JPS5920467A - Vapor deposition device - Google Patents

Vapor deposition device

Info

Publication number
JPS5920467A
JPS5920467A JP13091382A JP13091382A JPS5920467A JP S5920467 A JPS5920467 A JP S5920467A JP 13091382 A JP13091382 A JP 13091382A JP 13091382 A JP13091382 A JP 13091382A JP S5920467 A JPS5920467 A JP S5920467A
Authority
JP
Japan
Prior art keywords
vapor deposition
film thickness
sample
film
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13091382A
Other languages
Japanese (ja)
Other versions
JPS6147223B2 (en
Inventor
Toshinori Urade
浦出 俊則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13091382A priority Critical patent/JPS5920467A/en
Publication of JPS5920467A publication Critical patent/JPS5920467A/en
Publication of JPS6147223B2 publication Critical patent/JPS6147223B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/546Controlling the film thickness or evaporation rate using measurement on deposited material using crystal oscillators

Abstract

PURPOSE:To provide a vapor deposition device which enables the formation of a vapor-deposited film subjected to an exact measurement and control, by the constitution wherein a thick film sensor is disposed above a vessel for vapor deposition sample and an attenuator having a slit part in the driving part provided on the outside of a vapor deposition space part is moved forward and backward. CONSTITUTION:A thick film sensor 7 constituted of a crystal oscillator is disposed above a vessel 5 for a vapor deposition sample and the thickness of the thin film is measured and controlled therewith to form the film to a specified thickness and to stop the operation of vapor deposition in a vapor deposition device which evaporates an oxide or the like from the vessel 5 in a vacuum vessel 1 provided on a base plate 2 and forms the thin film on a glass substrate 4 supported and rotated by a rotary frame 3 and preheated with a heater 6. An attenuator 12 having a slit part 13 which is moved back and forth by a driving part 14 is provided on the front surface of the sensor 7 so that the long term use of the sensor 7 is made possible. The part 14 is disposed on the outside of the space part for the vapor deposition to avert the decrease in the efficiency of vapor deposition.

Description

【発明の詳細な説明】 +a)  発明の技術分野 本発明は蒸着装置に係り、さらに詳しくは蒸着槽で蒸着
膜を形成中にその膜厚を連続的に測定する蒸着膜厚セン
サの減衰器の改良に関する。
Detailed Description of the Invention +a) Technical Field of the Invention The present invention relates to a vapor deposition apparatus, and more particularly to an attenuator for a vapor deposition film thickness sensor that continuously measures the thickness of a vapor deposited film while it is being formed in a vapor deposition tank. Regarding improvements.

fbl  技術の背景 情報産業の急速な発展に伴い各種表示装置の開発が進め
られている中で、EL表示パネルやPDPパネルの需要
が著しく増加している。その製造過程において例えばM
gO+Al2O3+’〜イコールカ゛ラスなどの酸化物
の蒸着膜を形成する工程が頻繁に現れている。
Background of fbl Technology As various display devices are being developed with the rapid development of the information industry, the demand for EL display panels and PDP panels is increasing significantly. In the manufacturing process, for example, M
A process of forming a vapor deposited film of oxides such as gO+Al2O3+' to equal glass is frequently appearing.

量産的にこの蒸着膜をガラス板などの基板1番こ形成す
るには、真空に排気した蒸着槽の中で複数の該基板を回
転枠に保持して順次所定位置に移動するか、連続的に回
転させ、この上に蒸着試料を蒸着する方法がとられてい
る。この際蒸着膜の膜厚を管理することは当該製品の品
質と信頼性を維持する点より特に重要なことである。
In order to form this vapor-deposited film on a single substrate such as a glass plate in mass production, a plurality of the substrates are held in a rotating frame in an evacuated vapor deposition tank and moved one after another to a predetermined position, or the substrates are continuously moved to a predetermined position. A method has been adopted in which the evaporation sample is evaporated onto the evaporation sample. At this time, controlling the thickness of the deposited film is particularly important from the standpoint of maintaining the quality and reliability of the product.

(C)従来の技術と問題点 前記の酸化物を基板上に形成する量産的な方法の一例を
概念的に第1図の断面図に示す。
(C) Prior Art and Problems An example of a mass-production method for forming the above-mentioned oxide on a substrate is conceptually shown in the sectional view of FIG.

真空槽1は基台2を介して真空に排気され、該真空槽l
内に設けられた回転自在の回転枠3に。
The vacuum chamber 1 is evacuated via the base 2, and the vacuum chamber l
In the rotatable frame 3 provided inside.

複数個のガラス基板4が規則的に保持されて111で。A plurality of glass substrates 4 are held regularly at 111.

外部よりの機械的駆動で一蒸着工程毎に1組の前記ガラ
ス基板4を所定の蒸着位置に移動する力A連続的に回転
させている。蒸着試料(MgOなど)は蒸着試料容器5
 (この場合は2個)に納められ。
A set of glass substrates 4 are continuously rotated by a force A to move them to a predetermined deposition position for each vapor deposition process by an external mechanical drive. The vapor deposition sample (MgO, etc.) is placed in the vapor deposition sample container 5.
(in this case, 2 pieces).

ヒータ6で予備加熱された基板4に蒸着される。It is deposited on the substrate 4 which has been preheated by the heater 6 .

蒸着試料はその表面を図に示してない電子ビームガンよ
り発射された電子ビームの衝撃により蒸発しガラス基板
4に蒸着膜を形成する。
The surface of the vapor-deposited sample is evaporated by the impact of an electron beam emitted from an electron beam gun (not shown), forming a vapor-deposited film on the glass substrate 4.

蒸着膜厚は真空槽1の上部に設けられた2個の膜厚セン
サ7で常に測定され所定の膜厚が得られたら自動的に蒸
着を停止するシステムになっている。膜厚センサ7の前
面には後述する回転式減衰器8が設けられている。
The thickness of the deposited film is constantly measured by two film thickness sensors 7 provided at the top of the vacuum chamber 1, and the system automatically stops the deposition when a predetermined film thickness is obtained. A rotary attenuator 8, which will be described later, is provided in front of the film thickness sensor 7.

MgOやAIz03のような酸化物の蒸着膜の膜厚セン
サには水晶板が用いられている。その動作原理を次に述
べよう。
A quartz plate is used as a film thickness sensor for a deposited film of an oxide such as MgO or AIz03. The operating principle will be described next.

周知のようにある適切な角度で切断した水晶はその機械
的特性で決まる一定の電気的固有発振周波数fを有する
。一般に結晶にはピエゾ効果があり1機械的エネルギー
と電気的エネルギーとの間にエネルギーのやりとりがあ
る。特に物質(質量)が結晶面上に加わると、前記固有
発振周波数fが減少する特性がある。蒸着物の質量をM
、水晶発振子の機械的構造で決まる常数をKとすると。
As is well known, a crystal cut at a certain appropriate angle has a certain electric natural oscillation frequency f determined by its mechanical properties. Generally, crystals have a piezo effect, and there is an exchange of energy between mechanical energy and electrical energy. In particular, when a substance (mass) is added to the crystal plane, the characteristic oscillation frequency f decreases. The mass of the deposit is M
, let K be the constant determined by the mechanical structure of the crystal oscillator.

水晶発振子の固有発振周波数fとの間に次の関係がある
The following relationship exists between the natural oscillation frequency f of the crystal oscillator.

f=に/M          (11従って水晶板の
固有発振周波数fを測定することによりfl1式より水
晶板に蒸着された蒸着膜の質量、従ってその膜厚を算出
することができる。
f = /M (11) Therefore, by measuring the natural oscillation frequency f of the crystal plate, the mass of the vapor deposited film deposited on the crystal plate, and therefore the film thickness, can be calculated from the fl1 formula.

ところが膜厚センサ7の水晶板上の蒸着膜厚がある程度
以上の厚さを越えると、蒸着層内にストレスを生し水晶
板との密着した部分の一部が剥離するにいたる。その結
果水晶発振子の固有発振周波数fは不安定になり膜厚セ
ンサの用をなさなくなり該膜厚センサの寿命終止点とみ
なされる。
However, when the thickness of the vapor deposited film on the crystal plate of the film thickness sensor 7 exceeds a certain thickness, stress is generated in the vapor deposited layer, and a part of the part in close contact with the crystal plate peels off. As a result, the natural oscillation frequency f of the crystal oscillator becomes unstable, and the film thickness sensor becomes useless and is considered to be at the end of its life.

それ故蒸着腹厚が厚い場合や蒸着膜形成作業を多数回反
復する場合は、膜厚センサの寿命を延ばすために前記の
減衰器を膜厚センサの前面に設ける。これは一種のスリ
ットである。第1図の場合はスリットのある円板で、膜
厚センサ7の水晶板上に均一な分布で蒸着試料を蒸着さ
せるために。
Therefore, when the thickness of the evaporated film is large or when the process of forming the evaporated film is repeated many times, the above-mentioned attenuator is provided in front of the film thickness sensor in order to extend the life of the film thickness sensor. This is a kind of slit. In the case of FIG. 1, it is a circular plate with slits in order to deposit the vapor deposition sample in a uniform distribution on the crystal plate of the film thickness sensor 7.

膜厚センサ7の前面で回転させる。該膜厚センサ7の水
晶板上に蒸着する蒸着試料の質量番よ基板1上の質量よ
り一定の比率即ちその遮蔽率だbす少なくなり、それだ
け該膜厚センサ7の寿命を延長することが出来る。
Rotate it in front of the film thickness sensor 7. The mass number of the vapor deposition sample deposited on the quartz plate of the film thickness sensor 7 becomes smaller by a certain ratio than the mass on the substrate 1, that is, the shielding rate becomes smaller, and the life of the film thickness sensor 7 can be extended accordingly. I can do it.

ところで、第1図の場合は減衰器8は大きな回転スリッ
ト板を有する上に、その回転機横Gこしま厖大な歯車部
9を含むので、蒸着の妨げにならぬように蒸着試料容器
5と基板4との間の空間を避しナで真空槽1の斜め上方
に設けである。
By the way, in the case of FIG. 1, the attenuator 8 has a large rotating slit plate and also includes a gigantic gear part 9 with a side G of the rotating machine. It is provided diagonally above the vacuum chamber 1, avoiding the space between it and the substrate 4.

次に電子ビーム衝撃による酸化物の蒸発の方向性につい
て述べよう。第2図の(8)図は正常な蒸発状態を示す
概念図で、電子ビーム10により衝撃された蒸着試料1
1の蒸発量の方向分布は矢印で示すように大体コーサイ
ン法則に従ってらする。し力するにここに扱う酸化物な
どのように蒸発時の高tI)粘性と表面張力を有する物
質、あるも)は昇華性の物質の場合には、蒸着試料容器
5内の蒸着試料の表面には部分的に深い穴ができ易く、
そのため電子ビーム10による蒸着試料の蒸発量の方向
分布番よ(b)。
Next, we will discuss the direction of evaporation of oxides due to electron beam bombardment. Figure 2 (8) is a conceptual diagram showing a normal evaporation state, where the evaporation sample 1 is bombarded by the electron beam 10.
The directional distribution of the evaporation amount of 1 roughly follows the cosine law as shown by the arrow. However, in the case of substances that have high viscosity and surface tension during evaporation, such as oxides, which are sublimable, the surface of the evaporation sample in the evaporation sample container 5. It is easy to have deep holes in some areas,
Therefore, the directional distribution number of the amount of evaporation of the sample deposited by the electron beam 10 is (b).

fC1図に示すように一方に偏ってくる。これ番よ電子
ビーム10をスィーブさせて、その蒸着試料の表面の1
h撃点を色々調整してもなかなか避は難い。
As shown in the fC1 diagram, it is biased to one side. Now it's time to move the electron beam 10 across the surface of the evaporation sample.
Even if you adjust the firing point in various ways, it is difficult to avoid.

以上の理由から蒸着試料容器5内の蒸着試料11の表面
が電子ビームの衝撃でその形を変えるに伴い、該蒸着試
料の蒸発方向分布が変るのでは、膜厚センサ7が検知す
る該膜厚センサ7の水晶板上の蒸着試料の膜厚は必ずし
も基板4上の膜厚を代表するとは言い難り、膜厚センサ
7の指示値の信頼性が低くなるという問題がある。
For the above reasons, as the surface of the vapor deposition sample 11 in the vapor deposition sample container 5 changes its shape due to the impact of the electron beam, the evaporation direction distribution of the vapor deposition sample changes. It is difficult to say that the film thickness of the vapor deposition sample on the quartz plate of the sensor 7 is necessarily representative of the film thickness on the substrate 4, and there is a problem that the reliability of the indicated value of the film thickness sensor 7 becomes low.

(d)  発明の目的 本発明は前述の点に鑑みなされたもので、真空槽内での
酸化物などの電子ビーム衝撃による該蒸着試料の蒸発方
向分布の不安定に起因する膜厚センサの指示値とガラス
基板1上の蒸着膜厚とのくいちがいをできるだけ減少さ
せて測定値の信頼性を向上しようとするものである。
(d) Purpose of the Invention The present invention has been made in view of the above-mentioned points. The purpose is to reduce the discrepancy between the value and the thickness of the deposited film on the glass substrate 1 as much as possible to improve the reliability of the measured value.

tel  発明の構成 上記の発明の目的は、水晶発振子より構成された膜厚セ
ンサを蒸着試料容器の上方に配設し、且つ該膜厚センサ
の前面において、往復運動をなすスリット部分と蒸着試
料容器と被蒸着物体表面との間の蒸着空間部の外に設け
られた該スリット部分を駆動する駆動部より構成された
前記膜厚センサの減衰器を有することを特徴とする蒸着
装置を使用することにより容易に達成される。
tel Structure of the Invention An object of the above invention is to arrange a film thickness sensor composed of a crystal oscillator above a vapor deposition sample container, and to connect a slit portion that makes reciprocating motion to a vapor deposition sample in front of the film thickness sensor. A vapor deposition apparatus is used, characterized in that it has an attenuator for the film thickness sensor, which is constituted by a drive section that drives the slit section provided outside the vapor deposition space between the container and the surface of the object to be vapor deposited. This is easily achieved by

(fl  発明の実施例 種々の実験の結果、蒸発源の真上方向の蒸発方向分布は
蒸着試料11の形の変化に余り関係がなく略一定である
ことを見出した。この事実を利用して膜厚センサ7を蒸
着試料容器5の真上に設ければよいことに着目する。こ
の場合には膜厚センサ7は小型であるが、減衰器8の機
構が大きいのでその遮蔽効果による基板4上の蒸着膜厚
の分布不均一が懸念される。これらの欠点を解消した本
発明の実施例につき、以下図面を参照して説明する。
(fl Embodiment of the Invention As a result of various experiments, it was found that the evaporation direction distribution in the direction directly above the evaporation source has little relation to changes in the shape of the evaporation sample 11 and is approximately constant.Using this fact, We will focus on the fact that the film thickness sensor 7 can be installed directly above the vapor deposition sample container 5. In this case, the film thickness sensor 7 is small, but since the mechanism of the attenuator 8 is large, its shielding effect makes it difficult for the substrate 4 There is a concern about non-uniform distribution of the thickness of the deposited film.Embodiments of the present invention that eliminate these drawbacks will be described below with reference to the drawings.

第3図は本発明に基づく新しい減衰器を備えた蒸着装置
の構造を示す概念的な断面図である。
FIG. 3 is a conceptual cross-sectional view showing the structure of a vapor deposition apparatus equipped with a new attenuator based on the present invention.

図に見るように本発明においては膜厚センサ7は2個と
もそれぞれ蒸着試料容器5の真上に配設しである。膜厚
センサ7自体も蒸着試料容器5から蒸発する蒸着試料の
一部を妨げてガラス基板4上の蒸着膜厚の不均一を招く
ことが懸念されるけれども、膜厚センサ7が小型である
のでその遮蔽効果が少なく、従来の場合にガラス基板4
の蒸発源の真上の部分の膜厚が厚気味であったのが修正
された形となって、膜厚分布が平坦になり、却ってよい
結果を得ている。
As shown in the figure, in the present invention, both film thickness sensors 7 are arranged directly above the vapor deposition sample container 5, respectively. Although there is a concern that the film thickness sensor 7 itself may obstruct a part of the vapor deposition sample evaporating from the vapor deposition sample container 5 and cause non-uniformity in the thickness of the vapor deposited film on the glass substrate 4, since the film thickness sensor 7 is small, The shielding effect is small, and in the conventional case, the glass substrate 4
The thickness of the film directly above the evaporation source was corrected, and the film thickness distribution became flat, yielding even better results.

問題は減衰器であるが、ガラス基板4上への蒸着試料の
蒸着を妨げないように減衰器12のスリット部分13と
その駆動部14を離した構造とし、駆動部14はガラス
基板1と蒸着試料容器5との間の蒸着空間部の外に設け
、スリット部分13のみ膜厚センサ7の前面に配置する
構造とした。
The problem is the attenuator, but the structure is such that the slit portion 13 of the attenuator 12 and its driving section 14 are separated so as not to interfere with the deposition of the evaporation sample onto the glass substrate 4. It is provided outside the vapor deposition space between the sample container 5 and has a structure in which only the slit portion 13 is placed in front of the film thickness sensor 7.

図に見るようにスリット部分13は所定の遮蔽率を有す
る平板状の2部分よりなり、各々はそれぞれの膜厚セン
サ7を遮蔽している。また画部分は蒸着の妨げにならな
いよう細い輪状の連結部13^で連結されている。
As shown in the figure, the slit portion 13 consists of two plate-shaped portions having a predetermined shielding rate, each of which shields its respective film thickness sensor 7. Moreover, the image parts are connected by a thin ring-shaped connecting part 13^ so as not to interfere with the vapor deposition.

第4図は前記スリット部分13と駆動部14の構造の一
実施例を示す斜視図である。駆動部14のリンク機構1
5は、真空槽lの外部より駆動回転される回転軸16に
より駆動され、スリット部分13に図示の矢印で示す方
向の往復運動を与える。スリット部分13の一端はリン
ク機構15に連結され、他端は遊動支持部17で往復自
在に支持されている。
FIG. 4 is a perspective view showing an embodiment of the structure of the slit portion 13 and the drive portion 14. As shown in FIG. Link mechanism 1 of drive unit 14
5 is driven by a rotating shaft 16 that is driven and rotated from outside the vacuum chamber 1, and gives the slit portion 13 reciprocating motion in the direction shown by the arrow in the figure. One end of the slit portion 13 is connected to a link mechanism 15, and the other end is supported by a floating support portion 17 in a reciprocating manner.

スリット部分13は上記往復運動と直角方向の粗い矩形
の複数のスリット群18を有する。スリット部分13に
は細かいメソシュ構造が考えられるが。
The slit portion 13 has a plurality of roughly rectangular slit groups 18 in a direction perpendicular to the reciprocating motion. A fine mesoche structure can be considered in the slit portion 13.

この形式は蒸着試料の蒸着により目詰りを起し易い欠点
があり適当でない。
This type is not suitable because it tends to cause clogging due to evaporation of the evaporation sample.

以上の説明においては、蒸発源を2個備えた場合である
が、勿論1個でも3個以上でも差支えはないし、蒸着試
料を蒸着すべき基板の材料の種類の如何を問うものでも
ない。
In the above description, two evaporation sources are provided, but of course there is no problem with one or three or more evaporation sources, and the type of material of the substrate on which the evaporation sample is to be evaporated does not matter.

またスリット部分13の構造も往復運動を伴う平板形の
ものとしたが、第5図に示すようにスリット列を有し運
動軸16を中心に自動車のワイパ状の扇形往復運動を伴
う構造のスリット部分18でもよい。
Further, the structure of the slit portion 13 is also a flat plate shape that causes reciprocating motion, but as shown in FIG. It may also be part 18.

さらに上記の説明では本発明を真空中での電子ビーム衝
撃による蒸着工程に適用した場合について述べたが、ス
パンタリング法、イオンビーム法あるいは蒸着試料を加
熱蒸発させる熱蒸着法の場合についても同様に適用し得
るのである。
Furthermore, in the above explanation, the present invention was applied to a deposition process using electron beam bombardment in a vacuum, but the same applies to a sputtering method, an ion beam method, or a thermal evaporation method in which a deposition sample is heated and evaporated. It can be applied.

(gl  発明の効果 以上の説明から明らかなように、蒸着試料を蒸発させで
ある物体表面に蒸着膜を形成する場合。
(gl) Effects of the Invention As is clear from the above explanation, a case where a deposited film is formed on the surface of an object by evaporating a deposited sample.

本発明による蒸着装置を使用すると、正確に測定し管理
された信頼性の高い蒸着膜が形成出来るという効果があ
る。
Use of the vapor deposition apparatus according to the present invention has the advantage that a highly reliable vapor deposition film that is accurately measured and controlled can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の量産用の蒸着装置の構造を、第3図は本
発明による新しい構造の膜厚センサの減衰器を備えた蒸
着装置の構造をそれぞれ概念的に示す正面断面図と側面
断面図、第2図は電子ビームの衝撃による蒸着試料の蒸
発方向分布を示す説明図、第4図は本発明による新しい
減衰器の構造を示す斜視図、第5図は第4図に示した減
衰器の構造の一変形を示す斜視図である。 1は真空槽、2は基台、3は回転枠、4はガラ大基板、
5は蒸着試料容器、6はヒータ、7は膜厚センサ、8.
12は減衰器、9は歯車部、10は電子ビーム、11は
層着試料、13はスリット部分、14は舅動部、15は
リンク機構、16は回転軸、17は遊動支持部、18は
スリット群、Fは電子ビーム源をそれぞれ示す。
Fig. 1 shows the structure of a conventional vapor deposition apparatus for mass production, and Fig. 3 conceptually shows the structure of a vapor deposition apparatus equipped with an attenuator for a film thickness sensor with a new structure according to the present invention. Figure 2 is an explanatory diagram showing the evaporation direction distribution of the deposited sample due to the impact of the electron beam, Figure 4 is a perspective view showing the structure of the new attenuator according to the present invention, and Figure 5 is the attenuation shown in Figure 4. It is a perspective view showing a modification of the structure of the vessel. 1 is a vacuum chamber, 2 is a base, 3 is a rotating frame, 4 is a large board,
5 is a vapor deposition sample container, 6 is a heater, 7 is a film thickness sensor, 8.
12 is an attenuator, 9 is a gear part, 10 is an electron beam, 11 is a layered sample, 13 is a slit part, 14 is a sliding part, 15 is a link mechanism, 16 is a rotating shaft, 17 is a floating support part, 18 is a The slit group and F indicate the electron beam source, respectively.

Claims (1)

【特許請求の範囲】[Claims] 水晶発振子より構成された膜厚センサを備えてなる蒸着
装置において、前記膜厚センサを蒸着試料容器の上方に
配設し、且つ該膜厚センサの前面において往復運動をな
すスリット部分と蒸着試料容器と被蒸着物体表面との間
の蒸着空間部の外に設けられた該スリット部分を駆動す
る駆動部より構成された前記膜厚センサの減衰器を有す
ることを特徴とする蒸着装置。
In a vapor deposition apparatus equipped with a film thickness sensor composed of a crystal oscillator, the film thickness sensor is disposed above a vapor deposition sample container, and a slit portion that reciprocates in front of the film thickness sensor and a vapor deposition sample are arranged above the vapor deposition sample container. A vapor deposition apparatus characterized by having an attenuator for the film thickness sensor that is constituted by a drive section that drives the slit section provided outside the vapor deposition space between the container and the surface of the object to be vapor deposited.
JP13091382A 1982-07-26 1982-07-26 Vapor deposition device Granted JPS5920467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13091382A JPS5920467A (en) 1982-07-26 1982-07-26 Vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13091382A JPS5920467A (en) 1982-07-26 1982-07-26 Vapor deposition device

Publications (2)

Publication Number Publication Date
JPS5920467A true JPS5920467A (en) 1984-02-02
JPS6147223B2 JPS6147223B2 (en) 1986-10-17

Family

ID=15045661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13091382A Granted JPS5920467A (en) 1982-07-26 1982-07-26 Vapor deposition device

Country Status (1)

Country Link
JP (1) JPS5920467A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233214A (en) * 2011-04-28 2012-11-29 Ulvac Japan Ltd Electron beam vapor deposition apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865845U (en) * 1971-11-30 1973-08-21
JPS53106759U (en) * 1977-01-31 1978-08-28

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865845U (en) * 1971-11-30 1973-08-21
JPS53106759U (en) * 1977-01-31 1978-08-28

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233214A (en) * 2011-04-28 2012-11-29 Ulvac Japan Ltd Electron beam vapor deposition apparatus

Also Published As

Publication number Publication date
JPS6147223B2 (en) 1986-10-17

Similar Documents

Publication Publication Date Title
US2410720A (en) Lens coating apparatus
US3747558A (en) Cross-mounted mask changer with thickness monitoring
JPH11222670A (en) Film thickness monitor and film forming device using this
JPS5920467A (en) Vapor deposition device
JPH10176262A (en) Vapor deposition device
JPS5619030A (en) Production of liquid crystal display element
JP2548373B2 (en) Liquid crystal alignment film manufacturing method and manufacturing apparatus
US5332482A (en) Method and apparatus for depositing an oxide film
JPS6194000A (en) Method and device for improving characteristic of blank
JPS63297549A (en) Vacuum deposition device
JP2548387B2 (en) Liquid crystal alignment film manufacturing equipment
JP4316265B2 (en) Manufacturing method of liquid crystal display panel
JPH0151814B2 (en)
CN111684100B (en) Evaporation plating device
JP7219140B2 (en) Deposition method
JPH04116160A (en) Film forming device
JPS63192860A (en) Boat for vacuum deposition
JPS6010022Y2 (en) Oxide semiconductor film manufacturing equipment
JPH03146659A (en) Method and device for vacuum vapor deposition
JPS61183464A (en) Sputtering device
JP2548516Y2 (en) Ion beam sputter deposition system
JPS59153882A (en) Vapor deposition method by sputtering
JPH0373630B2 (en)
JP2003163079A (en) Vapor-deposition device, thin-film formation method, and display device using them
JPS62142760A (en) Vacuum deposition device