JPH06231719A - Charged beam device for sectional working observation and working method - Google Patents

Charged beam device for sectional working observation and working method

Info

Publication number
JPH06231719A
JPH06231719A JP5016633A JP1663393A JPH06231719A JP H06231719 A JPH06231719 A JP H06231719A JP 5016633 A JP5016633 A JP 5016633A JP 1663393 A JP1663393 A JP 1663393A JP H06231719 A JPH06231719 A JP H06231719A
Authority
JP
Japan
Prior art keywords
sample
ion beam
electron
electron beam
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5016633A
Other languages
Japanese (ja)
Other versions
JP3132938B2 (en
Inventor
Koji Iwasaki
浩二 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP05016633A priority Critical patent/JP3132938B2/en
Publication of JPH06231719A publication Critical patent/JPH06231719A/en
Application granted granted Critical
Publication of JP3132938B2 publication Critical patent/JP3132938B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To work a transmission electron microscope sample in a specified position of a sample into a simple and more suitable form, and observe and analyze it in the site. CONSTITUTION:An ion optical system for emitting a converged ion beam 3 to a sample 4 from the transverse direction to the electron beam 7 of a transmission electron microscope is arranged, and a transmission type electron microscope sample is formed by ion beam etching. The secondary electrons by excitation of the beams 2, 7 are detected by a secondary electron detector 5 to confirm the working position, working form and section of the sample. The electron beam 7 transmitted by the sample 4 is detected by a transmitted electron detector 12 to observe a fine part. The X-ray by electron beam cooling is detected by an X-ray detector 10 to analyze the fine part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は集束イオンビーム照射に
より試料から発生する二次粒子を検出して試料表面を観
察し、試料表面の所定領域をイオンビームエッチングお
よびイオンビーム化学的気相堆積CVD加工する集束イ
オンビーム照射系およびガス供給装置を透過型電子顕微
鏡(Transmission Electron Microscope: 以下TEMと
言う)に具備することにより、TEM試料作製を簡単で
より最適な形状に加工する断面加工観察用荷電ビーム装
置および加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention detects secondary particles generated from a sample by focused ion beam irradiation and observes the sample surface, and ion beam etching and ion beam chemical vapor deposition CVD are performed on a predetermined region of the sample surface. By equipping a transmission electron microscope (hereinafter referred to as TEM) with a focused ion beam irradiation system and a gas supply device for processing, TEM sample preparation can be processed into a simpler and more optimal shape. A beam device and a processing method.

【0002】[0002]

【従来の技術】従来の集束イオンビーム加工装置は特開
昭59-168652 号公報に示されている様に、液体金属イオ
ン源から引き出し電極によりイオンを引き出し、そのイ
オンをアパーチャおよび静電レンズにより集束イオンビ
ームにし、その集束イオンビームを偏向電極により試料
表面の所定領域を照射するように偏向走査させる装置で
ある。
2. Description of the Related Art A conventional focused ion beam processing apparatus, as disclosed in Japanese Patent Laid-Open No. 59-168652, extracts ions from a liquid metal ion source by an extraction electrode, and the ions are extracted by an aperture and an electrostatic lens. It is a device that forms a focused ion beam and deflects and scans the focused ion beam by a deflection electrode so as to irradiate a predetermined region on the sample surface.

【0003】上記の走査された集束イオンビームの試料
表面への繰り返し照射により、試料の所定領域は、イオ
ンビームによりスパッタされて、削られてなくなり、ま
たデポ用ガスをノズルより供給することにより、試料の
照射領域に、イオンビームによる金属膜を成膜(Chemic
al VaperDeposition;以下CVDと略す)することがで
きる。これらの機能は、試作IC回路修正やプロセス評
価などに利用され、IC開発のデバック時間を大幅に短
縮した(月刊Senmi-conductor World,1987.9[FIBを
用いたVLSIの新しい評価・解析技術」、日本学術振
興会第132委員会第101回研究会資料,1987.11「E
Bテスタによる高速バイポーラLSIの故障解析」、
「集束イオンビームのよるICの動作解析及び配線変
更」、「集束イオンビームを用いた電子ビームテスティ
ング技術」)。そして最近、断面TEM用試料の作製を
集束イオンビーム装置で行い、試料の特定の場所の断面
TEM観察結果が報告されている(第37回応用物理学
会、1990.3「集束イオンビームを用いた断面TEM試料
作成法」)。この方法は、従来のイオンミリングによる
方法に比べると、短時間に試料の特定の場所の断面TE
M試料作製ができるものである。
By repeatedly irradiating the surface of the sample with the focused ion beam scanned as described above, a predetermined region of the sample is sputtered by the ion beam and is not scraped off. Also, by supplying a deposition gas from a nozzle, Form a metal film by ion beam in the irradiation area of the sample (Chemic
al Vaper Deposition; hereinafter abbreviated as CVD). These functions are used for modifying the prototype IC circuit and process evaluation, etc., and drastically shortened the debug time of IC development (Monthly Senmi-conductor World, 1987.9 [New evaluation and analysis technology for VLSI using FIB], Japan. Society for the Promotion of Science 132nd Committee 101st Workshop Material, 1987.11 "E
Failure analysis of high-speed bipolar LSI by B tester ”,
"IC analysis and wiring change by focused ion beam", "Electron beam testing technology using focused ion beam"). Recently, a cross-section TEM sample was prepared using a focused ion beam device, and the results of cross-section TEM observation at a specific location of the sample have been reported (The 37th Japan Society of Applied Physics, 1990.3 “Cross-section TEM using a focused ion beam”). Sample preparation method "). Compared with the conventional method using ion milling, this method allows the cross-section TE of a specific location of a sample to be taken in a shorter time.
It is possible to prepare M samples.

【0004】従来装置の一実施例である集束イオンビー
ム加工装置を図3に示す。イオン銃1に液体金属イオン
源を用い、イオン銃から引き出されたイオンビーム2
は、イオン光学系3により集束・走査され試料4表面を
照射する。なお、イオン光学系3は、イオンビーム2の
光軸近傍部分のみを通過させるアパーチャ30と、イオ
ンビーム2を集束させる静電レンズ31と、集束イオン
ビーム2を試料4表面上の所定領域を走査させる走査電
極32と、集束イオンビーム2の試料4表面上への照射
をオン・オフするためのブランカ33等よりなる。
FIG. 3 shows a focused ion beam processing apparatus which is an example of a conventional apparatus. A liquid metal ion source is used for the ion gun 1, and an ion beam 2 extracted from the ion gun
Is focused and scanned by the ion optical system 3 to irradiate the surface of the sample 4. The ion optical system 3 scans a predetermined area on the surface of the sample 4 with the aperture 30 that passes only the portion near the optical axis of the ion beam 2, the electrostatic lens 31 that focuses the ion beam 2, and the focused ion beam 2. The scanning electrode 32 is provided with a scanning electrode 32, a blanker 33 for turning on / off the irradiation of the focused ion beam 2 onto the surface of the sample 4, and the like.

【0005】イオンビーム2は、試料4表面をエッチン
グ加工すると同時に、イオンビーム励起の二次粒子を放
出する。この二次粒子の中の二次電子を二次電子検出器
で検出し、SIM像を図示しない観察用CRTに表示す
る。また、イオンビーム2照射と同時にCVDガスをガ
ス銃16ノズルより供給し、試料4表面に局所成膜をす
る。このイオンビーム加工装置は、IC配線の切断・接
続や断面加工・観察等を行うことに従来使用されてい
た。
The ion beam 2 etches the surface of the sample 4 and simultaneously emits secondary particles excited by the ion beam. Secondary electrons in the secondary particles are detected by a secondary electron detector, and a SIM image is displayed on an observation CRT (not shown). At the same time as the irradiation of the ion beam 2, the CVD gas is supplied from the gas gun 16 nozzle to locally form a film on the surface of the sample 4. This ion beam processing apparatus has been conventionally used for cutting / connecting IC wiring and for processing / observing a cross section.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来例のよう
な集束イオンビーム加工装置を用いて半導体試料の断面
を観察するために、半導体の断面TEM用試料の作製を
行う場合、まず機械研磨で半導体試料の表面の幅を数1
0μm残して削り込んだ試料の観察場所の前後を、イオ
ンビームエッチング加工で除去し、0.5μm以下の壁
を残す。次に加工形状や断面の確認を、イオンビーム照
射によるダメージを避けるために、走査電子顕微鏡(Sc
anning Electron Microscope;以下SEMと略す)像観
察で行い、必要に応じて再加工をする。そして、加工後
の試料をTEMで観察し、加工が不十分で観察できない
ときは、再びイオンビームエッチング加工行う必要があ
る。この方法では、複数の真空装置間で試料を出し入れ
するため、真空排気・試料の位置出しなどに時間がかか
ることと、最適な断面TEM試料の作製が困難であると
言う課題があった。
However, in order to observe a cross section of a semiconductor sample using a focused ion beam processing apparatus as in the conventional example, when a sample for a semiconductor cross section TEM is prepared, mechanical polishing is first performed. The width of the surface of the semiconductor sample is the number 1
The area before and after the observation location of the sample that has been carved with 0 μm left is removed by ion beam etching to leave a wall of 0.5 μm or less. Next, confirm the processed shape and cross section by scanning electron microscopy (Sc) to avoid damage due to ion beam irradiation.
anning Electron Microscope (hereinafter abbreviated as SEM) Image observation is performed, and reprocessing is performed if necessary. Then, the sample after processing is observed by TEM, and when the processing is not possible due to insufficient processing, it is necessary to perform ion beam etching processing again. In this method, since the sample is taken in and out between a plurality of vacuum devices, there are problems that it takes time to evacuate and position the sample, and that it is difficult to manufacture an optimum cross-sectional TEM sample.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明は、電子銃から放射された電子ビームを照射レ
ンズ系により細く絞り、薄膜加工された試料に照射し、
試料を透過した電子ビームを対物レンズおよび数段の拡
大レンズ系で拡大し、蛍光板上に投影して極微観察を行
う透過型電子顕微鏡に、前記電子ビーム照射により前記
試料から放出される二次電子およびX線を捕らえる二次
電子検出器とX線検出器を備えた装置において、前記電
子ビームに対して横方向からイオンビームを前記試料に
照射することができる集束イオンビーム照射系を配置し
たことを特徴とする断面加工観察用荷電ビーム装置であ
る。
In order to solve the above problems, the present invention provides an electron beam emitted from an electron gun, which is narrowed down by an irradiation lens system to irradiate a thin film processed sample,
A secondary electron emitted from the sample by irradiation with the electron beam is applied to a transmission electron microscope that magnifies the electron beam that has passed through the sample with an objective lens and a magnifying lens system of several stages and projects it on a fluorescent screen for microscopic observation. And a device equipped with a secondary electron detector for capturing X-rays and an X-ray detector, wherein a focused ion beam irradiation system capable of irradiating the sample with an ion beam laterally to the electron beam is arranged. Is a charged beam device for cross-section processing observation.

【0008】[0008]

【作用】前記集束イオンビームを走査し、集束イオンビ
ーム励起の二次電子を検出してSIM像観察を行い試料
の加工観察位置出をした後で、被加工試料表面をイオン
ビームエッチング加工できるため、被加工試料の特定箇
所の断面TEM試料を作製することができる。そして必
要に応じて、イオンビームを前記電子ビームに切り換え
SEM像およびTEM像による加工状態観察ができる。
また、前記電子ビーム励起のX線を前記X線検出器で検
出することにより微小部の元素分析ができる。さらに、
イオンビームエッチング前に、被加工試料の加工観察表
面に前記イオンビームCVDで局所成膜し試料表面を平
坦化することで、試料観察表面をイオンビーム照射によ
るダメージから保護し被加工試料表面の凹凸による加工
面(TEM観察面)の荒れを軽減することができ、イオ
ンビームエッチング加工時に被加工試料を数度傾斜する
ことで、前記集束イオンビームの広がりによる加工断面
の傾きを表面に対して垂直にしTEM観察面の薄壁の厚
さを均一にすることができる。従って、本発明はTEM
用試料作成とTEM像観察をその場で行うことができる
ため、限定された微小部の観察と分析が可能である。
Since the focused ion beam is scanned, secondary electrons excited by the focused ion beam are detected, the SIM image is observed, and the processing observation position of the sample is set, and then the sample surface to be processed can be subjected to ion beam etching processing. A cross-sectional TEM sample at a specific location of the sample to be processed can be manufactured. Then, if necessary, the ion beam is switched to the electron beam, and the processing state can be observed by the SEM image and the TEM image.
Further, elemental analysis of minute portions can be performed by detecting the X-rays excited by the electron beam with the X-ray detector. further,
Prior to ion beam etching, the sample observation surface is protected from damage due to ion beam irradiation by locally forming a film on the processing observation surface of the sample to be processed by the ion beam CVD to flatten the sample surface, and thus the unevenness of the sample surface is processed. The roughness of the processed surface (TEM observation surface) can be reduced, and the sample to be processed is tilted by several degrees during the ion beam etching process, so that the tilt of the processed cross section due to the spread of the focused ion beam is perpendicular to the surface. The thickness of the thin wall on the TEM observation surface can be made uniform. Therefore, the present invention is a TEM
Since the sample preparation and the TEM image observation can be performed on the spot, it is possible to observe and analyze a limited minute portion.

【0009】[0009]

【実施例】以下本発明の実施例について、図面に基づい
て説明する。図1は発明の断面加工観察用荷電ビーム装
置を示した概略断面図である。以下、図面に従って説明
する。イオン源1に液体金属イオン源を用い、イオン源
1より引き出されたイオンビーム2は、イオン光学系3
で加速・集束・走査され、5軸試料ステージ上の試料4
に照射される。半導体集積回路である試料4から放出さ
れるイオンビーム励起の二次電子は、二次電子検出器5
で検出され、表示用CRTにSIM(Scanning Ion mic
roscope)像が表示される。これによって、試料4表面を
観察し加工位置出しを行い、集束イオンビーム2を繰り
返し加工位置に走査しながら照射して、集束イオンビー
ム2の照射によるスパッタエッチング加工でTEM試料
作製ができる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing a charged beam device for cross-section processing and observation according to the present invention. Hereinafter, description will be given with reference to the drawings. A liquid metal ion source is used as the ion source 1, and the ion beam 2 extracted from the ion source 1 is an ion optical system 3
Sample 4 on the 5-axis sample stage accelerated / focused / scanned by
Is irradiated. Secondary electrons excited by the ion beam emitted from the sample 4 which is a semiconductor integrated circuit are detected by the secondary electron detector 5
Detected by a SIM (Scanning Ion mic)
roscope) image is displayed. Thereby, the surface of the sample 4 is observed, the processing position is set, the focused ion beam 2 is repeatedly irradiated to the processing position while being irradiated, and the TEM sample can be prepared by the sputter etching processing by the irradiation of the focused ion beam 2.

【0010】試料4は、図2に示されるように、半導体
集積回路のほぼスライス片であり、図2の試料4の左端
部4aは、半導体集積回路の表面である。試料4の左側
部分4bの上下面は、半導体集積回路の回路断面を露出
している。つまり、集束イオンビーム2を試料4の表面
方向(半導体集積回路の表面方向)から、試料4の左側
部分4bの上下面をスパッタリングにより削るように繰
り返し走査して照射する。試料4の左側部分4bの上下
面を所定量削り終えたら、次に集束イオンビーム2を電
子ビーム7に切り換える。
As shown in FIG. 2, the sample 4 is a slice of a semiconductor integrated circuit, and the left end 4a of the sample 4 in FIG. 2 is the surface of the semiconductor integrated circuit. The upper and lower surfaces of the left side portion 4b of the sample 4 expose the circuit cross section of the semiconductor integrated circuit. That is, the focused ion beam 2 is repeatedly scanned and irradiated from the surface direction of the sample 4 (the surface direction of the semiconductor integrated circuit) so as to scrape the upper and lower surfaces of the left side portion 4b of the sample 4 by sputtering. After the upper and lower surfaces of the left side portion 4b of the sample 4 have been ground by a predetermined amount, the focused ion beam 2 is switched to the electron beam 7.

【0011】電子ビーム7が、集束イオンビーム2の試
料4への照射方向に対して、垂直に試料4に照射するよ
うに電子銃6は配置されている。電子銃6より引き出さ
れた電子ビーム7は、照射レンズ系8と対物レンズ9と
で加速・集束・走査され、上記試料4に照射される。試
料4の近傍には、試料4から発生する二次電子を検出す
る二次電子検出器5と、X線を検出するX線検出器10
が配置されている。
The electron gun 6 is arranged so that the electron beam 7 irradiates the sample 4 perpendicularly to the irradiation direction of the focused ion beam 2 on the sample 4. The electron beam 7 extracted from the electron gun 6 is accelerated, focused, and scanned by the irradiation lens system 8 and the objective lens 9, and is irradiated on the sample 4. In the vicinity of the sample 4, a secondary electron detector 5 for detecting secondary electrons generated from the sample 4 and an X-ray detector 10 for detecting X-rays.
Are arranged.

【0012】試料4から放出される電子ビーム励起の二
次電子とX線は、それぞれ二次電子検出器5とX線検出
器10で検出され、図示しない表示用CRTにSEM像
やX線スペクトル・X線像が表示される。さらに、上記
試料4を透過した電子ビーム7は、拡大レンズ系11で
拡大され透過電子検出器(蛍光板)12に投影されTE
M像観察ができる。
Secondary electrons and X-rays excited by the electron beam emitted from the sample 4 are detected by a secondary electron detector 5 and an X-ray detector 10, respectively, and an SEM image and an X-ray spectrum are displayed on a display CRT (not shown).・ X-ray image is displayed. Further, the electron beam 7 transmitted through the sample 4 is magnified by the magnifying lens system 11 and projected on the transmission electron detector (fluorescent plate) 12 to TE.
M image observation is possible.

【0013】そして試料4の目的箇所が厚く電子ビーム
の透過が不十分でTEM像が暗い時は、電子ビーム7の
照射を止め、集束イオンビーム2の照射をオンにして、
それらの照射をに切り換える。集束イオンビームの走査
領域を、更に、試料4の左端部4bの厚さが薄くなるよ
うに設定する。そして、TEM試料の追加加工を行い、
再び電子ビーム7の照射によりTEM像観察をする。こ
のように本発明は、最適なTEM試料作製をその場で行
いその場でTEM像観察ができるため、限定された微小
部の観察と分析が可能である。
When the target portion of the sample 4 is thick and the transmission of the electron beam is insufficient and the TEM image is dark, the irradiation of the electron beam 7 is stopped and the irradiation of the focused ion beam 2 is turned on.
Switch their irradiation to. The scanning region of the focused ion beam is further set so that the thickness of the left end portion 4b of the sample 4 becomes thinner. Then, the TEM sample is additionally processed,
The electron beam 7 is irradiated again to observe the TEM image. As described above, according to the present invention, since optimum TEM sample preparation can be performed on the spot and the TEM image can be observed on the spot, it is possible to observe and analyze a limited minute portion.

【0014】図2は本発明の試料周辺部の拡大断面図で
ある。イオンビーム照射系の走査電極32および電子ビ
ーム照射系の走査コイル14により走査された集束イオ
ンビーム2および電子ビーム7を、試料4に交互または
同時に照射しイオンおよび電子ビーム励起の二次電子1
5を二次電子検出器5で検出して、SIM像およびSE
M像を得て、試料の加工位置・加工形状・断面の確認が
できる。
FIG. 2 is an enlarged sectional view of the peripheral portion of the sample of the present invention. Secondary electrons 1 excited by ions and electron beams by irradiating the sample 4 with the focused ion beam 2 and the electron beam 7 scanned by the scanning electrode 32 of the ion beam irradiation system and the scanning coil 14 of the electron beam irradiation system alternately or simultaneously.
5 is detected by the secondary electron detector 5, and the SIM image and SE are detected.
After obtaining the M image, the processing position, processing shape, and cross section of the sample can be confirmed.

【0015】更に、試料4への集束イオンビーム照射位
置に、金属有機化合物蒸気を局所的に吹き付けためのガ
ス銃16が設けられている。ガス銃16からの金属有機
化合物蒸気は、試料4の左端面4a(半導体集積回路の
表面に相当する)に吹き付け、そして同時に試料4の左
端面4aに集束イオンビーム2を繰り返し走査して照射
する。この金属有機化合物蒸気の左端面4aへの吹き付
けと、集束イオンビーム2の左端面4aへの照射によ
り、左端面4aに金属膜23が形成される。
Further, a gas gun 16 for locally spraying a metal-organic compound vapor is provided at the irradiation position of the focused ion beam on the sample 4. The metal-organic compound vapor from the gas gun 16 is sprayed on the left end face 4a (corresponding to the surface of the semiconductor integrated circuit) of the sample 4, and at the same time, the left end face 4a of the sample 4 is repeatedly scanned and irradiated with the focused ion beam 2. . The metal film 23 is formed on the left end face 4a by blowing the metal organic compound vapor onto the left end face 4a and irradiating the left end face 4a with the focused ion beam 2.

【0016】前述のように、集束イオンビーム2照射に
よるスパッタエッチング加工とイオンビーム2照射位置
にガス銃ノズル16からCVD有機化合物ガスを吹き付
けて局所金属膜付け加工を行い、TEM試料作製をす
る。試料4の左端面4aに金属膜23を形成する目的
は、以下の通りである。試料4である半導体集積回路の
表面側(左端面4a)から、集束イオンビーム2を照射
して半導体集積回路の断面を形成するが、半導体集積回
路の表面は、微視的には凹凸が激しく、その凹凸に影響
されて、集束イオンビーム2照射により形成される断面
も、集束イオンビーム照射方向と直角の方向に凹凸が生
じる。このため、半導体集積回路の表面に集束イオンビ
ーム2の照射と同時に、金属有機化合物蒸気を吹き付け
て、半導体集積回路の表面にCVDにより金属膜23を
形成する。この金属膜23の表面は、下地の表面の凹凸
をスムージングする(滑らかにする)効果があり、金属
膜23の表面から集束イオンビームを照射して、エッチ
ングして形成した断面が滑らかになり、その断面を観察
する場合、きれいな画像が得られる。
As described above, a TEM sample is prepared by performing a sputter etching process by irradiation with a focused ion beam 2 and a local organic metal film process by spraying a CVD organic compound gas from the gas gun nozzle 16 to the irradiation position of the ion beam 2. The purpose of forming the metal film 23 on the left end surface 4a of the sample 4 is as follows. The cross-section of the semiconductor integrated circuit is formed by irradiating the focused ion beam 2 from the surface side (left end surface 4a) of the semiconductor integrated circuit which is the sample 4, but the surface of the semiconductor integrated circuit is microscopically rough. Due to the unevenness, the cross section formed by the irradiation of the focused ion beam 2 also has unevenness in the direction perpendicular to the focused ion beam irradiation direction. Therefore, simultaneously with the irradiation of the focused ion beam 2 on the surface of the semiconductor integrated circuit, a metal organic compound vapor is sprayed to form a metal film 23 on the surface of the semiconductor integrated circuit by CVD. The surface of the metal film 23 has an effect of smoothing (smoothing) the unevenness of the surface of the underlayer, and the focused ion beam is radiated from the surface of the metal film 23 to smooth the cross section formed by etching, When observing the cross section, a clear image is obtained.

【0017】この様に、集束イオンビーム2で断面加工
した試料4に、電子ビーム照射系から電子ビーム7を試
料4の左側部分4bの断面に照射し、試料4の左側部分
4bを透過した電子ビーム7強度を透過電子検出器12
でモニターすることにより、加工時の試料4厚さを推測
することができるため、TEM試料の厚さを最適にする
ことが可能である。さらに電子ビーム7励起のX線をX
線検出器10で検出することで極小部の分析が可能であ
る。
As described above, the electron beam irradiation system irradiates the sample 4 whose cross section is processed with the focused ion beam 2 to the cross section of the left side portion 4b of the sample 4 and the electrons transmitted through the left side portion 4b of the sample 4 are irradiated. Beam 7 intensity is transmitted electron detector 12
The thickness of the TEM sample can be optimized because the thickness of the sample 4 at the time of processing can be estimated by monitoring with. In addition, X-rays excited by the electron beam 7
By detecting with the line detector 10, it is possible to analyze the minimum portion.

【0018】図4は本発明の加工方法を説明するため一
実施例を示す図である。断面TEM観察用試料4である
半導体集積回路(IC)試料の観察予定範囲を含む表面
層(デバイス形成領域)を、機械研磨で図4(a)のよ
うな形状に削り込む。試料4は、半導体集積回路を0.
5〜1mmの幅でスライスし、更に表面4aに形成されて
いるデバイス部を50〜100μmの深さで100μm
以下を残し除去する。
FIG. 4 is a diagram showing an embodiment for explaining the processing method of the present invention. The surface layer (device formation region) including the observation planned range of the semiconductor integrated circuit (IC) sample which is the cross-sectional TEM observation sample 4 is cut into a shape as shown in FIG. 4A by mechanical polishing. Sample 4 has a semiconductor integrated circuit of 0.
Slice it to a width of 5 to 1 mm, and further cut the device portion formed on the surface 4a to a depth of 50 to 100 μm and 100 μm.
Remove leaving behind:

【0019】次に試料4の表面4aを集束イオンビーム
照射系により集束イオンビーム2を走査しながら照射
し、その照射による二次電子を二次電子検出器5により
検出してSIM像を観察し、その観察画像は、例えば図
4(b)のようになる。次に、SIM観察画像から、断
面観察位置22を設定する。本実施例の場合の断面観察
位置22は、コンタクトホール19の断面である。そし
て、観察位置22であるであるコンタクトホール部19
を含む広範囲にCVD金属膜23の局所成膜エリア20
を指定し、ガス銃16からのCVDガス吹き付けと、局
所成膜エリア20内の集束イオンビーム2の繰り返し照
射により金属膜23の膜付け加工を行う。この金属膜2
3は集束イオンビーム2の照射による試料表面4aのダ
メージを軽減する効果がある。
Next, the surface 4a of the sample 4 is irradiated with the focused ion beam 2 while being scanned by the focused ion beam irradiation system, and secondary electrons due to the irradiation are detected by the secondary electron detector 5 to observe the SIM image. The observed image is, for example, as shown in FIG. Next, the cross-section observation position 22 is set from the SIM observation image. The cross-section observation position 22 in this embodiment is the cross-section of the contact hole 19. Then, the contact hole portion 19 which is the observation position 22
The local film formation area 20 of the CVD metal film 23 in a wide range including
And the CVD gas is sprayed from the gas gun 16 and the focused ion beam 2 in the local film forming area 20 is repeatedly irradiated to perform the film forming process of the metal film 23. This metal film 2
3 has the effect of reducing damage to the sample surface 4a due to irradiation with the focused ion beam 2.

【0020】このとき断面観察位置22の両端部に、集
束イオンビーム2の照射してエッチングによる穴あけ加
工で目印21を付け、観察位置を簡単に見つけ正確に加
工できるようにする。そして図4(c)のように、コン
タクトホール部19の中心部を幅0.05〜0.2μm
残し、左右のエッチングエリア24を深さ10μm位集
束イオンビーム2でスパッタエッチング加工で除去す
る。
At this time, the both ends of the cross-section observation position 22 are irradiated with the focused ion beam 2 and marked 21 by the drilling process by etching so that the observation position can be easily found and processed accurately. Then, as shown in FIG. 4C, the central portion of the contact hole portion 19 has a width of 0.05 to 0.2 μm.
The left and right etching areas 24 are removed by sputter etching with a focused ion beam 2 having a depth of about 10 μm.

【0021】この時、図4(d)のように試料4を数度
(2〜5°)傾けることにより、集束イオンビーム2の
形状によるエッチング断面の傾きを補正し、垂直な薄壁
を作製することができる。そして電子ビーム照射系から
電子ビーム7を試料4のデバイス断面4bの観察位置に
照射し、透過電子検出器12により透過電子を検出し、
透過電子強度が十分であることを確認する。透過電子強
度が小さい場合、再び図4(c)のエッチングエリア2
4を断面観察位置22に近づけて、集束イオンビーム2
の照射を行う。電子ビームは、図1に示す様に、集束イ
オンビームの光軸と直角になっており、試料4の断面に
垂直に照射する。図4(e)、(f)はそれぞれ加工後
の上面および断面の試料4の形状である。
At this time, by tilting the sample 4 by several degrees (2 to 5 °) as shown in FIG. 4D, the tilt of the etching cross section due to the shape of the focused ion beam 2 is corrected and a vertical thin wall is produced. can do. Then, the electron beam 7 is irradiated from the electron beam irradiation system to the observation position of the device cross section 4b of the sample 4, and the transmitted electrons are detected by the transmitted electron detector 12.
Confirm that the transmitted electron intensity is sufficient. When the transmitted electron intensity is low, the etching area 2 in FIG.
4 near the cross-section observation position 22 and focus ion beam 2
Irradiation. As shown in FIG. 1, the electron beam is perpendicular to the optical axis of the focused ion beam, and irradiates the cross section of the sample 4 perpendicularly. 4E and 4F show the shapes of the sample 4 on the upper surface and the cross section after processing, respectively.

【0022】この試料4の加工断面に垂直方向から電子
ビーム7を照射したときのSEM像が、図5(a)であ
る。このSEM像観察は、イオンビーム加工作業中必要
に応じて、イオンビーム2を電子ビーム7に切り換えて
行えるので、加工位置・加工形状・断面などの確認が容
易にできる。また電子ビーム7励起のX線をX線検出器
で検出しスペクトル表示したのが図5(b)であり、ア
ルミ(Al)のX線像を表示したのが図5(c)であ
る。このように特定場所の微小部元素分析も容易に行う
ことができる。従って、本発明はTEM試料作製と図5
(d)のような断面TEM像観察もその場で行うことが
できるため、特定箇所の観察と分析が可能である。
FIG. 5 (a) is an SEM image when the processed cross section of the sample 4 is irradiated with the electron beam 7 from the vertical direction. This SEM image observation can be performed by switching the ion beam 2 to the electron beam 7 as needed during the ion beam processing operation, so that the processing position, processing shape, cross section, etc. can be easily confirmed. In addition, FIG. 5B shows the spectrum of the X-rays excited by the electron beam 7 detected by the X-ray detector, and FIG. 5C shows the X-ray image of aluminum (Al). In this way, it is possible to easily perform elemental analysis of a minute portion at a specific place. Therefore, the present invention is based on TEM sample preparation and FIG.
Since the cross-sectional TEM image observation as shown in (d) can also be performed on the spot, it is possible to observe and analyze a specific portion.

【0023】[0023]

【発明の効果】以上見てきたように本発明によれば、特
定場所の断面TEM用試料をイオンビーム加工により行
え、加工作業中、必要に応じてイオンビームを電子ビー
ムに切り換えSEM像観察やX線分析が行えるため、加
工位置・加工形状・断面の確認や微小部分析が容易にで
き、また局所成膜と試料の傾斜により、被加工試料表面
を保護し垂直で平坦な断面作製ができ、さらにその場で
断面TEM像観察ができるので、特定場所の断面TEM
観察に有効である。
As described above, according to the present invention, a sample for a cross-section TEM at a specific place can be processed by ion beam processing, and during processing work, the ion beam is switched to an electron beam as necessary and SEM image observation and Since X-ray analysis can be performed, it is easy to confirm the processing position, processing shape, and cross section and analyze minute parts. Also, the local film formation and sample inclination protect the surface of the sample to be processed and make a vertical and flat cross section. In addition, since the cross-sectional TEM image can be observed on the spot, the cross-sectional TEM at a specific place can be observed.
It is effective for observation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す概略断面図である。FIG. 1 is a schematic sectional view showing an embodiment of the present invention.

【図2】本発明の試料周辺部の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a sample peripheral portion of the present invention.

【図3】従来装置の実施例を示す概略断面図である。FIG. 3 is a schematic sectional view showing an embodiment of a conventional device.

【図4】本発明の加工実施例を説明するための図であ
る。
FIG. 4 is a diagram for explaining a working example of the present invention.

【図5】本発明の観察・分析実施例を説明するための図
である。
FIG. 5 is a diagram for explaining an observation / analysis example of the present invention.

【符号の説明】[Explanation of symbols]

1 イオン源 2 集束イオンビーム 3 イオン光学系 4 試料 5 二次電子検出器 6 電子銃 7 電子ビーム 8 電子ビームレンズ系 9 対物レンズ 10 X線検出器 11 拡大レンズ系 12 透過電子検出器 14 走査コイル 15 二次電子 16 ガス銃(ノズル) 17 アルミ配線 18 ポリシリコン配線 19 コンタクトホール 20 局所成膜エリア 21 目印(イオンエッチングによる穴あけ) 22 断面観察位置 23 金属膜(イオンビームCVDによる局所成膜) 24 エッチングエリア 25 保護膜 26 シリコン基板 32 走査電極 1 ion source 2 focused ion beam 3 ion optical system 4 sample 5 secondary electron detector 6 electron gun 7 electron beam 8 electron beam lens system 9 objective lens 10 X-ray detector 11 magnifying lens system 12 transmission electron detector 14 scanning coil 15 Secondary Electron 16 Gas Gun (Nozzle) 17 Aluminum Wiring 18 Polysilicon Wiring 19 Contact Hole 20 Local Film Formation Area 21 Mark (Drilling by Ion Etching) 22 Cross Section Observation Position 23 Metal Film (Local Film Formation by Ion Beam CVD) 24 Etching area 25 Protective film 26 Silicon substrate 32 Scan electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電子ビームを発生する電子銃と、前記電
子ビームを細く絞り、試料面に照射する電子ビームレン
ズ系と、前記試料を透過した電子ビームを拡大する拡大
レンズ系と、前記拡大レンズ系により拡大された電子ビ
ームを蛍光板に投影して極微観察する透過電子検出器
と、前記電子ビームの試料照射方向に対して直角にイオ
ンビームを発生するイオン銃と、前記イオンビームを集
束しかつ走査させながら前記電子ビームの試料照射方向
に対して直角に前記試料に照射するイオン光学系と、前
記電子ビーム照射および前記集束イオンビーム照射によ
り前記試料から放出される二次電子およびX線を捕らえ
る二次電子検出器とX線検出器とからなることを特徴と
する断面加工観察用荷電ビーム装置。
1. An electron gun for generating an electron beam, an electron beam lens system for narrowing the electron beam to irradiate a sample surface, a magnifying lens system for magnifying the electron beam transmitted through the sample, and the magnifying lens. A transmission electron detector for projecting an electron beam expanded by the system onto a fluorescent plate for microscopic observation; an ion gun for generating an ion beam at a right angle to the sample irradiation direction of the electron beam; and for focusing the ion beam An ion optical system that irradiates the sample at right angles to the sample irradiation direction of the electron beam while scanning, and captures secondary electrons and X-rays emitted from the sample by the electron beam irradiation and the focused ion beam irradiation. A charged beam device for cross-section processing observation, which comprises a secondary electron detector and an X-ray detector.
【請求項2】 更に前記試料の集束イオンビーム照射位
置に金属化合物蒸気を吹き付けるためのガス銃を備えた
ことを特徴とする請求項1記載の断面加工観察用荷電ビ
ーム装置。
2. The charged particle beam apparatus for cross-section processing observation according to claim 1, further comprising a gas gun for spraying a metal compound vapor at a focused ion beam irradiation position of the sample.
【請求項3】 集束イオンビーム照射により得られるS
IM像観察により前記試料の加工位置出しを行い、加工
位置の両端に前記集束イオンビームエッチングによる穴
あけ加工で目印を付け、前記試料の特定の場所を正確に
加工することを特徴とする集束荷電ビーム加工方法。
3. S obtained by focused ion beam irradiation
A focused charged beam characterized in that a processing position of the sample is set by observing an IM image, and a mark is made at both ends of the processing position by drilling by the focused ion beam etching, and a specific place of the sample is accurately processed. Processing method.
JP05016633A 1993-02-03 1993-02-03 Charged beam device for cross-section processing observation and processing method Expired - Lifetime JP3132938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05016633A JP3132938B2 (en) 1993-02-03 1993-02-03 Charged beam device for cross-section processing observation and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05016633A JP3132938B2 (en) 1993-02-03 1993-02-03 Charged beam device for cross-section processing observation and processing method

Publications (2)

Publication Number Publication Date
JPH06231719A true JPH06231719A (en) 1994-08-19
JP3132938B2 JP3132938B2 (en) 2001-02-05

Family

ID=11921769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05016633A Expired - Lifetime JP3132938B2 (en) 1993-02-03 1993-02-03 Charged beam device for cross-section processing observation and processing method

Country Status (1)

Country Link
JP (1) JP3132938B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792062A (en) * 1993-03-04 1995-04-07 Natl Res Inst For Metals Site manufacture of thin film sample for transmission type electron microscope, and method and device for observing the sample
WO1997005644A1 (en) * 1995-07-25 1997-02-13 Nmi Naturwissenschaftliches Und Medizinisches Institut An Der Universität Tübingen In Reutlingen Process and device for ion thinning in a high-resolution transmission electron microscope
JP2005015922A (en) * 2003-06-27 2005-01-20 Fei Co Proximity deposition method and system therefor
JP2006127850A (en) * 2004-10-27 2006-05-18 Hitachi High-Technologies Corp Charged particle beam device and sample manufacturing method
JP2007193977A (en) * 2006-01-17 2007-08-02 Hitachi High-Technologies Corp Charged particle beam apparatus and charged particle beam processing method
JP2007214088A (en) * 2006-02-13 2007-08-23 Hitachi High-Technologies Corp Focusing ion beam processing monitoring device, sample processing method, and sample monitoring method
JP2009026621A (en) * 2007-07-20 2009-02-05 Hitachi High-Technologies Corp Charged particle beam device, and sample processing/observing method
WO2012132230A1 (en) * 2011-03-31 2012-10-04 株式会社日立ハイテクノロジーズ Electron microscope
WO2012169323A1 (en) * 2011-06-06 2012-12-13 株式会社日立ハイテクノロジーズ Charged particle beam device and sample production method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792062A (en) * 1993-03-04 1995-04-07 Natl Res Inst For Metals Site manufacture of thin film sample for transmission type electron microscope, and method and device for observing the sample
WO1997005644A1 (en) * 1995-07-25 1997-02-13 Nmi Naturwissenschaftliches Und Medizinisches Institut An Der Universität Tübingen In Reutlingen Process and device for ion thinning in a high-resolution transmission electron microscope
US6218663B1 (en) 1995-07-25 2001-04-17 Nmi Naturwissenschaftliches Und Medizinisches Process and device for ion thinning in a high resolution transmission electron microscope
JP2005015922A (en) * 2003-06-27 2005-01-20 Fei Co Proximity deposition method and system therefor
US7928377B2 (en) 2004-10-27 2011-04-19 Hitachi High-Technologies Corporation Charged particle beam apparatus and sample manufacturing method
JP2006127850A (en) * 2004-10-27 2006-05-18 Hitachi High-Technologies Corp Charged particle beam device and sample manufacturing method
JP2007193977A (en) * 2006-01-17 2007-08-02 Hitachi High-Technologies Corp Charged particle beam apparatus and charged particle beam processing method
JP2007214088A (en) * 2006-02-13 2007-08-23 Hitachi High-Technologies Corp Focusing ion beam processing monitoring device, sample processing method, and sample monitoring method
JP2009026621A (en) * 2007-07-20 2009-02-05 Hitachi High-Technologies Corp Charged particle beam device, and sample processing/observing method
JP4691529B2 (en) * 2007-07-20 2011-06-01 株式会社日立ハイテクノロジーズ Charged particle beam apparatus and sample processing observation method
US8455824B2 (en) 2007-07-20 2013-06-04 Hitachi High-Technologies Corporation Charged particle beam apparatus, and sample processing and observation method
WO2012132230A1 (en) * 2011-03-31 2012-10-04 株式会社日立ハイテクノロジーズ Electron microscope
JP5771685B2 (en) * 2011-03-31 2015-09-02 株式会社日立ハイテクノロジーズ electronic microscope
WO2012169323A1 (en) * 2011-06-06 2012-12-13 株式会社日立ハイテクノロジーズ Charged particle beam device and sample production method
US8933423B2 (en) 2011-06-06 2015-01-13 Hitachi High-Technologies Corporation Charged particle beam device and sample production method

Also Published As

Publication number Publication date
JP3132938B2 (en) 2001-02-05

Similar Documents

Publication Publication Date Title
JP3119959B2 (en) Focused ion beam device and processing observation device
JP6224612B2 (en) High-throughput TEM preparation process and hardware for backside thinning of cross-section observation slices
US8835845B2 (en) In-situ STEM sample preparation
JP5873227B2 (en) Slice and view with decoration
TWI409847B (en) Focused ion beam apparatus and sample section forming and thin-piece sample preparing methods
JP5086706B2 (en) Plane view sample preparation
US8399831B2 (en) Forming an image while milling a work piece
JP6113842B2 (en) End point determination of focused ion beam processing
JP5600371B2 (en) Sputtering coating of protective layer for charged particle beam processing
US8269194B2 (en) Composite focused ion beam device, and processing observation method and processing method using the same
TWI628702B (en) High aspect ratio structure analysis
JP5492364B2 (en) 3D fiducial mark
JP6974820B2 (en) Charged particle beam device, sample processing method
US9368325B2 (en) TEM sample preparation
JP2004087174A (en) Ion beam device, and working method of the same
JPH0476437A (en) Converged charge beam processing method
JP3132938B2 (en) Charged beam device for cross-section processing observation and processing method
US6297503B1 (en) Method of detecting semiconductor defects
JPH1145679A (en) Cross section observing device
JP2016058383A (en) Automated slice and view undercut
WO2019168106A1 (en) Thin-sample-piece fabricating device and thin-sample-piece fabricating method
JP2004095339A (en) Ion beam device and ion beam processing method
JP2005044570A (en) Semiconductor processing/observing device
JP2887407B2 (en) Sample observation method using focused ion beam

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 13