP H08313415 A JPH08313415 A JP H08313415A JP 11884295 A JP11884295 A JP 11884295A JP 11884295 A JP11884295 A JP 11884295A JP H08313415 A JPH08313415 A JP H08313415A
Authority
JP
Japan
Prior art keywords
sputter etching
sample
ion
cross
electron microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11884295A
Other languages
Japanese (ja)
Inventor
Ryuji Eto
竜二 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11884295A priority Critical patent/JPH08313415A/en
Publication of JPH08313415A publication Critical patent/JPH08313415A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE: To simply slide a section observing sample up to observable thickness within a short time. CONSTITUTION: Raw material gas W(CO)6 is ejected on the surface of the section observing samaple 8 at the section observing place 11 and the peripheral part thereof observed by a transmission type electron microscope from the gap jet nozzle 3 of a converged ion beam processing apparatus 1 and decomposed by the Ga<+> ion beam 4 emitted from an ion gun 5 using Ga as ion seeds to selectively deposit W to form a W vapor deposition film. Sputtering etching using Ar as ion seeds is applied to the surface of the sample 8 containing the W vapor deposition film to selectively leave the section observing place under the W vapor deposition film and the peripheral part thereof and the section observing place 11 is sliced by fine processing using Ga ions to produce a section observing sample.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、透過型電子顕微鏡で観
察する試料の作製方法と、その試料を作製する加工装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preparing a sample to be observed with a transmission electron microscope and a processing apparatus for preparing the sample.

【0002】[0002]

【従来の技術】 近年、半導体デバイスの
パターンの微細化に伴い、特定微小部を透過型電子顕微
鏡(以下、TEMと略す)によって、観察し評価する技
術の重要性が高まっている。しかし、TEMによって特
定微小部を観察するには、特定微小部を0.3μm以下
の厚さまで薄片化しなければならず、その作製は非常に
困難である。
2. Description of the Related Art In recent years, with the miniaturization of semiconductor device patterns, the importance of a technique for observing and evaluating a specific minute portion with a transmission electron microscope (hereinafter abbreviated as TEM) is increasing. However, in order to observe the specific minute portion by TEM, the specific minute portion must be thinned to a thickness of 0.3 μm or less, which is extremely difficult to manufacture.

【0003】そこで、従来では、この問題を解決する方
法として、集束イオンビーム(以下、FIBと略す)加
工装置で断面観察用試料を作製し、特定微小部をTEM
観察する方法が報告されている(畑 他,「透過電子顕
微鏡によるアルミニウム配線の解析」,信学技報SDM90
-,4(1990))。
Therefore, conventionally, as a method for solving this problem, a sample for cross-section observation is prepared by a focused ion beam (hereinafter abbreviated as FIB) processing apparatus, and a specific minute portion is TEM.
A method of observation has been reported (Hata et al., "Analysis of Aluminum Wiring by Transmission Electron Microscope", IEICE Technical Report SDM90).
-, 4 (1990)).

【0004】以下、図面を参照しながら、上記した従来
のFIB加工装置を用いた断面観察用試料作製方法につ
いて説明する。図8〜図11には、FIB加工装置を用
いた断面観察用試料作製方法が、また、図12には、T
EM観察するために、FIB加工装置を用いて作製され
た試料を配置した斜視図が示されている。図8に示すよ
うに、シリコン(以下、Siと略す)基板20上には、
半導体デバイスパターン21が形成されており、また、
この半導体デバイスパターン21には、TEMによって
観察する断面観察箇所22が印されている。このように
構成されたSi基板20を、まず、図9に示すように、
切断と機械研磨により断面観察箇所22を中心とした
0.2×3mmの大きさに加工する。そして次に、図1
0に示すように、FIB加工前の粗加工として、断面観
察箇所22の周辺部の半導体デバイスパターン21をレ
ーザー光(図示せず)により除去し、断面観察箇所22
の周辺部領域23を形成する。さらに、図11に示すよ
うに、FIB加工装置のGa+イオンビーム(図示せ
ず)によって断面観察箇所22の極周辺部を除去し、断
面観察箇所22の極周辺部領域24を形成する。なお、
断面観察箇所22の周辺部の半導体デバイスパターン2
1をレーザー光で除去するのは、Ga+イオンビームに
よる加工領域を狭め、試料作製時間を短縮するためであ
る。
A method of preparing a sample for cross-section observation using the above-mentioned conventional FIB processing apparatus will be described below with reference to the drawings. 8 to 11 show a cross-section observation sample preparation method using an FIB processing apparatus, and FIG.
A perspective view is shown in which a sample prepared using a FIB processing apparatus is arranged for EM observation. As shown in FIG. 8, on a silicon (hereinafter abbreviated as Si) substrate 20,
A semiconductor device pattern 21 is formed, and
On this semiconductor device pattern 21, cross-section observation points 22 to be observed by TEM are marked. First, as shown in FIG. 9, the Si substrate 20 thus configured is
By cutting and mechanical polishing, a size of 0.2 × 3 mm centering on the cross-section observation point 22 is processed. And then, as shown in FIG.
As shown in FIG. 0, as rough processing before FIB processing, the semiconductor device pattern 21 in the peripheral portion of the cross section observation spot 22 is removed by laser light (not shown), and the cross section observation spot 22 is removed.
The peripheral region 23 is formed. Further, as shown in FIG. 11, the pole peripheral portion of the cross section observation spot 22 is removed by a Ga + ion beam (not shown) of the FIB processing apparatus to form the pole peripheral portion region 24 of the cross section observation spot 22. In addition,
Semiconductor device pattern 2 around the cross-section observation point 22
The reason that 1 is removed by laser light is to narrow the processing region by the Ga + ion beam and shorten the sample preparation time.

【0005】このように、上記方法で作製した試料を、
図12で示すように、TEMによる断面観察が可能な状
態で配置し、この試料の断面観察箇所22に、TEMの
電子銃から透過電子線25を発射し、透過することによ
って観察する。
As described above, the sample produced by the above method is
As shown in FIG. 12, the sample is placed in a state where a cross-section can be observed by a TEM, and a transmission electron beam 25 is emitted from an electron gun of the TEM to a cross-section observation portion 22 of this sample, and the sample is observed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
断面観察用試料作製方法では、断面観察箇所22の周辺
部の半導体デバイスパターン21をレーザー光により除
去するという粗加工を行うため多大な時間を要し、ま
た、上記レーザー光によって、TEM観察箇所22を破
壊する危険性を有していた。
However, in the above-mentioned method for preparing a sample for cross-section observation, a large amount of time is required because the semiconductor device pattern 21 in the peripheral portion of the cross-section observation spot 22 is roughly processed by laser light. In addition, there is a risk that the laser light may destroy the TEM observation spot 22.

【0007】本発明は、断面観察試料を観察可能な厚さ
まで、簡便にかつ、短時間に薄片化することのできる試
料作製方法および加工装置を提供することを目的とす
る。
An object of the present invention is to provide a sample preparation method and a processing apparatus capable of easily and thinly slicing a cross-section observation sample up to an observable thickness in a short time.

【0008】[0008]

【課題を解決するための手段】本発明の透過型電子顕微
鏡の試料作製方法および集束イオンビーム加工装置は、
断面観察箇所とその周辺部の試料表面に、FIB加工装
置によってW蒸着膜を断面観察箇所の大きさに応じた形
状で形成し、このW蒸着膜を含む試料表面に、Arをイ
オン種としたスパッタエッチングを行うことにより、W
蒸着膜下の断面観察箇所とその周辺部を選択的に残存さ
せることを特徴とする。
A sample preparation method for a transmission electron microscope and a focused ion beam processing apparatus according to the present invention include:
A W vapor deposition film was formed on the sample surface at the cross-section observation site and its periphery by a FIB processing device in a shape corresponding to the size of the cross-section observation site, and Ar was used as an ion species on the sample surface including the W vapor deposition film. By performing sputter etching, W
It is characterized in that the cross-section observation area under the vapor deposition film and its peripheral area are selectively left.

【0009】また、本発明の透過型電子顕微鏡の試料作
製方法および集束イオンビーム加工装置は、FIB加工
装置内に、W蒸着膜の形成および微小領域のスパッタエ
ッチングができるGaをイオン種としたイオンガンに加
えて、高速かつ広範囲でスパッタエッチングできるAr
をイオン種としたイオンガンを設け、同時に2種類のス
パッタエッチングができる構成としたことを特徴とす
る。
Further, the sample preparation method for the transmission electron microscope and the focused ion beam processing apparatus of the present invention are an ion gun using Ga as an ion species capable of forming a W deposition film and sputter etching of a minute region in the FIB processing apparatus. In addition to Ar, which can perform sputter etching at high speed and in a wide range
It is characterized in that an ion gun with an ion species of 1 is provided, and two types of sputter etching can be performed at the same time.

【0010】[0010]

【作用】本発明の透過型電子顕微鏡の試料作製方法およ
び集束イオンビーム加工装置は、Arをイオン種とした
スパッタエッチングで、FIB加工装置によって形成し
たW蒸着膜と、その下の断面観察箇所を含む周辺部を高
精度かつ高速で選択的に残存させる。
The method of preparing a sample for a transmission electron microscope and the focused ion beam processing apparatus of the present invention include a W vapor deposition film formed by the FIB processing apparatus by sputter etching using Ar as an ion species, and a cross-section observation point thereunder. The peripheral part including the part is selectively left with high accuracy and high speed.

【0011】また、本発明の透過型電子顕微鏡の集束イ
オンビーム加工装置は、FIB加工装置内に、Gaをイ
オン種としたイオンガンとArをイオン種としたイオン
ガンとを設けることにより、Gaイオンによる微細加工
とArイオンによる粗加工が同時に行うことができる。
Further, the focused ion beam processing apparatus of the transmission electron microscope of the present invention uses Ga ions by providing an ion gun using Ga as an ion species and an ion gun using Ar as an ion species in the FIB processing apparatus. Fine processing and rough processing with Ar ions can be performed simultaneously.

【0012】[0012]

【実施例】以下、本発明の一実施例を図1〜図7に基づ
いて説明する。図1は、Arをイオン種としたスパッタ
エッチング機能を備えた集束イオンビーム(以下、FI
Bと略す)加工装置1を示した図である。このFIB加
工装置1には、加工室内に設けた断面観察用試料8を固
定する試料ステージ2と、同じく加工室内に設けられ前
記試料ステージ方向に原料ガスW(CO)6を噴出する
ガス噴出ノズル3と、同じく加工室内に設けられ前記試
料ステージ方向にGa+イオンビーム4を照射するGa
をイオン種としたイオンガン5と、同じく加工装置内に
設けられ前記試料ステージ方向にスパッタエッチングす
るArをイオン種としたイオンガン6と、加工室内を真
空する真空ポンプ7とによって構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a focused ion beam (hereinafter, FI) having a sputter etching function using Ar as an ion species.
It is the figure which showed the processing apparatus 1 for b). The FIB processing apparatus 1 includes a sample stage 2 for fixing a cross-section observing sample 8 provided in a processing chamber, and a gas ejection nozzle for similarly ejecting a raw material gas W (CO) 6 in the processing chamber in the direction of the sample stage. 3 and Ga, which is also provided in the processing chamber and irradiates the sample stage with a Ga + ion beam 4
The ion gun 5 is an ion gun 5, an ion gun 6 is also provided in the processing apparatus and uses Ar as an ion species for sputter etching in the sample stage direction, and a vacuum pump 7 for vacuuming the processing chamber.

【0013】また、図2には断面観察用試料の一例を示
してあり、試料であるシリコン(以下、Siと略す)基
板9上に、半導体デバイスパターン10を形成し、この
半導体デバイスパターン10に、断面観察箇所11が印
されている。
FIG. 2 shows an example of a sample for observing a cross section. A semiconductor device pattern 10 is formed on a silicon (hereinafter abbreviated as Si) substrate 9 which is a sample, and the semiconductor device pattern 10 is formed. The cross-section observation point 11 is marked.

【0014】この断面観察箇所11を、図3に示すよう
に、切断と機械研磨とで断面観察箇所11を中心に、
0.5×2.5mmの大きさに加工する。このようにし
て加工された断面観察用試料8を、上記FIB加工装置
1の試料ステージ2上に固定する。そして、図4に示す
ように、断面観察箇所11と周辺部の表面に、ガス噴出
ノズル3から噴出した原料ガスW(CO)6を、Gaを
イオン種としたイオンガン5から照射されるGa+イオ
ンビーム4で分解、堆積することによって、選択的にW
膜を蒸着させてW蒸着膜12を形成する。さらに、図5
に示すように、Arをイオン種としたイオンガン6で、
断面観察用試料8の表面を法線方向に45度の角度でス
パッタエッチングすることにより、半導体デバイスパタ
ーン10を除去し、W蒸着膜12と、W蒸着膜12下の
半導体デバイスパターン10を残存させるという粗加工
が行われる。
As shown in FIG. 3, the cross-section observation point 11 is centered on the cross-section observation point 11 by cutting and mechanical polishing.
It is processed into a size of 0.5 × 2.5 mm. The cross-section observation sample 8 thus processed is fixed on the sample stage 2 of the FIB processing apparatus 1. Then, as shown in FIG. 4, the source gas W (CO) 6 ejected from the gas ejection nozzle 3 is irradiated onto the surface of the cross-section observation portion 11 and the peripheral portion from the ion gun 5 using Ga as the ion species Ga +. By decomposing and depositing with the ion beam 4, W
The film is evaporated to form a W evaporated film 12. Furthermore, FIG.
As shown in, in the ion gun 6 using Ar as an ion species,
The semiconductor device pattern 10 is removed by sputter etching the surface of the cross-section observation sample 8 at an angle of 45 degrees in the normal direction, and the W vapor deposition film 12 and the semiconductor device pattern 10 under the W vapor deposition film 12 remain. Rough processing is performed.

【0015】このような加工ができるのは、半導体デバ
イスパターン10がW蒸着膜12よりもスパッタエッチ
ングされる速度が速いからである。このように断面観察
箇所11上にマスクとして設けられているW蒸着膜12
と、半導体デバイスパターン10のスパッタエッチング
される速度の違いを利用することによって、W蒸着膜1
2下の断面観察箇所11とその周辺部の、半導体デバイ
スパターン10を選択的に残すことができる。また、W
蒸着膜12がスパッタエッチングされる速度よりも試料
表面の材料の方が、スパッタエッチングされる速度が遅
いか、または同速度の場合は、W膜を数回に分けて蒸着
する必要がある。
Such processing is possible because the semiconductor device pattern 10 is sputter-etched at a higher speed than the W deposited film 12. Thus, the W vapor deposition film 12 provided as a mask on the cross-section observation portion 11
And the difference in the sputter etching speed of the semiconductor device pattern 10
The semiconductor device pattern 10 at the cross-section observation portion 11 below and the peripheral portion can be selectively left. Also, W
If the material on the sample surface is sputter-etched at a slower rate or at the same rate as the deposition film 12 is sputter-etched, it is necessary to deposit the W film several times.

【0016】なお上記では、Arをイオン種としたイオ
ンガン6によるスパッタエッチングの入射角を断面観察
用試料8の法線方向に対して45度としたが、試料の違
いによるスパッタエッチング選択比と試料加工速度を考
慮し、必要に応じた角度で可変できる。
In the above description, the incident angle of the sputter etching by the ion gun 6 using Ar as the ion species is 45 degrees with respect to the normal line direction of the sample 8 for observing the cross section. The angle can be changed according to need considering the processing speed.

【0017】さらに、図6に示すように、図5の断面観
察用試料8の極周辺部13のW蒸着膜12とその下の半
導体デバイスパターン10を、Gaをイオン種としたイ
オンガン5から照射されるGa+イオンビーム4によっ
てスパッタエッチングし、試料膜厚をTEM観察が可能
な0.3μm以下に薄片化する。このように、試料膜厚
をTEM観察可能が可能な0,3μm以下までに薄片で
きるのは、イオンビームを数100nmまで集束できる
Ga+イオンを使用したからである。
Further, as shown in FIG. 6, the W vapor-deposited film 12 in the extreme peripheral portion 13 of the cross-section observation sample 8 of FIG. 5 and the semiconductor device pattern 10 thereunder are irradiated from the ion gun 5 using Ga as an ion species. The Ga + ion beam 4 is used to perform sputter etching to thin the sample film to a thickness of 0.3 μm or less at which TEM observation is possible. As described above, the reason why the sample film thickness can be reduced to 0.3 μm or less at which TEM observation is possible is that Ga + ions that can focus the ion beam to several 100 nm are used.

【0018】このTEM観察可能に作製し試料を、図7
に示すように、TEMによる断面観察が可能な状態に配
置し、断面観察箇所11の断面にTEMの電子銃(図示
せず)から透過電子線14を発射させ、透過させること
によって観察する。
A sample prepared for this TEM observation is shown in FIG.
As shown in FIG. 5, the cross section is arranged so that the cross section can be observed by the TEM, and the cross section of the cross section observation portion 11 is observed by causing a transmission electron beam 14 to be emitted from the electron gun (not shown) of the TEM and transmitted.

【0019】このように、半導体デバイスパターン10
上の断面観察箇所11とその周辺部に、半導体デバイス
パターン10よりもスパッタエッチングされる速度の遅
いW蒸着膜12を形成させたため、Arをイオン種とし
たイオンガンでスパッタエッチングをしても、W蒸着膜
12下の断面観察箇所11とその周辺部の半導体デバイ
スパターン10は、選択的に残存させることができる。
Thus, the semiconductor device pattern 10
Since the W deposition film 12 having a slower sputter etching rate than the semiconductor device pattern 10 is formed on the upper cross-section observation portion 11 and its peripheral portion, even if sputter etching is performed with an ion gun using Ar as an ion species, The cross-section observation portion 11 under the vapor deposition film 12 and the semiconductor device pattern 10 in the peripheral portion can be selectively left.

【0020】また、FIB加工装置1の主装置として、
W蒸着膜12の形成および、断面観察箇所11の極周辺
部13のW蒸着膜12と、その下の半導体デバイスパタ
ーン10をスパッタエッチングする、Gaをイオン種と
したイオンガン5に加えて、高速かつ広範囲にスパッタ
エッチングする、Arをイオン種としたイオンガン6を
同一装置内に備え加工を行うため、断面観察箇所11を
破壊する危険性もなく、また、簡便にかつ短時間で断面
観察用試料8を作製することができる。
Further, as the main unit of the FIB processing apparatus 1,
In addition to the formation of the W deposition film 12 and the W deposition film 12 in the extreme peripheral portion 13 of the cross-section observation point 11 and the semiconductor device pattern 10 thereunder by sputter etching, in addition to the ion gun 5 using Ga as an ion species, high speed and Since the ion gun 6 using Ar as an ion species for performing sputter etching over a wide range is provided in the same apparatus for processing, there is no risk of destroying the cross-section observation point 11, and the cross-section observation sample 8 can be simply and quickly performed. Can be produced.

【0021】なお、上記実施例では半導体材料としてS
iを用いた基板を加工したが、別の半導体材料を用いた
基板でも同様の方法で加工できる。
In the above embodiment, S is used as the semiconductor material.
Although the substrate using i is processed, a substrate using another semiconductor material can be processed by the same method.

【0022】[0022]

【発明の効果】本発明の断面観察用試料作製方法は、断
面観察箇所を含む周辺部の断面観察用試料表面に、半導
体デバイスパターンよりもスパッタエッチング速度の遅
いW蒸着膜を形成し、このW蒸着膜を含む断面観察用試
料表面に、Arをイオン種としたスパッタエッチングを
行うことにより、断面観察箇所を含む周辺部以外の半導
体デバイスパターンを高速かつ広範囲に除去できる。
According to the method for preparing a sample for cross-section observation of the present invention, a W vapor deposition film having a slower sputter etching rate than the semiconductor device pattern is formed on the surface of the sample for cross-section observation in the peripheral portion including the cross-section observation portion. By performing sputter etching using Ar as an ion species on the surface of the sample for cross-section observation including the vapor-deposited film, the semiconductor device pattern other than the peripheral portion including the cross-section observation portion can be removed at high speed and in a wide range.

【0023】また、本発明の加工装置はFIB加工装置
内に、W蒸着膜の形成と微小領域のスパッタエッチング
ができるGaをイオン種としたイオンガンに加えて、高
速かつ広範囲で、スパッタエッチングができるArをイ
オン種としたイオンガンを備えることにより、断面観察
箇所を傷つけることなく、また、簡便にかつ短時間で断
面観察用試料が作製できる。
Further, the processing apparatus of the present invention can perform sputter etching in a wide range at high speed in addition to an ion gun using Ga as an ion species capable of forming a W vapor deposition film and sputter etching a minute area in the FIB processing apparatus. By providing an ion gun using Ar as an ion species, a cross-section observation sample can be prepared easily and in a short time without damaging the cross-section observation location.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の透過型電子顕微鏡の試料作
製方法および集束イオンビーム加工装置の正面図。
FIG. 1 is a front view of a sample preparation method for a transmission electron microscope and a focused ion beam processing apparatus according to an embodiment of the present invention.

【図2】本発明の一実施例における断面観察用試料の斜
視図。
FIG. 2 is a perspective view of a cross-section observation sample according to an example of the present invention.

【図3】同実施例における断面観察用試料の作製方法の
第1工程を示す斜視図。
FIG. 3 is a perspective view showing a first step of a method for manufacturing a cross-section observation sample in the example.

【図4】同実施例における断面観察用試料の作製方法の
第2工程を示す斜視図。
FIG. 4 is a perspective view showing a second step of the method for manufacturing the cross-section observation sample in the example.

【図5】同実施例における断面観察用試料の作製方法の
第3工程を示す斜視図。
FIG. 5 is a perspective view showing a third step of the method for manufacturing the cross-section observation sample in the example.

【図6】同実施例における断面観察用試料の作製方法の
第4工程を示す斜視図。
FIG. 6 is a perspective view showing a fourth step of the method of manufacturing the cross-section observation sample in the example.

【図7】同実施例の図6のA−A線断面図。FIG. 7 is a sectional view taken along line AA of FIG. 6 of the same embodiment.

【図8】従来例の断面観察用試料の斜視図。FIG. 8 is a perspective view of a cross-section observation sample of a conventional example.

【図9】同従来例の断面観察用試料の作製方法の第1工
程を示す斜視図。
FIG. 9 is a perspective view showing a first step of a method for manufacturing a cross-section observation sample of the conventional example.

【図10】同従来例の断面観察用試料の作製方法の第2
工程を示す斜視図。
FIG. 10 is a second method of manufacturing a sample for observing a cross section of the conventional example.
The perspective view which shows a process.

【図11】同従来例の断面観察用試料の作製方法の第3
工程を示す斜視図。
FIG. 11 is a third example of a method for manufacturing a cross-section observation sample of the conventional example.
The perspective view which shows a process.

【図12】同従来例の図11のB−B線断面図。FIG. 12 is a sectional view taken along line BB of FIG. 11 of the conventional example.

【符号の説明】[Explanation of symbols]

1 集束イオンヒーム加工装置 5 Gaをイオン種としたイオンガン 6 Arをイオン種としたイオンガン 8 断面観察用試料 10 半導体デバイスパターン 11 断面観察箇所 12 W蒸着膜 13 極周辺部 1 Focused ion heme processing device 5 Ion gun using Ga as an ion species 6 Ion gun using Ar as an ion species 8 Cross-section observation sample 10 Semiconductor device pattern 11 Cross-section observation location 12 W evaporated film 13 Very peripheral area

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 透過型電子顕微鏡で観察する断面観察箇
所とその周辺部の試料表面に、スパッタエッチング速度
の遅い物質を堆積し、この堆積したスパッタエッチング
速度の遅い物質を含む試料表面に、材料間のスパッタエ
ッチング選択比が大きいイオンを用いてスパッタエッチ
ングを行い、堆積したスパッタリング速度の遅い物質下
の断面観察箇所とその周辺部のみを選択的に残存させる
ことを特徴とする透過型電子顕微鏡の試料作製方法。
1. A material having a slow sputter etching rate is deposited on a sample surface at a cross-section observation site and its periphery to be observed by a transmission electron microscope, and the deposited sample surface containing the substance having a slow sputter etching rate is used as a material. Sputter etching is performed by using ions with a high sputter etching selection ratio, and only the cross-section observation point under the deposited substance with a slow sputtering rate and its peripheral portion are selectively left. Sample preparation method.
【請求項2】 スパッタエッチング速度の遅い物質は集
束イオンビーム加工装置によって形成される金属膜であ
り、材料間のスパッタエッチング選択比が大きいイオン
はArであることを特徴とする請求項1記載の透過型電
子顕微鏡の試料作製方法。
2. The substance having a low sputter etching rate is a metal film formed by a focused ion beam processing apparatus, and the ion having a large sputter etching selection ratio between materials is Ar. Transmission electron microscope sample preparation method.
【請求項3】 金属膜はW蒸着膜である、請求項2記載
の透過型電子顕微鏡の試料作製方法。
3. The method for preparing a sample for a transmission electron microscope according to claim 2, wherein the metal film is a W vapor deposition film.
【請求項4】 スパッタエッチングを試料表面に対し
て、特定の方向と角度で行うことを特徴とする請求項1
または2記載の透過型電子顕微鏡の試料作製方法。
4. The method according to claim 1, wherein the sputter etching is performed with respect to the sample surface at a specific direction and angle.
Alternatively, the sample preparation method of the transmission electron microscope according to the item 2.
【請求項5】 透過型電子顕微鏡で観察する断面観察箇
所とその周辺部の試料表面に、スパッタエッチング速度
の遅い物質を堆積し、この堆積したスパッタエッチング
速度の遅い物質を含む試料表面に、材料間スパッタエッ
チング選択比が大きいイオンを用いてスパッタエッチン
グを行う装置であって、2種類のスパッタエッチングを
行うため、Gaをイオン種としたイオンガンとGa以外
をイオン種としたイオンガンを備えたことを特徴とする
集束イオンビーム加工装置。
5. A material having a slow sputter etching rate is deposited on the sample surface at a cross-section observation point and its periphery observed by a transmission electron microscope, and the material is applied to the sample surface containing the deposited substance having a slow sputter etching rate. It is an apparatus for performing sputter etching using ions having a high inter-sputter etching selection ratio. For performing two types of sputter etching, an ion gun using Ga as an ion species and an ion gun using an ion species other than Ga as an ion species are provided. Characteristic focused ion beam processing equipment.
【請求項6】 2種類のスパッタエッチングガンは、G
aをイオン種としたイオンガンと、Arをイオン種とし
たイオンガンよりなることを特徴とする請求項5記載の
集束イオンビーム加工装置。
6. The two types of sputter etching guns are G
The focused ion beam processing apparatus according to claim 5, comprising an ion gun using a as an ion species and an ion gun using Ar as an ion species.
JP11884295A 1995-05-18 1995-05-18 Sample production method of transmission electron microscope and converged ion beam processing apparatus Pending JPH08313415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11884295A JPH08313415A (en) 1995-05-18 1995-05-18 Sample production method of transmission electron microscope and converged ion beam processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11884295A JPH08313415A (en) 1995-05-18 1995-05-18 Sample production method of transmission electron microscope and converged ion beam processing apparatus

Publications (1)

Publication Number Publication Date
JPH08313415A true JPH08313415A (en) 1996-11-29

Family

ID=14746509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11884295A Pending JPH08313415A (en) 1995-05-18 1995-05-18 Sample production method of transmission electron microscope and converged ion beam processing apparatus

Country Status (1)

Country Link
JP (1) JPH08313415A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011103215A (en) * 2009-11-10 2011-05-26 Sii Nanotechnology Inc Sample processing method and device
CN105547793A (en) * 2016-01-13 2016-05-04 扬州大学 Method for manufacturing complete section of corn mature seed farinaceous albumen with assistance of nail polish

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011103215A (en) * 2009-11-10 2011-05-26 Sii Nanotechnology Inc Sample processing method and device
CN105547793A (en) * 2016-01-13 2016-05-04 扬州大学 Method for manufacturing complete section of corn mature seed farinaceous albumen with assistance of nail polish

Similar Documents

Publication Publication Date Title
US5028780A (en) Preparation and observation method of micro-section
EP1918963B1 (en) Charged particle beam processing using a cluster source
US6417512B1 (en) Sample distortion removing method in thin piece forming
US7002152B2 (en) Sample preparation for transmission electron microscopy
EP1210723B1 (en) Shaped and low density focused ion beams
US20060017016A1 (en) Method for the removal of a microscopic sample from a substrate
KR100796829B1 (en) Tem sample slicing process
JPH06260129A (en) Focusing ion beam device
US5990478A (en) Method for preparing thin specimens consisting of domains of different materials
CN104737266B (en) Charged particle beam apparatus and sample manufacture method
US6527967B1 (en) Thin piece forming method
US5821544A (en) Electron microscope specimen supports
US5885354A (en) Method and apparatus for processing a specimen
US5940678A (en) Method of forming precisely cross-sectioned electron-transparent samples
JPH08313415A (en) Sample production method of transmission electron microscope and converged ion beam processing apparatus
JPH06231719A (en) Charged beam device for sectional working observation and working method
JPH11183339A (en) Sample preparation method for transmission electron microscope
JP2000230891A (en) Method for preparing sample for transmission type electron microscope
WO1999017103A2 (en) In-line fib process monitoring with wafer preservation
JP2002277364A (en) Method of working thin sample piece, and method of preparing thin sample piece
JP2004069628A (en) Method for producing in-line test sample
JP4219084B2 (en) Preparation method for thin section sample for microscope
KR20010086332A (en) Method For Observing Cross-Sectional Structure of Sample
JP2004095339A (en) Ion beam device and ion beam processing method
JPH08261897A (en) Preparation of sample of transmission electron microscope and its preparation device