JP3132938B2 - Charged beam device for cross-section processing observation and processing method - Google Patents
Charged beam device for cross-section processing observation and processing methodInfo
- Publication number
- JP3132938B2 JP3132938B2 JP05016633A JP1663393A JP3132938B2 JP 3132938 B2 JP3132938 B2 JP 3132938B2 JP 05016633 A JP05016633 A JP 05016633A JP 1663393 A JP1663393 A JP 1663393A JP 3132938 B2 JP3132938 B2 JP 3132938B2
- Authority
- JP
- Japan
- Prior art keywords
- sample
- ion beam
- electron
- observation
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000012545 processing Methods 0.000 title claims description 35
- 238000003672 processing method Methods 0.000 title claims description 4
- 238000010884 ion-beam technique Methods 0.000 claims description 79
- 238000010894 electron beam technology Methods 0.000 claims description 37
- 230000001678 irradiating effect Effects 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 6
- 238000005507 spraying Methods 0.000 claims description 4
- 150000002736 metal compounds Chemical class 0.000 claims description 3
- 239000010409 thin film Substances 0.000 claims 1
- 150000002500 ions Chemical class 0.000 description 17
- 239000004065 semiconductor Substances 0.000 description 16
- 238000005530 etching Methods 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 238000003917 TEM image Methods 0.000 description 6
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 238000000992 sputter etching Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 229910001338 liquidmetal Inorganic materials 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000011163 secondary particle Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 150000002902 organometallic compounds Chemical class 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000002083 X-ray spectrum Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000005464 sample preparation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Description
【0001】[0001]
【産業上の利用分野】本発明は集束イオンビーム照射に
より試料から発生する二次粒子を検出して試料表面を観
察し、試料表面の所定領域をイオンビームエッチングお
よびイオンビーム化学的気相堆積CVD加工する集束イ
オンビーム照射系およびガス供給装置を透過型電子顕微
鏡(Transmission Electron Microscope: 以下TEMと
言う)に具備することにより、TEM試料作製を簡単で
より最適な形状に加工する断面加工観察用荷電ビーム装
置および加工方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting secondary particles generated from a sample by irradiating a focused ion beam, observing the surface of the sample, ion beam etching and ion beam chemical vapor deposition CVD of a predetermined region of the sample surface. By equipping a transmission electron microscope (hereinafter abbreviated as TEM) with a focused ion beam irradiation system and a gas supply device to be processed, the charge for cross-section processing observation can be processed into a simple and more optimal shape for TEM sample preparation. The present invention relates to a beam device and a processing method.
【0002】[0002]
【従来の技術】従来の集束イオンビーム加工装置は特開
昭59-168652 号公報に示されている様に、液体金属イオ
ン源から引き出し電極によりイオンを引き出し、そのイ
オンをアパーチャおよび静電レンズにより集束イオンビ
ームにし、その集束イオンビームを偏向電極により試料
表面の所定領域を照射するように偏向走査させる装置で
ある。2. Description of the Related Art As shown in Japanese Patent Application Laid-Open No. Sho 59-168652, a conventional focused ion beam processing apparatus extracts ions from a liquid metal ion source by an extraction electrode, and extracts the ions by an aperture and an electrostatic lens. This is a device that forms a focused ion beam, and deflects and scans the focused ion beam so as to irradiate a predetermined region of the sample surface with a deflection electrode.
【0003】上記の走査された集束イオンビームの試料
表面への繰り返し照射により、試料の所定領域は、イオ
ンビームによりスパッタされて、削られてなくなり、ま
たデポ用ガスをノズルより供給することにより、試料の
照射領域に、イオンビームによる金属膜を成膜(Chemic
al Vapor Deposition;以下CVDと略す)することが
できる。これらの機能は、試作IC回路修正やプロセス
評価などに利用され、IC開発のデバック時間を大幅に
短縮した(月刊Semiconductor World,1987.9[FIBを
用いたVLSIの新しい評価・解析技術」、日本学術振
興会第132委員会第101回研究会資料,1987.11「E
Bテスタによる高速バイポーラLSIの故障解析」、
「集束イオンビームのよるICの動作解析及び配線変
更」、「集束イオンビームを用いた電子ビームテスティ
ング技術」)。そして最近、断面TEM用試料の作製を
集束イオンビーム装置で行い、試料の特定の場所の断面
TEM観察結果が報告されている(第37回応用物理学
会、1990.3「集束イオンビームを用いた断面TEM試料
作成法」)。この方法は、従来のイオンミリングによる
方法に比べると、短時間に試料の特定の場所の断面TE
M試料作製ができるものである。By repeatedly irradiating the sample surface with the scanned focused ion beam, a predetermined region of the sample is sputtered by the ion beam and is not cut off. Further, by supplying a deposition gas from a nozzle, Form a metal film by ion beam on the irradiation area of the sample (Chemic
al Vapo r D eposition; may be abbreviated as CVD) it is. These functions are used to modify the prototype IC circuit and process evaluation, etc., and greatly reduce the debugging time of IC development ( Semiconductor World, 1987.9 [New VLSI evaluation and analysis technology using FIB], Japan Society for the Promotion of Science 132nd Committee, 101st meeting, 1987.11 "E
Failure analysis of high-speed bipolar LSI using B tester ",
"Operation analysis and wiring change of IC using focused ion beam", "Electron beam testing technology using focused ion beam"). Recently, a cross-sectional TEM sample has been produced using a focused ion beam apparatus, and the results of cross-sectional TEM observation at a specific location of the sample have been reported (37th Japan Society of Applied Physics, 1990.3, “Cross-sectional TEM using focused ion beam”). Sample preparation method ”). This method has a shorter cross-section TE at a specific location of the sample than the conventional ion milling method.
It can produce M samples.
【0004】従来装置の一実施例である集束イオンビー
ム加工装置を図3に示す。イオン銃1に液体金属イオン
源を用い、イオン銃から引き出されたイオンビーム2
は、イオン光学系3により集束・走査され試料4表面を
照射する。なお、イオン光学系3は、イオンビーム2の
光軸近傍部分のみを通過させるアパーチャ30と、イオ
ンビーム2を集束させる静電レンズ31と、集束イオン
ビーム2を試料4表面上の所定領域を走査させる走査電
極32と、集束イオンビーム2の試料4表面上への照射
をオン・オフするためのブランカ33等よりなる。FIG. 3 shows a focused ion beam processing apparatus which is an embodiment of the conventional apparatus. A liquid metal ion source is used for an ion gun 1 and an ion beam 2 extracted from the ion gun
Is focused and scanned by the ion optical system 3 and irradiates the surface of the sample 4. The ion optical system 3 includes an aperture 30 for passing only the portion near the optical axis of the ion beam 2, an electrostatic lens 31 for focusing the ion beam 2, and a scanning of the focused ion beam 2 over a predetermined area on the surface of the sample 4. A scanning electrode 32 to be turned on and a blanker 33 for turning on / off the irradiation of the focused ion beam 2 on the surface of the sample 4 and the like.
【0005】イオンビーム2は、試料4表面をエッチン
グ加工すると同時に、イオンビーム励起の二次粒子を放
出する。この二次粒子の中の二次電子を二次電子検出器
5で検出し、SIM像を図示しない観察用CRTに表示
する。また、イオンビーム2照射と同時にCVDガスを
ガス銃16ノズルより供給し、試料4表面に局所成膜を
する。このイオンビーム加工装置は、IC配線の切断・
接続や断面加工・観察等を行うことに従来使用されてい
た。The ion beam 2 emits secondary particles excited by the ion beam at the same time as etching the surface of the sample 4. The secondary electrons in these secondary particles are detected by a secondary electron detector.
5 , and a SIM image is displayed on an observation CRT (not shown). Simultaneously with the irradiation of the ion beam 2, a CVD gas is supplied from a gas gun 16 nozzle to form a local film on the surface of the sample 4. This ion beam processing device cuts and cuts IC wiring.
It was conventionally used for connection, cross-section processing, observation, etc.
【0006】[0006]
【発明が解決しようとする課題】しかし、従来例のよう
な集束イオンビーム加工装置を用いて半導体試料の断面
を観察するために、半導体の断面TEM用試料の作製を
行う場合、まず機械研磨で半導体試料の表面の幅を数1
0μm残して削り込んだ試料の観察場所の前後を、イオ
ンビームエッチング加工で除去し、0.5μm以下の壁
を残す。次に加工形状や断面の確認を、イオンビーム照
射によるダメージを避けるために、走査電子顕微鏡(Sc
anning Electron Microscope;以下SEMと略す)像観
察で行い、必要に応じて再加工をする。そして、加工後
の試料をTEMで観察し、加工が不十分で観察できない
ときは、再びイオンビームエッチング加工行う必要があ
る。この方法では、複数の真空装置間で試料を出し入れ
するため、真空排気・試料の位置出しなどに時間がかか
ることと、最適な断面TEM試料の作製が困難であると
言う課題があった。However, in order to observe a cross section of a semiconductor sample using a focused ion beam processing apparatus as in the prior art, when preparing a sample for a semiconductor cross section TEM, first, mechanical polishing is performed. The width of the semiconductor sample surface is
The portion before and after the observation site of the sample, which has been cut down to leave 0 μm, is removed by ion beam etching to leave a wall of 0.5 μm or less. Next, check the processing shape and cross section by using a scanning electron microscope (Sc
Anning Electron Microscope (hereinafter abbreviated as SEM) is performed by image observation, and reworked as necessary. Then, the sample after processing is observed with a TEM, and if the processing is not possible due to insufficient processing, it is necessary to perform ion beam etching again. In this method, since a sample is taken in and out between a plurality of vacuum apparatuses, there are problems that it takes time to evacuate and position the sample, and that it is difficult to manufacture an optimum cross-sectional TEM sample.
【0007】[0007]
【課題を解決するための手段】上記課題を解決するため
に本発明は、電子銃から放射された電子ビームを照射レ
ンズ系により細く絞り、薄膜加工された試料に照射し、
試料を透過した電子ビームを対物レンズおよび数段の拡
大レンズ系で拡大し、蛍光板上に投影して極微観察を行
う透過型電子顕微鏡に、前記電子ビーム照射により前記
試料から放出される二次電子およびX線を捕らえる二次
電子検出器とX線検出器を備えた装置において、前記電
子ビームに対して横方向からイオンビームを前記試料に
照射することができる集束イオンビーム照射系を配置し
たことを特徴とする断面加工観察用荷電ビーム装置であ
る。SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides an electron beam emitted from an electron gun, which is narrowed down by an irradiation lens system to irradiate a thin film-processed sample.
The electron beam transmitted through the sample is magnified by an objective lens and a several-stage magnifying lens system, and is projected onto a fluorescent screen for microscopic observation by a transmission electron microscope. And a secondary electron detector for capturing X-rays and an X-ray detector, wherein a focused ion beam irradiation system capable of irradiating the sample with an ion beam from a lateral direction with respect to the electron beam is arranged. This is a charged beam device for cross-section processing observation.
【0008】[0008]
【作用】前記集束イオンビームを走査し、集束イオンビ
ーム励起の二次電子を検出してSIM像観察を行い試料
の加工観察位置出をした後で、被加工試料表面をイオン
ビームエッチング加工できるため、被加工試料の特定箇
所の断面TEM試料を作製することができる。そして必
要に応じて、イオンビームを前記電子ビームに切り換え
SEM像およびTEM像による加工状態観察ができる。
また、前記電子ビーム励起のX線を前記X線検出器で検
出することにより微小部の元素分析ができる。さらに、
イオンビームエッチング前に、被加工試料の加工観察表
面に前記イオンビームCVDで局所成膜し試料表面を平
坦化することで、試料観察表面をイオンビーム照射によ
るダメージから保護し被加工試料表面の凹凸による加工
面(TEM観察面)の荒れを軽減することができ、イオ
ンビームエッチング加工時に被加工試料を数度傾斜する
ことで、前記集束イオンビームの広がりによる加工断面
の傾きを表面に対して垂直にしTEM観察面の薄壁の厚
さを均一にすることができる。従って、本発明はTEM
用試料作成とTEM像観察をその場で行うことができる
ため、限定された微小部の観察と分析が可能である。Since the focused ion beam is scanned, secondary electrons excited by the focused ion beam are detected, the SIM image is observed, and the sample is observed at the processing observation position. Then, the surface of the sample to be processed can be subjected to ion beam etching. Thus, a cross-sectional TEM sample at a specific portion of the sample to be processed can be manufactured. Then, if necessary, the ion beam is switched to the electron beam, and the processing state can be observed with the SEM image and the TEM image.
Further, by detecting the X-ray excited by the electron beam with the X-ray detector, elemental analysis of a minute portion can be performed. further,
Prior to ion beam etching, a film is locally formed on the processing observation surface of the sample to be processed by the ion beam CVD, and the sample surface is flattened, thereby protecting the sample observation surface from damage due to ion beam irradiation, and asperity on the surface of the sample to be processed. The roughness of the processing surface (TEM observation surface) due to the above can be reduced, and by tilting the sample to be processed several degrees during the ion beam etching processing, the inclination of the processing cross section due to the spread of the focused ion beam is perpendicular to the surface. The thickness of the thin wall of the TEM observation surface can be made uniform. Therefore, the present invention provides a TEM
Since preparation of a sample for use and observation of a TEM image can be performed on the spot, observation and analysis of a limited minute portion are possible.
【0009】[0009]
【実施例】以下本発明の実施例について、図面に基づい
て説明する。図1は発明の断面加工観察用荷電ビーム装
置を示した概略断面図である。以下、図面に従って説明
する。イオン源1に液体金属イオン源を用い、イオン源
1より引き出されたイオンビーム2は、イオン光学系3
で加速・集束・走査され、5軸試料ステージ上の試料4
に照射される。半導体集積回路である試料4から放出さ
れるイオンビーム励起の二次電子は、二次電子検出器5
で検出され、表示用CRTにSIM(Scanning Ion Mic
roscope)像が表示される。これによって、試料4表面を
観察し加工位置出しを行い、集束イオンビーム2を繰り
返し加工位置に走査しながら照射して、集束イオンビー
ム2の照射によるスパッタエッチング加工でTEM試料
作製ができる。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing a charged beam apparatus for cross-section processing observation according to the present invention. Hereinafter, description will be made with reference to the drawings. A liquid metal ion source is used as an ion source 1, and an ion beam 2 extracted from the ion source 1 is applied to an ion optical system 3.
Sample 4 on a 5-axis sample stage
Is irradiated. Secondary electrons excited by an ion beam emitted from a sample 4 which is a semiconductor integrated circuit are output from a secondary electron detector 5.
SIM (Scanning Ion Mic)
roscope ) image is displayed. Thus, the surface of the sample 4 is observed, the processing position is determined, the focused ion beam 2 is repeatedly irradiated to the processing position while scanning, and the TEM sample can be manufactured by the sputter etching by the irradiation of the focused ion beam 2.
【0010】試料4は、図2に示されるように、半導体
集積回路のスライス片であり、図2の試料4の左端部4
aは、半導体集積回路の表面である。試料4の左側部分
4bの上下面は、半導体集積回路の回路断面が露出して
いる。つまり、集束イオンビーム2を試料4の表面方向
(半導体集積回路の表面方向)から、試料4の左側部分
4bの上下面をスパッタリングにより削るように繰り返
し走査して照射する。試料4の左側部分4bの上下面を
所定量削り終えたら、次に集束イオンビーム2を電子ビ
ーム7に切り換える。[0010] Sample 4, as shown in FIG. 2, a slice piece of the semiconductor integrated circuit, the left end portion 4 of the sample 4 in Fig. 2
a is the surface of the semiconductor integrated circuit. The circuit cross section of the semiconductor integrated circuit is exposed on the upper and lower surfaces of the left portion 4b of the sample 4. That is, the focused ion beam 2 is repeatedly scanned and irradiated from the surface direction of the sample 4 (the surface direction of the semiconductor integrated circuit) so as to cut the upper and lower surfaces of the left portion 4b of the sample 4 by sputtering. After the upper and lower surfaces of the left portion 4b of the sample 4 have been cut by a predetermined amount, the focused ion beam 2 is switched to the electron beam 7 next.
【0011】電子ビーム7が、集束イオンビーム2の試
料4への照射方向に対して、垂直に試料4に照射するよ
うに電子銃6は配置されている。電子銃6より引き出さ
れた電子ビーム7は、照射レンズ系8と対物レンズ9と
で加速・集束・走査され、上記試料4に照射される。試
料4の近傍には、試料4から発生する二次電子を検出す
る二次電子検出器5と、X線を検出するX線検出器10
が配置されている。The electron gun 6 is arranged so that the electron beam 7 irradiates the sample 4 perpendicularly to the direction in which the focused ion beam 2 irradiates the sample 4. The electron beam 7 extracted from the electron gun 6 is accelerated, focused, and scanned by the irradiation lens system 8 and the objective lens 9 and is irradiated on the sample 4. In the vicinity of the sample 4, a secondary electron detector 5 for detecting secondary electrons generated from the sample 4, and an X-ray detector 10 for detecting X-rays
Is arranged.
【0012】試料4から放出される電子ビーム励起の二
次電子とX線は、それぞれ二次電子検出器5とX線検出
器10で検出され、図示しない表示用CRTにSEM像
やX線スペクトル・X線像が表示される。さらに、上記
試料4を透過した電子ビーム7は、拡大レンズ系11で
拡大され透過電子検出器(蛍光板)12に投影されTE
M像観察ができる。Secondary electrons and X-rays excited by the electron beam emitted from the sample 4 are detected by a secondary electron detector 5 and an X-ray detector 10, respectively, and the SEM image and the X-ray spectrum are displayed on a display CRT (not shown). -An X-ray image is displayed. Further, the electron beam 7 transmitted through the sample 4 is expanded by a magnifying lens system 11 and projected on a transmission electron detector (fluorescent plate) 12 to be TE
M images can be observed.
【0013】そして試料4の目的箇所が厚く電子ビーム
の透過が不十分でTEM像が暗い時は、電子ビーム7の
照射を止め、集束イオンビーム2の照射をオンにして、
照射ビームに切り換える。集束イオンビームの走査領域
を、更に、試料4の左端部4bの厚さが薄くなるように
設定する。そして、TEM試料の追加加工を行い、再び
ビームの切替を行い、電子ビーム7の照射によるTEM
像観察をする。このように本発明は、最適なTEM試料
作製をその場で行いその場でTEM像観察ができるた
め、限定された微小部の観察と分析が可能である。When the target portion of the sample 4 is thick and the transmission of the electron beam is insufficient and the TEM image is dark, the irradiation of the electron beam 7 is stopped and the irradiation of the focused ion beam 2 is turned on .
Irradiation Cum switched to the beam. The scanning area of the focused ion beam is further set so that the thickness of the left end 4b of the sample 4 is reduced. Then, additional processing of the TEM sample is performed and again
Perform the switching of the beam, that by the irradiation of the electron beam 7 TEM
Observe the image. As described above, according to the present invention, since an optimal TEM sample can be prepared on the spot and a TEM image can be observed on the spot, observation and analysis of a limited minute portion can be performed.
【0014】図2は本発明の試料周辺部の拡大断面図で
ある。イオンビーム照射系の走査電極32および電子ビ
ーム照射系の走査コイル14により走査された集束イオ
ンビーム2および電子ビーム7を、試料4に交互または
同時に照射しイオンおよび電子ビーム励起の二次電子1
5を二次電子検出器5で検出して、SIM像およびSE
M像を得て、試料の加工位置・加工形状・断面の確認が
できる。FIG. 2 is an enlarged sectional view of a peripheral portion of a sample according to the present invention. The sample 4 is alternately or simultaneously irradiated with the focused ion beam 2 and the electron beam 7 scanned by the scan electrode 32 of the ion beam irradiation system and the scanning coil 14 of the electron beam irradiation system, and the secondary electrons 1 excited by the ions and the electron beam are irradiated.
5 is detected by the secondary electron detector 5, and the SIM image and the SE
By obtaining an M image, the processing position, processing shape, and cross section of the sample can be confirmed.
【0015】更に、試料4への集束イオンビーム照射位
置に、有機金属化合物蒸気を局所的に吹き付けるための
ガス銃16が設けられている。ガス銃16からの有機金
属化合物蒸気は、試料4の左端面4a(半導体集積回路
の表面に相当する)に吹き付け、そして同時に試料4の
左端面4aに集束イオンビーム2を繰り返し走査して照
射する。この有機金属化合物蒸気の左端面4aへの吹き
付けと、集束イオンビーム2の左端面4aへの照射によ
り、左端面4aに金属膜23が形成される。Furthermore, the focused ion beam irradiation position on the sample 4 is provided with a gas gun 16 for Ru spraying an organic metal compound vapor locally. Organic gold from gas gun 16
The group compound vapor is sprayed on the left end face 4a (corresponding to the surface of the semiconductor integrated circuit) of the sample 4, and at the same time, the focused ion beam 2 is repeatedly scanned and irradiated on the left end face 4a of the sample 4. The metal film 23 is formed on the left end face 4a by spraying the organic metal compound vapor on the left end face 4a and irradiating the focused ion beam 2 on the left end face 4a.
【0016】前述のように、集束イオンビーム2照射に
よるスパッタエッチング加工とイオンビーム2照射位置
にガス銃ノズル16からCVD有機金属化合物ガスを吹
き付けて局所金属膜付け加工を行い、TEM試料作製を
する。試料4の左端面4aに金属膜23を形成する目的
は、以下の通りである。試料4である半導体集積回路の
表面側(左端面4a)から、集束イオンビーム2を照射
して半導体集積回路の断面を形成するが、半導体集積回
路の表面は、微視的には凹凸が激しく、その凹凸に影響
されて、集束イオンビーム2照射により形成される断面
も、集束イオンビーム照射方向と直角の方向に凹凸が生
じる。このため、半導体集積回路の表面に集束イオンビ
ーム2の照射と同時に、有機金属化合物蒸気を吹き付け
て、図4に示されるように、半導体集積回路の表面にC
VDによる金属膜23を形成する。この金属膜23の表
面は、下地の表面の凹凸をスムージングする(滑らかに
する)効果があり、金属膜23の表面から集束イオンビ
ームを照射して、エッチングして形成した断面が滑らか
になり、その断面を観察する場合、きれいな画像が得ら
れる。As described above, a TEM sample is prepared by performing a sputter etching process by irradiation with the focused ion beam 2 and a local metal film forming process by spraying a CVD organometallic compound gas from the gas gun nozzle 16 to the ion beam 2 irradiation position. . The purpose of forming the metal film 23 on the left end face 4a of the sample 4 is as follows. The focused ion beam 2 is irradiated from the surface side (left end face 4a) of the semiconductor integrated circuit which is the sample 4 to form a cross section of the semiconductor integrated circuit, but the surface of the semiconductor integrated circuit is microscopically highly uneven. The cross section formed by the irradiation of the focused ion beam 2 is also affected by the unevenness, so that the unevenness occurs in a direction perpendicular to the irradiation direction of the focused ion beam. Therefore, at the same time as the irradiation of the focused ion beam 2 on the surface of the semiconductor integrated circuit, an organometallic compound vapor is sprayed, and as shown in FIG.
To form a metal film 23 that by the VD. The surface of the metal film 23 has an effect of smoothing (smoothing) irregularities on the surface of the base, and a focused ion beam is irradiated from the surface of the metal film 23 to make the cross section formed by etching smooth. When observing the cross section, a clear image is obtained.
【0017】この様に、集束イオンビーム2で断面加工
した試料4に、電子ビーム照射系から電子ビーム7を試
料4の左側部分4bの断面に照射し、試料4の左側部分
4bを透過した電子ビーム7強度を透過電子検出器12
でモニターすることにより、加工時の試料4厚さを推測
することができるため、TEM試料の厚さを最適にする
ことが可能である。さらに電子ビーム7励起のX線をX
線検出器10で検出することで極小部の分析が可能であ
る。As described above, the electron beam 7 is applied to the cross section of the left portion 4b of the sample 4 from the electron beam irradiation system to the sample 4 which has been processed in cross section by the focused ion beam 2, and the electron transmitted through the left portion 4b of the sample 4 is irradiated. Transmitted electron detector 12
By monitoring the above, the thickness of the sample 4 at the time of processing can be estimated, so that the thickness of the TEM sample can be optimized. Further, X-rays excited by the electron beam 7 are converted into X-rays.
By detecting with the line detector 10, it is possible to analyze a minimal part.
【0018】図4は本発明の加工方法を説明するため一
実施例を示す図である。断面TEM観察用試料4である
半導体集積回路(IC)試料の観察予定範囲を含む表面
層(デバイス形成領域)を、機械研磨で図4(a)のよ
うな形状に削り込む。試料4は、半導体集積回路を0.
5〜1mmの幅でスライスし、更に表面4aに形成されて
いるデバイス部を50〜100μmの深さで100μm
以下を残し除去する。FIG. 4 is a view showing one embodiment for explaining the processing method of the present invention. A surface layer (device formation region) including a planned observation range of a semiconductor integrated circuit (IC) sample which is a cross-sectional TEM observation sample 4 is cut into a shape as shown in FIG. Sample 4 has a semiconductor integrated circuit of 0.
Slice at a width of 5 to 1 mm, and further form a device portion formed on the surface 4a at a depth of 50 to 100 μm to 100 μm.
Remove the following, leaving:
【0019】次に試料4の表面4aを集束イオンビーム
照射系により集束イオンビーム2を走査しながら照射
し、その照射による二次電子を二次電子検出器5により
検出してSIM像を観察し、その観察画像は、例えば図
4(b)のようになる。次に、SIM観察画像から、断
面観察位置22を設定する。本実施例の場合の断面観察
位置22は、コンタクトホール19の断面である。そし
て、観察位置22であるコンタクトホール部19を含む
広範囲にCVD金属膜23の局所成膜エリア20を指定
し、ガス銃16からのCVDガス吹き付けと、局所成膜
エリア20内の集束イオンビーム2の繰り返し照射によ
り金属膜23の膜付け加工を行う。この金属膜23は集
束イオンビーム2の照射による試料表面4aのダメージ
を軽減する効果がある。Next, the surface 4a of the sample 4 is irradiated by the focused ion beam irradiation system while scanning the focused ion beam 2, and secondary electrons due to the irradiation are detected by the secondary electron detector 5, and the SIM image is observed. The observed image is, for example, as shown in FIG. Next, the section observation position 22 is set from the SIM observation image. The section observation position 22 in the case of this embodiment is a section of the contact hole 19. Then, extensively specify the local deposition area 20 of the CVD metal layer 23 including the observation position 22 der Turkey contact hole 19, and the blowing CVD gas from the gas gun 16, the focused ion in the local deposition area 20 By repeatedly irradiating the beam 2, the metal film 23 is formed. The metal film 23 has an effect of reducing damage to the sample surface 4a due to irradiation of the focused ion beam 2.
【0020】このとき断面観察位置22の両端部に、集
束イオンビーム2の照射してエッチングによる穴あけ加
工で目印21を付け、観察位置を簡単に見つけ正確に加
工できるようにする。そして図4(c)のように、コン
タクトホール部19の中心部を幅0.05〜0.2μm
残し、左右のエッチングエリア24を深さ10μm位集
束イオンビーム2でスパッタエッチング加工で除去す
る。At this time, both ends of the cross-section observation position 22 are irradiated with the focused ion beam 2 to make marks 21 by drilling by etching, so that the observation position can be easily found and processed accurately. Then, as shown in FIG. 4C, the center portion of the contact hole portion 19 is set to a width of 0.05 to 0.2 μm.
The left and right etching areas 24 are removed by sputter etching with the focused ion beam 2 having a depth of about 10 μm.
【0021】この時、図4(d)のように試料4を数度
(2〜5°)傾けることにより、集束イオンビーム2の
形状によるエッチング断面の傾きを補正し、垂直な薄壁
を作製することができる。そして電子ビーム照射系から
電子ビーム7を試料4のデバイス断面4bの観察位置に
照射し、透過電子検出器12により透過電子を検出し、
透過電子強度が十分であることを確認する。透過電子強
度が小さい場合、再び図4(c)のエッチングエリア2
4を断面観察位置22に近づけて、集束イオンビーム2
の照射を行う。電子ビームは、図1に示す様に、集束イ
オンビームの光軸と直角になっており、試料4の断面に
垂直に照射する。図4(e)、(f)はそれぞれ加工後
の上面および断面の試料4の形状である。At this time, by tilting the sample 4 by several degrees (2 to 5 °) as shown in FIG. 4D, the inclination of the etching cross section due to the shape of the focused ion beam 2 is corrected, and a vertical thin wall is formed. can do. Then, the electron beam 7 is irradiated from the electron beam irradiation system onto the observation position of the device section 4 b of the sample 4, and the transmitted electrons are detected by the transmitted electron detector 12.
Confirm that the transmitted electron intensity is sufficient. When the transmitted electron intensity is small, the etching area 2 shown in FIG.
4 and the focused ion beam 2
Irradiation. As shown in FIG. 1, the electron beam is perpendicular to the optical axis of the focused ion beam, and irradiates the cross section of the sample 4 perpendicularly. FIGS. 4E and 4F show the shapes of the sample 4 on the top surface and the cross section after processing, respectively.
【0022】この試料4の加工断面に垂直方向から電子
ビーム7を照射したときのSEM像が、図5(a)であ
る。このSEM像観察は、イオンビーム加工作業中必要
に応じて、イオンビーム2を電子ビーム7に切り換えて
行えるので、加工位置・加工形状・断面などの確認が容
易にできる。また電子ビーム7励起のX線をX線検出器
で検出しスペクトル表示したのが図5(b)であり、ア
ルミ(Al)のX線像を表示したのが図5(c)であ
る。このように特定場所の微小部元素分析も容易に行う
ことができる。従って、本発明はTEM試料作製と図5
(d)のような断面TEM像観察もその場で行うことが
できるため、特定箇所の観察と分析が可能である。FIG. 5A shows an SEM image of the sample 4 when a processing section is irradiated with the electron beam 7 from the vertical direction. This SEM image observation can be performed by switching the ion beam 2 to the electron beam 7 as needed during the ion beam processing operation, so that the processing position, processed shape, cross section, and the like can be easily confirmed. FIG. 5B shows the X-rays excited by the electron beam 7 detected by the X-ray detector and the spectrum is displayed, and FIG. 5C shows the X-ray image of aluminum (Al). In this manner, element analysis of a minute portion at a specific location can be easily performed. Therefore, the present invention is based on the TEM sample preparation and FIG.
Since a cross-sectional TEM image observation as shown in FIG. 4D can be performed on the spot, observation and analysis of a specific portion are possible.
【0023】[0023]
【発明の効果】以上見てきたように本発明によれば、特
定場所の断面TEM用試料をイオンビーム加工により行
え、加工作業中、必要に応じてイオンビームを電子ビー
ムに切り換えSEM像観察やX線分析が行えるため、加
工位置・加工形状・断面の確認や微小部分析が容易にで
き、また局所成膜と試料の傾斜により、被加工試料表面
を保護し垂直で平坦な断面作製ができ、さらにその場で
断面TEM像観察ができるので、特定場所の断面TEM
観察に有効である。As described above, according to the present invention, a cross-sectional TEM sample at a specific location can be processed by ion beam processing. During the processing operation, the ion beam is switched to an electron beam as needed, and SEM image observation and the like are performed. Because X-ray analysis can be performed, it is easy to confirm the processing position, processing shape, cross-section, and to analyze minute parts. In addition, by local film formation and sample inclination, the surface of the sample to be processed can be protected and a vertical and flat cross-section can be manufactured. In addition, since a cross-sectional TEM image can be observed on the spot, the cross-sectional TEM at a specific location can be observed.
It is effective for observation.
【図1】本発明の実施例を示す概略断面図である。FIG. 1 is a schematic sectional view showing an embodiment of the present invention.
【図2】本発明の試料周辺部の拡大断面図である。FIG. 2 is an enlarged sectional view of a sample peripheral part according to the present invention.
【図3】従来装置の実施例を示す概略断面図である。FIG. 3 is a schematic sectional view showing an embodiment of a conventional device.
【図4】本発明の加工実施例を説明するための図であ
る。FIG. 4 is a view for explaining a working example of the present invention.
【図5】本発明の観察・分析実施例を説明するための図
である。FIG. 5 is a diagram for explaining an observation / analysis example of the present invention.
1 イオン源 2 集束イオンビーム 3 イオン光学系 4 試料 5 二次電子検出器 6 電子銃 7 電子ビーム 8 電子ビームレンズ系 9 対物レンズ 10 X線検出器 11 拡大レンズ系 12 透過電子検出器 14 走査コイル 15 二次電子 16 ガス銃(ノズル) 17 アルミ配線 18 ポリシリコン配線 19 コンタクトホール 20 局所成膜エリア 21 目印(イオンエッチングによる穴あけ) 22 断面観察位置 23 金属膜(イオンビームCVDによる局所成膜) 24 エッチングエリア 25 保護膜 26 シリコン基板 32 走査電極 DESCRIPTION OF SYMBOLS 1 Ion source 2 Focused ion beam 3 Ion optical system 4 Sample 5 Secondary electron detector 6 Electron gun 7 Electron beam 8 Electron beam lens system 9 Objective lens 10 X-ray detector 11 Magnifying lens system 12 Transmission electron detector 14 Scanning coil Reference Signs List 15 secondary electron 16 gas gun (nozzle) 17 aluminum wiring 18 polysilicon wiring 19 contact hole 20 local film formation area 21 mark (drilled by ion etching) 22 cross-sectional observation position 23 metal film (local film formation by ion beam CVD) 24 Etching area 25 Protective film 26 Silicon substrate 32 Scan electrode
Claims (3)
子ビームを細く絞り、試料面に照射する電子ビームレン
ズ系と、前記試料を透過した電子ビームを拡大する拡大
レンズ系と、前記拡大レンズ系により拡大された電子ビ
ームを蛍光板に投影して極微観察する透過電子検出器
と、前記電子ビームの試料照射方向に対して直角にイオ
ンビームを発生するイオン銃と、前記イオンビームを集
束し、かつ走査させながら前記電子ビームの試料照射方
向に対して直角に前記試料に照射するイオン光学系と、
前記電子ビーム照射および前記集束イオンビーム照射に
より前記試料から放出される二次電子およびX線を捕ら
える二次電子検出器とX線検出器とからなることを特徴
とする断面加工観察用荷電ビーム装置。1. An electron gun for generating an electron beam, an electron beam lens system for narrowing the electron beam and irradiating a sample surface, an expanding lens system for expanding an electron beam transmitted through the sample, and the expanding lens. A transmission electron detector for projecting the electron beam expanded by the system onto a fluorescent screen for microscopic observation, an ion gun for generating an ion beam at right angles to a sample irradiation direction of the electron beam, and converging the ion beam; And an ion optical system for irradiating the sample at right angles to the sample irradiation direction of the electron beam while scanning,
A charged beam apparatus for cross-section processing observation, comprising: a secondary electron detector for capturing secondary electrons and X-rays emitted from the sample by the electron beam irradiation and the focused ion beam irradiation; and an X-ray detector. .
置に金属化合物蒸気を吹き付けるためのガス銃を備えた
ことを特徴とする請求項1記載の断面加工観察用荷電ビ
ーム装置。2. The charged beam apparatus for cross-section processing observation according to claim 1, further comprising a gas gun for spraying a metal compound vapor onto the focused ion beam irradiation position of the sample.
を用いて試料の薄膜加工を行い、TEM試料作成の場に
てTEM観察することを特徴とする荷電ビーム加工方
法。3. A charged beam processing method, wherein a thin film of a sample is processed using a focused ion beam for preparing a TEM sample, and TEM observation is performed in a place where the TEM sample is prepared.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05016633A JP3132938B2 (en) | 1993-02-03 | 1993-02-03 | Charged beam device for cross-section processing observation and processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05016633A JP3132938B2 (en) | 1993-02-03 | 1993-02-03 | Charged beam device for cross-section processing observation and processing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06231719A JPH06231719A (en) | 1994-08-19 |
JP3132938B2 true JP3132938B2 (en) | 2001-02-05 |
Family
ID=11921769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05016633A Expired - Lifetime JP3132938B2 (en) | 1993-02-03 | 1993-02-03 | Charged beam device for cross-section processing observation and processing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3132938B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2987417B2 (en) * | 1993-03-04 | 1999-12-06 | 科学技術庁金属材料技術研究所長 | In-situ preparation and observation method of thin film sample for transmission electron microscope and its apparatus |
EP0840940B1 (en) * | 1995-07-25 | 2000-06-14 | Nmi Naturwissenschaftliches Und Medizinisches Intitut An Der Universität Tübingen In Reutlingen | Process and device for ion thinning in a high-resolution transmission electron microscope |
US6926935B2 (en) * | 2003-06-27 | 2005-08-09 | Fei Company | Proximity deposition |
JP4664041B2 (en) | 2004-10-27 | 2011-04-06 | 株式会社日立ハイテクノロジーズ | Charged particle beam apparatus and sample preparation method |
JP5142240B2 (en) * | 2006-01-17 | 2013-02-13 | 株式会社日立ハイテクノロジーズ | Charged beam apparatus and charged beam processing method |
JP4851804B2 (en) * | 2006-02-13 | 2012-01-11 | 株式会社日立ハイテクノロジーズ | Focused ion beam processing observation apparatus, focused ion beam processing observation system, and processing observation method |
JP4691529B2 (en) * | 2007-07-20 | 2011-06-01 | 株式会社日立ハイテクノロジーズ | Charged particle beam apparatus and sample processing observation method |
JP5771685B2 (en) * | 2011-03-31 | 2015-09-02 | 株式会社日立ハイテクノロジーズ | electronic microscope |
JP5751935B2 (en) * | 2011-06-06 | 2015-07-22 | 株式会社日立ハイテクノロジーズ | Charged particle beam apparatus and sample preparation method |
-
1993
- 1993-02-03 JP JP05016633A patent/JP3132938B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06231719A (en) | 1994-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11315756B2 (en) | Fiducial design for tilted or glancing mill operations with a charged particle beam | |
JP3119959B2 (en) | Focused ion beam device and processing observation device | |
US8835845B2 (en) | In-situ STEM sample preparation | |
JP5882381B2 (en) | Slice and view with decoration | |
JP6224612B2 (en) | High-throughput TEM preparation process and hardware for backside thinning of cross-section observation slices | |
US6926935B2 (en) | Proximity deposition | |
TWI404105B (en) | Method of processing a semiconductor device and process of using a focused beam to cut a hole in a substrate | |
JP5492364B2 (en) | 3D fiducial mark | |
TWI628702B (en) | High aspect ratio structure analysis | |
US9368325B2 (en) | TEM sample preparation | |
JP3132938B2 (en) | Charged beam device for cross-section processing observation and processing method | |
JPH0476437A (en) | Converged charge beam processing method | |
US10539489B2 (en) | Methods for acquiring planar view STEM images of device structures | |
US20190304744A1 (en) | Methods for acquiring planar view stem images of device structures | |
US6297503B1 (en) | Method of detecting semiconductor defects | |
JPH1145679A (en) | Cross section observing device | |
WO2019168106A1 (en) | Thin-sample-piece fabricating device and thin-sample-piece fabricating method | |
JPH03166744A (en) | Microprocessing method for cross section | |
JP2004095339A (en) | Ion beam device and ion beam processing method | |
JP3280531B2 (en) | Method for analyzing minute foreign matter, analyzer, and method for producing semiconductor element or liquid crystal display element using the same | |
JP2887407B2 (en) | Sample observation method using focused ion beam | |
JP2000180391A (en) | Electron microscope and flaw shape confirming method | |
US20050211896A1 (en) | Pt coating initiated by indirect electron beam for resist contact hole metrology | |
JP2004253182A (en) | Defect analyzing apparatus | |
KR20070101625A (en) | Subsurface imaging using an electron beam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071124 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081124 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081124 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091124 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091124 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101124 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101124 Year of fee payment: 10 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D03 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101124 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111124 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111124 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121124 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121124 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131124 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131124 Year of fee payment: 13 |