JP2548387B2 - Liquid crystal alignment film manufacturing equipment - Google Patents

Liquid crystal alignment film manufacturing equipment

Info

Publication number
JP2548387B2
JP2548387B2 JP1175829A JP17582989A JP2548387B2 JP 2548387 B2 JP2548387 B2 JP 2548387B2 JP 1175829 A JP1175829 A JP 1175829A JP 17582989 A JP17582989 A JP 17582989A JP 2548387 B2 JP2548387 B2 JP 2548387B2
Authority
JP
Japan
Prior art keywords
bell jar
vacuum bell
evaporation source
liquid crystal
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1175829A
Other languages
Japanese (ja)
Other versions
JPH0339931A (en
Inventor
紀台 能智
可治 前沢
伸二 久光
照久 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1175829A priority Critical patent/JP2548387B2/en
Publication of JPH0339931A publication Critical patent/JPH0339931A/en
Application granted granted Critical
Publication of JP2548387B2 publication Critical patent/JP2548387B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 液晶表示素子用の透明絶縁基板の表面に斜方蒸着に依
り積層される液晶配向膜の製造装置に関する。
Description: TECHNICAL FIELD The present invention relates to an apparatus for producing a liquid crystal alignment film which is laminated by oblique vapor deposition on the surface of a transparent insulating substrate for a liquid crystal display element.

従来の技術 液晶配向処理方法は幾つかあり、その中で傾斜配向処
理に関しては斜め蒸着法が知られている。この斜め蒸着
法は、液晶分子の傾斜角度を設定できる唯一のものであ
る。この斜め蒸着法はSiOを被蒸発物質として選び、該
被蒸発物質の蒸気流を斜めの角度から基板面に導き入れ
るものである。該斜め蒸着法では、基板面への蒸気流の
入射角θを大きく(一般的にはθ>70゜であることが知
られている。)すると傾斜したコラムが形成され、液晶
分子の長軸が該コラム方向に沿い、液晶分子は、ある一
定の傾斜角度をもって傾斜配向する。そしてSiOの蒸気
流を得る方法としてSiOを石英ルツボ、タンタルルツボ
等の蒸発源内に充填させ、適当な加熱手段を用いて該Si
Oの蒸気流を得ていた。
2. Description of the Related Art There are several liquid crystal alignment treatment methods, of which the oblique vapor deposition method is known as the tilt alignment treatment. This oblique deposition method is the only one that can set the tilt angle of liquid crystal molecules. In this oblique vapor deposition method, SiO is selected as the substance to be evaporated, and the vapor flow of the substance to be evaporated is introduced to the substrate surface from an oblique angle. In the oblique vapor deposition method, when the incident angle θ of the vapor flow on the substrate surface is increased (it is generally known that θ> 70 °), an inclined column is formed, and the long axis of the liquid crystal molecule is formed. Along the column direction, the liquid crystal molecules are tilted and aligned with a certain tilt angle. Then, as a method for obtaining a vapor flow of SiO, SiO is filled in an evaporation source such as a quartz crucible or a tantalum crucible, and the Si is heated by using an appropriate heating means.
I was getting a steam flow of O.

発明が解決しようとする課題 しかし、SiOが被蒸発材として選択され、該SiOに適当
な加熱手段を用いてSiOの蒸気流を得ようとした際、次
のような問題が生じていた。SiO被蒸発材の形態が、粉
末もしくは塊状であり、しかもSiOが昇華性の性質を呈
しているために、被蒸発材SiOが真空装置内に飛散する
いわゆる突沸現象が生じ、飛散するSiOの一部が基板上
に直撃するケースがあった。更に基板上に積層される薄
膜はSiOx(但し1X2)で表示されるが、酸素の数
は不定であった。これらの問題の発生によって、基板内
での膜厚制御並びに均一でしかも再現性のある傾斜配向
膜を得ることが出来なかった。
Problems to be Solved by the Invention However, when SiO is selected as the material to be evaporated and an attempt is made to obtain a vapor flow of SiO by using an appropriate heating means for the SiO, the following problems occur. SiO The material to be vaporized is in the form of powder or lumps, and since SiO exhibits sublimable properties, the material to be vaporized SiO scatters inside the vacuum device, a so-called bumping phenomenon occurs, and In some cases, the department hit the board directly. Further, the thin film laminated on the substrate is represented by SiOx (however, 1X2), but the number of oxygen was indefinite. Due to these problems, it was not possible to control the film thickness in the substrate and obtain a uniform and reproducible tilted alignment film.

しかも、複数枚の基板や大面積の基板上に該傾斜配向
層を処理しようとした際、上記の問題がより顕著に発生
するために、従来の方法では生産性及び実用性にとぼし
かった。本発明は、上記した事情に鑑み、斜め蒸着法に
よる傾斜配向処理において、その液晶分子の傾斜角度を
均一で再現性よく、しかも生産性そして実用性のあるよ
うにした液晶配向膜の製法及びその製造装置を提供する
のを目的としている。
Moreover, when the inclined alignment layer is processed on a plurality of substrates or a large-area substrate, the above-mentioned problems occur more remarkably, so that the conventional method is poor in productivity and practicality. . In view of the above circumstances, the present invention provides a method for producing a liquid crystal alignment film in which the tilt angle of the liquid crystal molecules is uniform and reproducible in the tilt alignment treatment by the oblique vapor deposition method, and the productivity and the practicality thereof are improved. The purpose is to provide a manufacturing apparatus.

課題を解決するための手段 上記目的を達成するために、本発明の液晶配向膜の製
造装置は、真空ベルジャー内に酸素を主成分としたガス
を導入して、Ph≧Ps(但しPhは蒸発源近傍の真空度、Ps
は透明絶縁基板近傍の真空度)が成り立つ反応性雰囲気
をつくるために、高真空用排気ポンプを上部に備えた真
空ベルジャーと、大気中に配設された酸素を主成分とし
たガスを充填したボンベと、真空ベルジャーとボンベを
大気中で連結した外パイプ系と、真空ベルジャー内で外
パイプ系に連結して真空ベルジャー内の下部に設置され
た蒸発源近傍に延長され、その先端にガスの噴出口を設
けた内パイプ系と、蒸発源内に充填される被蒸発物を加
熱蒸発させる手段と真空ベルジャー内の上部に透明絶縁
基板を被蒸発物の蒸気流とは0度と異なった特定の範囲
内の入射角を保持させながら連続かつ間欠的に移動させ
る手段を具備している。ここで蒸発源に充填された被蒸
発物電子ビームもしくはレーザを用いて加熱蒸発させる
のが好適である。
Means for Solving the Problems In order to achieve the above object, the apparatus for producing a liquid crystal alignment film of the present invention introduces a gas containing oxygen as a main component into a vacuum bell jar, and Ph ≧ Ps (where Ph is vaporized). Vacuum degree near the source, Ps
Is a vacuum bell jar equipped with an exhaust pump for high vacuum at the top and a gas containing oxygen as the main component, which is placed in the atmosphere. A cylinder, an outer pipe system connecting the vacuum bell jar and the cylinder in the atmosphere, and an extension pipe connected to the outer pipe system in the vacuum bell jar and extended near the evaporation source installed at the bottom of the vacuum bell jar, and the gas An inner pipe system provided with a jet port, a means for heating and evaporating the substance to be vaporized filled in the evaporation source, and a transparent insulating substrate on the upper part of the vacuum bell jar have a specific vapor flow of the substance different from 0 °. A means for continuously and intermittently moving while maintaining the incident angle within the range is provided. Here, it is preferable to heat and evaporate the evaporation target electron beam or laser filled in the evaporation source.

作用 上記のように構成した液晶配向膜の製造装置を適用す
ると、PhPsが成り立つ反応雰囲気内で被蒸発物の蒸発
とその蒸発流による被蒸発物と酸素との反応成膜を形成
するから蒸発源の加熱手段の放電を抑えて蒸発源内に充
填させた被蒸発物が一様に持続的に溶解し、かつ所望の
スラム傾斜角が得られること、そして被蒸発物に加える
加熱エネルギー、前記Ph,Ps並びに透明絶縁基板を移動
させるスピードを制御することによって所望の酸化度を
呈した均一でしかも再現性のある傾斜配向層、つまり被
蒸発物の酸化薄膜を複数枚並びに大面積の透明絶縁基板
の表面に得ることが出来る。特に被蒸発物をレーザもし
くは電子ビームを用いて加熱蒸発させると、加熱エネル
ギーを持続的に制御することができ被蒸発物の蒸気流を
持続的に制御することができる。また真空ベルジャー内
の蒸発源の付近に酸素を主成分としたガスを噴出させる
外パイプ系途中のバルブの調節によって高真空用排気ポ
ンプと協働し真空ベルジャー内のPhとPsとを持続的に適
正に制御することができる。
Operation When the liquid crystal alignment film manufacturing apparatus configured as described above is applied, the evaporation source is formed in the reaction atmosphere in which PhPs is established, and the reaction film formation of the evaporation object and oxygen by the evaporation flow is formed. The discharge of the heating means is suppressed and the evaporated material filled in the evaporation source is uniformly and continuously melted, and a desired slam inclination angle is obtained, and the heating energy applied to the evaporated material, Ph, By controlling the moving speed of Ps and the transparent insulating substrate, a uniform and reproducible graded orientation layer exhibiting a desired degree of oxidation, that is, a plurality of oxide thin films of the substance to be evaporated and a large-area transparent insulating substrate Can be obtained on the surface. Particularly, when the substance to be evaporated is heated and vaporized by using a laser or an electron beam, the heating energy can be continuously controlled, and the vapor flow of the substance to be evaporated can be continuously controlled. Also, by adjusting a valve in the middle of the outer pipe system that ejects a gas containing oxygen as a main component near the evaporation source in the vacuum bell jar, in cooperation with the high vacuum exhaust pump, Ph and Ps in the vacuum bell jar are continuously maintained. It can be controlled properly.

実施例 第1実施例について、第1図を参照しながら説明する
と、第1図に高真空排気ポンプ1を備えた真空ベルジャ
ー2が示されている。該高真空排気ポンプ1は、該真空
ベルジャー2の上部に2aに接続されている。そして、該
真空ベルジャー内の下部2bには、蒸発源ルツボ3が設け
られ該蒸発源のルツボ3の近傍には、酸素ガスを主成分
としたガスを噴出させるパイプ系21が配設されている。
なお、該パイプ系21は、大気中に配設され酸素を主成分
としたガスを充填したボンベ21Vと前記真空ベルジャー
2を連結した外パイプ系21aと、前記真空ベルジャー2
内で前記パイプ系21aに連結した前記蒸発源近傍に延長
され、その先端で矢印21bのように前記ガスを噴出させ
る口を設けた内パイプ系21Cから構成されている。図中
の21dは外パイプ系21aに設けられたバルブで、パイプ系
21内に流れる前記ガスの流量を調整する。即ちバルブ前
に説明したPh,Psを制御する。
First Embodiment A first embodiment will be described with reference to FIG. 1. FIG. 1 shows a vacuum bell jar 2 equipped with a high vacuum pump 1. The high vacuum exhaust pump 1 is connected to the vacuum bell jar 2 at the upper portion 2a. An evaporation source crucible 3 is provided in the lower portion 2b in the vacuum bell jar, and a pipe system 21 for ejecting a gas containing oxygen gas as a main component is arranged in the vicinity of the evaporation source crucible 3. .
The pipe system 21 includes an outer pipe system 21a connecting the vacuum bell jar 2 and a cylinder 21V arranged in the atmosphere filled with a gas containing oxygen as a main component, and the vacuum bell jar 2
It is composed of an inner pipe system 21C which is extended in the vicinity of the evaporation source connected to the pipe system 21a and has a port for ejecting the gas at the tip thereof as shown by an arrow 21b. Reference numeral 21d in the figure denotes a valve provided in the outer pipe system 21a.
The flow rate of the gas flowing in 21 is adjusted. That is, the Ph and Ps described before the valve are controlled.

なお、真空排気ポンプ1の排気量の選定並びに該ポン
プ1に連なるバルブ11の調整は前記真空度Ph,Psを制御
するのに用いられる。上記の手段を用いて本発明に至る
重要な研究結果である、Ph≧Psを得ることができる。
The selection of the exhaust amount of the vacuum pump 1 and the adjustment of the valve 11 connected to the pump 1 are used to control the vacuum levels Ph and Ps. Using the above means, Ph ≧ Ps, which is an important research result leading to the present invention, can be obtained.

蒸発源ルツボ3には、Si元素3aが充填されている。該
Si元素3aに加える加熱エネルギーを持続的に制御する事
が可能である電子ビームもしくはレーザからなる加熱手
段によって、前記Si元素3aの蒸気流を得るのがのぞまし
い。矢印3bは偏向タイプの電子ビーム蒸発源ルツボ3に
於ける電子の軌跡を示している。蒸発源ルツボ3の直上
に配設されている3Cはシャッターであって、蒸発源ルツ
ボ3から発っせられる前記Si元素3aの蒸気流を随時遮断
できる。前記真空ベルジャー2の上部に位置される透明
絶縁基板4は、蒸発源レツボ3から飛来してくる前記Si
元素3aの蒸気流に対して0゜と異なる入射角θに傾斜し
て配設される。そしてこの透明絶縁基板4の表面にはSi
Ox(但しX2)からなる配向処理層が形成される。
4aは、仕切壁4eに形成された開口窓であって、透明絶縁
基板4の表面には、該開口窓4aを通過した前記蒸気流に
よってSiOx薄膜が形成される。又開口窓4aの大きさは、
前記蒸気流の透明絶縁基板4に対する入射角の広がりに
関与している。同図では詳細に記載されていないが本発
明では、前記透明絶縁基板4を例えば矢印4bが示す方向
に連続的もしくは間欠的に移動させる手段を具備してい
る。
The evaporation source crucible 3 is filled with Si element 3a. The
Desirably, the vapor flow of the Si element 3a is obtained by a heating means including an electron beam or a laser capable of continuously controlling the heating energy applied to the Si element 3a. An arrow 3b indicates the trajectory of electrons in the deflection type electron beam evaporation source crucible 3. 3C disposed directly above the evaporation source crucible 3 is a shutter, which can interrupt the vapor flow of the Si element 3a emitted from the evaporation source crucible 3 at any time. The transparent insulating substrate 4 located above the vacuum bell jar 2 is the Si source coming from the evaporation source crucible 3.
It is arranged so as to be inclined at an incident angle θ different from 0 ° with respect to the vapor flow of the element 3a. And on the surface of this transparent insulating substrate 4, Si
An alignment treatment layer made of Ox (however, X2) is formed.
4a is an opening window formed in the partition wall 4e, and a SiOx thin film is formed on the surface of the transparent insulating substrate 4 by the vapor flow passing through the opening window 4a. The size of the opening window 4a is
It is involved in the spread of the incident angle of the vapor flow on the transparent insulating substrate 4. Although not shown in detail in the figure, the present invention comprises means for moving the transparent insulating substrate 4 continuously or intermittently in the direction indicated by the arrow 4b, for example.

そして基板供給場所4Cに位置した透明絶縁基板4は開
口窓4bを通過するときにその表面にSiOx配向処理層を形
成され、この形成後、基板置き場所4dに移動する。なお
図中の2Cは保持板であって、真空ベルジャー2の内部で
配設される蒸発源ルツボ3、シャッター3C、透明絶縁基
板4等を保持並びに移動させるのに用いられる。2b,2e
で示される真空計器は、各々、真空ベルジャー2の上部
2a並びに下部2bに於ける真空度を測定するものであり、
又近似的には、上述した真空度Ps並びにPhを示すもので
ある。なお本発明に至る重要な実験結果であるPS,Phに
ついて詳述する。PsはPs10-4(Torr),PhはPh10-3
(Torr)が好ましい。Psが10-4(Torr)よりも低真空に
なると、所望のスラム傾斜角を得ることが出来ない。又 Phが10-3(Torr)よりも低真空になると、偏向タイプの
電子ビームによる蒸発源を使用した際、該ビームの発生
に使用している高圧部で放電が発生し、持続的にSiの蒸
気流を製造できない。第2図に他実施例を示している上
記のPhPsを効果的かつ持続的に実現させるために、真
空ベルジャー2及びその内部に関して、本発明では、真
空ベルジャー2内を複数の部屋(図では上室20a及び下
室20bの2つ部屋)にしきるためのシールド板2fと各々
の室20a,20bを単独に真空排気するポンプ系101a並びに1
01bを配し、上室20aには、透明絶縁基板4並びにそれを
移動させるに用いる手段を配設し、下室20bには蒸発層
ルツボ3並びに酸素ガスを主成分としたガスを導入しか
つ噴出させるパイプ系21が設けられている。なお、図中
の2gはシールド板2f中に設けられた開口窓であり、前記
Siの蒸気流は該開口窓2gを通過して前記透明絶縁基板の
方に向かうものである。上記真空排気用ポンプの101a,1
01bの排気容量並びにこれらに直結しているバルブ111a,
111bの開閉度合や、前記パイプ系21を流れるガスの流量
を制御するガス調整バルブ21dの調整度合に依って上記
のPhPsは容易にかつ効果的にしかも持続的に保持され
る。そして、上記した本発明の製法並びにその製造装置
は、蒸発源内にSi以下の元素としてZr,Al,Ti,Be,Yを選
択して充填させて、透明絶縁基板上でこれらの酸化膜を
傾斜配向層として処理することが出来る、しかも上記の
元素から選択された2種以上の元素からなる化合物につ
いてもその化合物の酸化膜を傾斜配向層として処理する
ことが出来るのは明白である。なお上記の実施例とし
て、傾斜配向処理される基板としての透明絶縁基板は硬
質のもののほかプラスティックフィルムのようなフレキ
シブルな透明絶縁基板でも、本発明の主旨を活かすこと
ができるのは明白である。
Then, the transparent insulating substrate 4 located at the substrate supply place 4C has a SiOx orientation treatment layer formed on its surface when passing through the opening window 4b, and after this formation, moves to the substrate placing place 4d. 2C in the figure is a holding plate used to hold and move the evaporation source crucible 3, the shutter 3C, the transparent insulating substrate 4 and the like arranged inside the vacuum bell jar 2. 2b, 2e
The vacuum gauges indicated by are respectively the upper part of the vacuum bell jar 2.
It measures the degree of vacuum in 2a and lower part 2b,
Further, approximately, it indicates the above-mentioned vacuum degrees Ps and Ph. Note that PS and Ph, which are important experimental results leading to the present invention, will be described in detail. Ps is Ps10 -4 (Torr), Ph is Ph10 -3
(Torr) is preferred. When Ps is lower than 10 −4 (Torr), the desired slam inclination angle cannot be obtained. Also, when Ph is lower than 10 -3 (Torr), when a deflection type electron beam evaporation source is used, discharge is generated in the high pressure part used to generate the beam, and Si is continuously generated. Unable to produce a vapor stream of In order to effectively and sustainably realize the above-mentioned PhPs, which shows another embodiment in FIG. 2, regarding the vacuum bell jar 2 and its inside, in the present invention, the inside of the vacuum bell jar 2 is divided into a plurality of chambers (the upper part in the figure). A shield plate 2f for completely arranging the chamber 20a and the lower chamber 20b) and pump systems 101a and 1 for individually evacuating each chamber 20a, 20b.
01b is provided, the upper chamber 20a is provided with a transparent insulating substrate 4 and a means for moving it, and the lower chamber 20b is provided with an evaporation layer crucible 3 and a gas containing oxygen gas as a main component. A pipe system 21 for ejecting is provided. Incidentally, 2g in the figure is an opening window provided in the shield plate 2f,
The vapor stream of Si passes through the opening window 2g and is directed toward the transparent insulating substrate. The above vacuum pump 101a, 1
Exhaust capacity of 01b and valve 111a directly connected to these,
The PhPs can be easily, effectively and continuously maintained depending on the opening / closing degree of 111b and the adjusting degree of the gas adjusting valve 21d for controlling the flow rate of the gas flowing through the pipe system 21. Then, the manufacturing method and the manufacturing apparatus thereof of the present invention described above, Zr, Al, Ti, Be, Y is selected and filled as an element of Si or less in the evaporation source, and these oxide films are inclined on the transparent insulating substrate. It is obvious that the compound can be processed as the alignment layer, and that the oxide film of the compound composed of two or more elements selected from the above elements can be processed as the tilted alignment layer. In the above-described embodiment, it is obvious that the transparent insulating substrate as the substrate to be subjected to the tilt alignment treatment is not only a hard transparent insulating substrate but also a flexible transparent insulating substrate such as a plastic film, so that the gist of the present invention can be utilized.

発明の効果 本発明は上記構成および作用を有するので以下に記載
されるような効果を奏する。即ち、蒸発源内に充填され
た被蒸発物が一様に溶解すること、そして該Si被蒸発物
に加え加熱エネルギーの制御や前記Ph,Psを所定の値に
制御そして前記透明絶縁基板を移動させるスピードを制
御することに依って、所望の酸化度を呈した均一でしか
も再生性のある傾斜配向層、つまり被蒸発物と酸素との
反応生成薄膜を複数枚並びに大面積の透明絶縁基板の表
面に得ることができ、従って本発明は生産性そして実用
性のある液晶配向層の製造装置である。
EFFECTS OF THE INVENTION Since the present invention has the above-mentioned configurations and operations, it has the following effects. That is, the evaporation target filled in the evaporation source is uniformly dissolved, and the heating energy is controlled in addition to the Si evaporation target and the Ph and Ps are controlled to predetermined values, and the transparent insulating substrate is moved. By controlling the speed, a uniform and reproducible graded orientation layer exhibiting a desired degree of oxidation, that is, a plurality of reaction-produced thin films of a substance to be evaporated and oxygen and the surface of a large-area transparent insulating substrate Therefore, the present invention is an apparatus for producing a liquid crystal alignment layer which is productive and practical.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1の実施例における液晶の配向膜の
製造装置を示す概略構成図、第2図は本発明の第2の実
施例における液晶の配向膜の製造装置を示す概略構成図
である。 1、101a、101b……高真空排気ポンプ、2……真空ベル
ジャー、3……蒸発源ルツボ、4……透明絶縁基板、3a
……Si元素、3b……電子軌跡、11、111a、111b、21d…
…バルブ、21……パイプ系、21a……外パイプ系、21b…
…内パイプ系。
FIG. 1 is a schematic configuration diagram showing an apparatus for producing a liquid crystal alignment film in a first embodiment of the present invention, and FIG. 2 is a schematic configuration showing an apparatus for producing a liquid crystal alignment film in a second embodiment of the present invention. It is a figure. 1, 101a, 101b ... High vacuum pump, 2 ... Vacuum bell jar, 3 ... Evaporation source crucible, 4 ... Transparent insulating substrate, 3a
…… Si element, 3b …… Electron trajectory, 11,111a, 111b, 21d…
… Valve, 21 …… Pipe system, 21a …… Outer pipe system, 21b…
… Inner pipe system.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石原 照久 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭63−313123(JP,A) 特開 昭63−260138(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Teruhisa Ishihara, 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-63-313123 (JP, A) JP-A-63- 260138 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高真空用排気ポンプを上部に備えた真空ベ
ルジャーと、大気中に配設された酸素を主成分としたガ
スを充填したボンベと、前記真空ベルジャーと前記ボン
ベを大気中で連結した外パイプ系と、前記真空ベルジャ
ー内で前記外パイプ系に連結して真空ベルジャー内の下
部に設置された蒸発源近傍に延長され、その先端に前記
ガスの噴出口を設けた内パイプ系と、前記蒸発源内に充
填される被蒸発物を加熱蒸発させる手段と、前記真空ベ
ルジャー内の上部に透明絶縁基板を前記被蒸発物の蒸気
流とは0度と異なった特定の範囲内の入射角を保持させ
ながら連続かつ間欠的に移動させる手段を具備したこと
を特徴とする液晶の配向膜の製造装置。
1. A vacuum bell jar equipped with an exhaust pump for high vacuum at the top, a cylinder filled with a gas containing oxygen as a main component, which is arranged in the atmosphere, and the vacuum bell jar and the cylinder connected in the atmosphere. And an outer pipe system connected to the outer pipe system in the vacuum bell jar, extended to the vicinity of an evaporation source installed in the lower part of the vacuum bell jar, and provided with a gas ejection port at its tip. A means for heating and evaporating an object to be evaporated filled in the evaporation source, and a transparent insulating substrate on an upper part of the vacuum bell jar, and an incident angle within a specific range different from 0 ° with respect to a vapor flow of the object to be evaporated. An apparatus for producing an alignment film of liquid crystal, comprising means for continuously and intermittently moving while holding the liquid crystal.
【請求項2】真空ベルジャー内を上室並びに下室に分け
るためのしきい板と該上室並びに下室を各々単独に真空
排気するポンプ系と大気中に配設され酸素を主成分とし
たガスを充填したボンベと、前記真空ベルジャーの下室
と前記ボンベを大気中で連結したパイプA系と、前記真
空ベルジャーの下室で前記パイプA系に連結し後記の蒸
発源近傍に延長して、その先端に前記ガスの噴出口を設
けたパイプB系と、前記真空ベルジャーの下室に配設さ
れた蒸発源と、該蒸発源内に充填されるSi,Zr,Al,Ti,B
e,Yから選択された元素もしくはそれらから選択された
2種類以上の元素を含む化合物Mと、該化合物Mを加熱
蒸発させる手段と、前記真空ベルジャー内の上室に配設
され、前記Mの蒸気流とは0度と異なった入射角に傾斜
された透明絶縁基板と、特定の範囲内の入射角に保持さ
せ連続かつ間欠的に前記透明絶縁基板を移動させる手段
を具備した事を特徴とする液晶の配向膜の製造装置。
2. A threshold plate for dividing the inside of the vacuum bell jar into an upper chamber and a lower chamber, a pump system for individually evacuating the upper chamber and the lower chamber, and oxygen-based components provided in the atmosphere. A gas-filled cylinder, a pipe A system in which the lower chamber of the vacuum bell jar and the cylinder are connected to each other in the atmosphere, and a pipe A system in the lower chamber of the vacuum bell jar connected to the evaporation source to be described later. , A pipe B system having the gas ejection port at its tip, an evaporation source arranged in the lower chamber of the vacuum bell jar, and Si, Zr, Al, Ti, B filled in the evaporation source.
A compound M containing an element selected from e and Y or two or more kinds of elements selected from them, a means for heating and evaporating the compound M, and a compound M provided in the upper chamber of the vacuum bell jar. A transparent insulating substrate inclined at an incident angle different from 0 ° with respect to the vapor flow; and means for continuously and intermittently moving the transparent insulating substrate while keeping the incident angle within a specific range. Liquid crystal alignment film manufacturing equipment.
JP1175829A 1989-07-07 1989-07-07 Liquid crystal alignment film manufacturing equipment Expired - Lifetime JP2548387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1175829A JP2548387B2 (en) 1989-07-07 1989-07-07 Liquid crystal alignment film manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1175829A JP2548387B2 (en) 1989-07-07 1989-07-07 Liquid crystal alignment film manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH0339931A JPH0339931A (en) 1991-02-20
JP2548387B2 true JP2548387B2 (en) 1996-10-30

Family

ID=16002949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1175829A Expired - Lifetime JP2548387B2 (en) 1989-07-07 1989-07-07 Liquid crystal alignment film manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2548387B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104215208A (en) * 2014-09-26 2014-12-17 桑德斯微电子器件(南京)有限公司 Lifting type evaporator table centering rapid testing mechanism and testing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4835826B2 (en) * 2005-04-25 2011-12-14 株式会社昭和真空 Vacuum deposition apparatus for liquid crystal alignment film and film forming method thereof
JP4661404B2 (en) * 2005-07-04 2011-03-30 セイコーエプソン株式会社 Vacuum deposition apparatus and electro-optical device manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313123A (en) * 1987-06-17 1988-12-21 Konica Corp Manufacture of liquid crystal display element
JPS63260138A (en) * 1987-04-17 1988-10-27 Oki Electric Ind Co Ltd Formation of silicon oxide film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104215208A (en) * 2014-09-26 2014-12-17 桑德斯微电子器件(南京)有限公司 Lifting type evaporator table centering rapid testing mechanism and testing method thereof

Also Published As

Publication number Publication date
JPH0339931A (en) 1991-02-20

Similar Documents

Publication Publication Date Title
JP2004052113A (en) Heating vessel and vapor deposition system using the same
TW200904998A (en) Deposition source, deposition apparatus, and forming method of organic film
JP3483719B2 (en) Evaporation source for organic material and organic thin film forming apparatus using the same
JP2548387B2 (en) Liquid crystal alignment film manufacturing equipment
KR100624767B1 (en) OLED evaporation system using shutter rotation for continuous deposition process
US3373050A (en) Deflecting particles in vacuum coating process
JP3203286B2 (en) Thin film forming apparatus, crucible for evaporation source thereof, and method for forming thin film of sublimable evaporation material
JP4142765B2 (en) Ion plating apparatus for forming sublimable metal compound thin films
JP2548373B2 (en) Liquid crystal alignment film manufacturing method and manufacturing apparatus
JPS6350463A (en) Method and apparatus for ion plating
JPH0151814B2 (en)
KR20210049157A (en) Method for preprocessing vibration crystals to measure deposition rate, deposition rate measurement device, evaporation source and deposition apparatus
JPH06340967A (en) Vapor deposition device
JPH09165674A (en) Vacuum coating apparatus
JPH0246666B2 (en)
JPH0451118A (en) Production of liquid crystal oriented film and apparatus for producing this film
JPH10330917A (en) Organic thin coating forming device
JP2003129231A (en) Vacuum deposition apparatus and vacuum deposition method
JP2022003159A (en) Vapor deposition apparatus
JP2004162108A (en) Molecular beam source cell for thin film deposition
JPH01259162A (en) Equipment for producing thin film
JPH031379B2 (en)
JPH0580555B2 (en)
JP2774541B2 (en) Thin film forming equipment
JPS62211368A (en) Apparatus for producing thin compound film