JPH01259162A - Equipment for producing thin film - Google Patents

Equipment for producing thin film

Info

Publication number
JPH01259162A
JPH01259162A JP8884788A JP8884788A JPH01259162A JP H01259162 A JPH01259162 A JP H01259162A JP 8884788 A JP8884788 A JP 8884788A JP 8884788 A JP8884788 A JP 8884788A JP H01259162 A JPH01259162 A JP H01259162A
Authority
JP
Japan
Prior art keywords
target
thin film
chamber
laser beam
molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8884788A
Other languages
Japanese (ja)
Inventor
Keiichi Yoshida
佳一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP8884788A priority Critical patent/JPH01259162A/en
Publication of JPH01259162A publication Critical patent/JPH01259162A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a thin film little in deterioration even in case of the thermally unstable organic material in the title equipment by a vacuum deposition method by heating the material with pulse laser beam and forming the target of a mixture consisting of the material and metallic particles. CONSTITUTION:A target 3 is provided slantingly at 45 deg. to the horizontal plane in a vacuum chamber 1 and a base plate 2 is provided to the upper part thereof. The target 3 is irradiated by the finely throttled laser beams L from the outside of the chamber 1 via a window part 1a provided on the chamber 1 wall body of the left side of the target 3. This target 3 is formed of the mixture of material molecules 31, metal, e.g., fine Co particles 32 and glycerin 33. When the target 3 is irradiated with the laser beam L, these laser beam L are absorbed by the fine Co particles 32 and the temp. is raised locally and rapidly and the material molecules 31 in the vicinity thereof are instantaneously heated and evaporated and condensed on the base plate 2. Therefore deterioration such as reduction of mol.wt. due to the thermal decomposition of the material molecules 31 can be inhibited.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は薄膜を形成する装置に関し、特に有機材料の薄
膜を得るのに適した装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an apparatus for forming a thin film, and particularly to an apparatus suitable for obtaining a thin film of an organic material.

〈従来の技術〉 近年、半導体材料として有機材料が注目されている。し
かし、有機材料に半導体性を持たせるには超薄膜化を図
る必要があり、従来、有機材料の超薄膜を形成する方法
としては、LB法、CVD法あるいはPVD法が知られ
ている。(雀部博之=「高分子超薄膜の作成と電気物性
」応用物理第56巻第2号(1987) 146) LB法は、アルキル鎖CH3(CH2)ゎ等の長い疎水
性の分子の末端に、−COOH,−0H2,−NH2等
の親水性のグループを有する分子を、ベンゼンやクロロ
ホルム等の有機溶媒に溶かし、その溶液を水面上に静か
に滴下すると液滴は気・水界面に拡がり溶媒が蒸発した
後に単分子層が残り、この単分子層を基板上に移し取る
ことにより有機材料の単分子累積膜つまりラングミュア
・プロジェット膜を得る方法である。
<Prior Art> In recent years, organic materials have attracted attention as semiconductor materials. However, in order to impart semiconducting properties to an organic material, it is necessary to make it an ultra-thin film, and the LB method, CVD method, or PVD method is conventionally known as a method for forming an ultra-thin film of an organic material. (Hiroyuki Susumbe = "Preparation and electrical properties of ultra-thin polymer films" Applied Physics Vol. 56, No. 2 (1987) 146) The LB method uses an alkyl chain CH3 (CH2) at the end of a long hydrophobic molecule such as CH3 (CH2). When molecules with hydrophilic groups such as -COOH, -0H2, -NH2 are dissolved in an organic solvent such as benzene or chloroform, and the solution is gently dropped onto the water surface, the droplets spread at the air-water interface and the solvent is removed. After evaporation, a monomolecular layer remains, and this monomolecular layer is transferred onto a substrate to obtain a monomolecular cumulative film of an organic material, that is, a Langmuir-Prodgett film.

CVD法、つまり化学気相成長法は、モノマーを気化さ
せ、プラズマあるいは光等で励起してラジカルを生成し
、基板上に重合膜を形成する方法である。
The CVD method, that is, the chemical vapor deposition method, is a method of vaporizing a monomer and exciting it with plasma or light to generate radicals to form a polymer film on a substrate.

PVD法、つまり物理気相成長法には、スパッタ法や真
空蒸着法等があり、スパッタ法はターゲットに加速され
たイオン粒子を打ち込むことによりターゲット分子をは
しき飛ばし、その分子を基板上に付着させて薄膜を形成
する方法であり、また真空蒸着法は、蒸着源を真空雰囲
中で加熱することにより蒸発させ、その蒸発粒子を基板
上に凝縮させることにより薄膜を得る方法である。
The PVD method, or physical vapor deposition method, includes sputtering, vacuum evaporation, etc. Sputtering is a method in which accelerated ion particles are injected into a target to blow away target molecules, and the molecules are attached to a substrate. The vacuum evaporation method is a method for forming a thin film by heating a vapor deposition source in a vacuum atmosphere to evaporate the vapor, and condensing the evaporated particles on a substrate to obtain a thin film.

〈発明が解決しようとする課題〉 ところで、LB法によれば、単分子膜の形成が可能で、
しかも配向制御が可能な優れた方法であるものの、膜の
生成速度が極めて遅く、しかも疎水性分子の末端に親水
性のグループを有する、特定な有機物の薄膜形成にしか
適用できないという欠点がある。
<Problem to be solved by the invention> By the way, according to the LB method, it is possible to form a monomolecular film,
Moreover, although it is an excellent method that allows for orientation control, it has the disadvantage that the film formation rate is extremely slow and it can only be applied to the formation of thin films of specific organic substances that have hydrophilic groups at the ends of hydrophobic molecules.

また、CVD法によれば、基本的に重合反応によりポリ
マー膜を形成する方法であって、材料がポリマーだけに
限定されるという欠点がある。
Furthermore, the CVD method is basically a method of forming a polymer film through a polymerization reaction, and has the disadvantage that the material is limited to only polymers.

更にまた、スパッタ法によれば、多種の有機材料の薄膜
形成に適用できるものの、得られた薄膜の結晶性が極め
て悪いという欠点がある。
Furthermore, although the sputtering method can be applied to the formation of thin films of various organic materials, it has the disadvantage that the crystallinity of the obtained thin films is extremely poor.

一方、真空蒸着法は、比較的多(の種類の有機材料の薄
膜形成に適用することが可能で1、しかも結晶構造が蒸
着前の材料と殆んど同一な薄膜を得ることができる特徴
を有している。しかしながら、この真空蒸着法によると
、材料の加熱を、例えば加熱ヒータ等を用いて行ってお
り、加熱速度が遅く、材料が蒸発温度に達するまでに長
時間高温にさらされるため、蒸着源として熱的に不安定
な有機材料を用いた場合には、熱分解により分子量の低
下等の劣化が生じるという問題が残されている。
On the other hand, the vacuum evaporation method can be applied to the formation of thin films of a relatively large number of types of organic materials. However, according to this vacuum evaporation method, the material is heated using, for example, a heater, and the heating rate is slow and the material is exposed to high temperature for a long time until it reaches the evaporation temperature. However, when a thermally unstable organic material is used as a vapor deposition source, there remains the problem that deterioration such as a decrease in molecular weight occurs due to thermal decomposition.

本発明の目的は、基本的に真空蒸着法を採用し、熱的に
不安定な有機材料の薄膜を形成する場合であっても、熱
分解により分子量の低下等の劣化を可及的に抑えること
のできる、薄膜製造装置を提供することにある。
The purpose of the present invention is to suppress deterioration such as a decrease in molecular weight due to thermal decomposition as much as possible even when forming a thin film of a thermally unstable organic material by basically adopting a vacuum evaporation method. The object of the present invention is to provide a thin film manufacturing apparatus that can produce a thin film.

〈課題を解決するための手段〉 上記の目的を達成するための構成を実施例に対応する第
1図、第2図を参照しつつ説明すると、本発明ば、材料
31を真空雰囲中で加熱することにより蒸発させ、その
蒸発粒子を基板2上に導いてその基板2上に薄膜を形成
する装置であって、材料31の加熱をパルスレーザ光り
の照射により行なうよう構成するとともに、そのパルス
レーザ光りのターゲット3を、少くとも材料31と金属
微粒子32とを混合した混合物により形成したことを特
徴としている。
<Means for Solving the Problems> The configuration for achieving the above object will be explained with reference to FIGS. 1 and 2 corresponding to the embodiment. This device evaporates by heating and guides the evaporated particles onto the substrate 2 to form a thin film on the substrate 2, and is configured to heat the material 31 by irradiating pulsed laser light, and The laser beam target 3 is characterized in that it is formed of a mixture of at least a material 31 and metal fine particles 32.

〈作用〉 一般に、有機材料にパルスレーザ光を照射すると、材料
から中性分子が蒸発することが知られており、この蒸発
分子を基板上に導いて凝縮させれば、有機材料の薄膜を
得ることができる。
<Effect> It is generally known that when an organic material is irradiated with pulsed laser light, neutral molecules evaporate from the material, and if these evaporated molecules are guided onto a substrate and condensed, a thin film of the organic material can be obtained. be able to.

ここで、パルスレーザ光のターゲットを有機材料だけで
形成した場合、パルスレーザ光照射による温度上昇はあ
まり急激なものでなく、材料の加熱速度は、ヒータ加熱
等に比して速いものの、依然として十分ではない。そこ
で、有機材料31と金属微粒子32との混合物によりタ
ーゲット3を形成し、そのターゲット3にレーザ光りを
照射すると、レーザ光りは金属粒子32に吸収され、局
部的に急激な温度上昇が生じる。これにより、材料31
は瞬時に加熱され蒸発する。
Here, if the target of the pulsed laser beam is formed only from an organic material, the temperature rise due to pulsed laser beam irradiation is not very rapid, and the heating rate of the material is faster than that of heating with a heater, etc., but it is still sufficient. isn't it. Therefore, when the target 3 is formed from a mixture of the organic material 31 and the metal fine particles 32 and the target 3 is irradiated with laser light, the laser light is absorbed by the metal particles 32, causing a local rapid temperature rise. As a result, material 31
is instantly heated and evaporates.

〈実施例〉 本発明の実施例を、以下、図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第1図は本発明実施例の構成を示す縦断面図、第2図は
そのターゲット3の構成を模式的に示す図である。
FIG. 1 is a longitudinal cross-sectional view showing the structure of an embodiment of the present invention, and FIG. 2 is a diagram schematically showing the structure of a target 3 thereof.

真空チャンバ1内に、ホルダ4に保持されたターゲット
3が水平面に対して45°傾いて配設されており、その
上方には基板2が配設されている。
A target 3 held by a holder 4 is arranged in a vacuum chamber 1 at an angle of 45° with respect to a horizontal plane, and a substrate 2 is arranged above the target 3 .

ターゲット3の左側方の真空チャンバ1壁体には窓部1
aが設けられており、真空チャンバ1外部から細く絞っ
たレーザ光りを窓部1aを介して内部のターゲット3に
照射することができる。
There is a window 1 on the wall of the vacuum chamber 1 on the left side of the target 3.
A is provided so that narrowly focused laser light can be irradiated from outside the vacuum chamber 1 to the target 3 inside the vacuum chamber 1 through the window 1a.

なお、基板2の上方には、基板2を所定温度に保つため
のヒータ5が配設されている。
Note that a heater 5 is provided above the substrate 2 to maintain the substrate 2 at a predetermined temperature.

ターゲット3は、第2図に示すように、材料分子31、
コバルト微粒子32およびグリセリン33等の混合物で
あり、この混合物は、例えば有機物等の形成すべき薄膜
の材料を、その材料を可溶の適当な溶媒で溶かして材料
溶液を作り、その材料溶液とコバルトの微粒子およびグ
リセリンを混ぜることによって作成することができる。
As shown in FIG. 2, the target 3 includes material molecules 31,
It is a mixture of cobalt fine particles 32, glycerin 33, etc., and this mixture is made by dissolving the material of the thin film to be formed, such as an organic substance, in an appropriate solvent that is soluble in the material to create a material solution, and then combining the material solution with cobalt. can be created by mixing microparticles and glycerin.

なお、コハルトの微粒子の直径は、できるだけ細かくす
ることが望ましく、例えば数百人程度の直径のものを用
いる。
Note that it is desirable that the diameter of the Koharto fine particles be as fine as possible, and for example, those having a diameter of about several hundred particles are used.

以上の構成により、ターゲット3にレーザ光りを照射す
ると、レーザ光はコバルト微粒子32に吸収され、これ
によって、局部的に急激な温度上昇が生じる。この温度
上昇によって、その近辺の材料分子31が瞬時に加熱さ
れ蒸発し、その蒸発分子は基板2上に到達して凝縮する
。これにより、基板2上に薄膜を得ることができる。
With the above configuration, when the target 3 is irradiated with laser light, the laser light is absorbed by the cobalt fine particles 32, thereby causing a local rapid temperature rise. Due to this temperature rise, the material molecules 31 in the vicinity are instantaneously heated and evaporated, and the evaporated molecules reach the substrate 2 and condense. Thereby, a thin film can be obtained on the substrate 2.

ここで、材料分子31はグリセリン33内に浮遊してい
るから、レーザ光りの照射箇所の材料分子31が蒸発し
ても、周囲から直ちに補給され、蒸着を長時間に亘って
m続できる。
Here, since the material molecules 31 are suspended in the glycerin 33, even if the material molecules 31 at the location irradiated with the laser beam evaporate, they are immediately replenished from the surroundings, and the vapor deposition can be continued for a long time.

なお、金属微粒子はコバルトに限られることなく、レー
ザ光を吸収しやすい金属であれば任意のものを用いるこ
とができる。また、その直径は、混合物内での均在性や
、総表面積を大きくするために、小さくする程好都合と
なる。
Note that the metal fine particles are not limited to cobalt, and any metal that easily absorbs laser light can be used. Further, the smaller the diameter, the more convenient it is to increase the uniformity within the mixture and the total surface area.

さらに、混合ヘースとしてのグリセリンは必ずしも必要
でなく、例えば、粉状の材料と金属微粒子とを均一に混
合したものをターゲットとして用いてもよい。
Furthermore, glycerin as a mixed substance is not necessarily required, and for example, a uniform mixture of powdered material and fine metal particles may be used as the target.

次に、他の実施例を第3図を参照しつつ説明する。Next, another embodiment will be described with reference to FIG.

この例では、真空チャンバ101を隔壁102により二
つの部室、ターゲツト室Tおよび蒸着室Vに分けており
、それぞれの部室の真空引きを個別に行うよう構成して
いる。また、隔壁102には小孔102aが穿れており
、レーザ光り照射によりターゲット3から蒸発した材料
分子は、その小孔102a通過して蒸着室V内の基板2
上に到達する。
In this example, a vacuum chamber 101 is divided by a partition wall 102 into two chambers, a target chamber T and a deposition chamber V, and each chamber is configured to be evacuated individually. Further, a small hole 102a is bored in the partition wall 102, and material molecules evaporated from the target 3 by laser beam irradiation pass through the small hole 102a and pass through the substrate 2 in the vapor deposition chamber V.
reach the top.

ここで、一般に、配向制御をしつつ薄膜形成を行なうに
は、10− ” torr程度の高真空が必要とされて
いるが、第1図のように、グリセリンを混合したターゲ
ット3を基板2と同じチャンバ1内に配置すると、チャ
ンバ1内の真空度は10−6torr程度しか得られな
い。そこで、この例のように構成することにより、ター
ゲツト室Tは10−6torr程度の真空度しか得られ
ないものの、蒸着室■を1O−1Otorr程度に維持
することが可能になる。しかも、ターゲツト室Tを1O
−6torr、蒸着室Vを10−”torr程度の真空
度に維持した状態では、ターゲット3からの蒸発分子は
、小孔102aからいきおいよく飛び出し、分子線とな
って基板2上に到達することになり、いわゆる分子線エ
ピタキシ装置として使用することができる。
Generally, in order to form a thin film while controlling the orientation, a high vacuum of about 10-'' torr is required. If they are placed in the same chamber 1, the degree of vacuum in the chamber 1 can only be about 10-6 torr.Therefore, by configuring the target chamber T as in this example, the degree of vacuum in the target chamber T can only be about 10-6 torr. Although it is not possible, it is possible to maintain the deposition chamber (2) at about 10-1 Otorr.
-6 torr, and the deposition chamber V is maintained at a vacuum level of about 10-'' torr, the evaporated molecules from the target 3 are vigorously ejected from the small hole 102a, and reach the substrate 2 as molecular beams. Therefore, it can be used as a so-called molecular beam epitaxy device.

次いで、他の実施例を第4図と参照しつつ説明する。Next, another embodiment will be described with reference to FIG. 4.

この例の特徴は、ターゲット3から蒸発した材料分子を
単に基板2上に導くのではなく、蒸発した材料分子に側
方から紫外線または電子線eを照射してイオン化し、そ
のイオンを次段の加速電極46で加速して基板2上に衝
突させることにより薄膜を得る、いわゆるイオンブレー
ティング法を採用した点にある。
The feature of this example is that the material molecules evaporated from the target 3 are not simply guided onto the substrate 2, but the evaporated material molecules are ionized by being irradiated with ultraviolet rays or electron beams from the side, and the ions are transferred to the next stage. The point is that a so-called ion blating method is adopted, in which a thin film is obtained by accelerating with an accelerating electrode 46 and colliding with the substrate 2.

〈発明の効果〉 以上説明したように、本発明によれば、材料と金属微粒
子との混合物により形成されたターケノトに、レーザ光
を照射することによって材料を蒸発させるよう構成した
から、材料は、従来よりも増して急激に加熱され瞬時に
蒸発することになり、熱的に不安定で、かつ蒸発しにく
い材料、特に有機材料の薄膜を形成する場合であっても
、熱分解による分子量の低下等の劣化を従来に比してき
わめて少なくすることができ、分子量がオリジナルの材
料にほぼ近い薄膜を得ることが可能になる。
<Effects of the Invention> As explained above, according to the present invention, since the material is evaporated by irradiating the material with laser light to the material formed of the mixture of the material and the metal fine particles, the material can be Even when forming thin films of thermally unstable and difficult-to-evaporate materials, especially organic materials, which are heated more rapidly than before and evaporated instantly, the molecular weight decreases due to thermal decomposition. This makes it possible to significantly reduce deterioration such as the following, compared to the conventional method, and to obtain a thin film whose molecular weight is almost close to that of the original material.

なお、基本的に真空蒸着法を採用しているので、結晶構
造がオリジナルの材料と殆んど同一な薄膜を得ることが
できるという効果もある。
In addition, since a vacuum evaporation method is basically adopted, there is also the effect that a thin film having a crystal structure almost identical to that of the original material can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の構成を示す縦断面、第2図はそ
のターゲソ1へ3の構成を模式的に示す図、 第3図および第4図は本発明の他の実施例の構成を示す
縦断面図である。 2・・・基板 3・・・ターゲット 31・・・材料分子 32・・・コバルト微粒子 L・・・レーザ光 特許出願人    株式会社島津製作所代 理 人  
  弁理士 西1)新 −同一 第1図 第2図
FIG. 1 is a longitudinal section showing the configuration of an embodiment of the present invention, FIG. 2 is a diagram schematically showing the configuration of the target solenoid 1 to 3, and FIGS. 3 and 4 are configurations of other embodiments of the present invention. FIG. 2...Substrate 3...Target 31...Material molecules 32...Cobalt fine particles L...Laser light patent applicant Representative representative of Shimadzu Corporation
Patent Attorney Nishi 1) New - Same Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 材料を真空雰囲中で加熱することにより蒸発させ、その
蒸発粒子を基板上に導いてその基板上に薄膜を形成する
装置であって、上記加熱をパルスレーザ光の照射により
行うよう構成するとともに、そのパルスレーザ光のター
ゲットを、少くとも上記材料と金属微粒子とを混合した
混合物により形成したことを特徴とする、薄膜製造装置
An apparatus for evaporating a material by heating it in a vacuum atmosphere and guiding the evaporated particles onto a substrate to form a thin film on the substrate, the apparatus being configured so that the heating is performed by irradiation with pulsed laser light. A thin film manufacturing apparatus, characterized in that the target of the pulsed laser beam is formed of a mixture of at least the above-mentioned materials and fine metal particles.
JP8884788A 1988-04-11 1988-04-11 Equipment for producing thin film Pending JPH01259162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8884788A JPH01259162A (en) 1988-04-11 1988-04-11 Equipment for producing thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8884788A JPH01259162A (en) 1988-04-11 1988-04-11 Equipment for producing thin film

Publications (1)

Publication Number Publication Date
JPH01259162A true JPH01259162A (en) 1989-10-16

Family

ID=13954369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8884788A Pending JPH01259162A (en) 1988-04-11 1988-04-11 Equipment for producing thin film

Country Status (1)

Country Link
JP (1) JPH01259162A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029743A1 (en) * 2005-09-06 2007-03-15 Japan Science And Technology Agency Method for formation of film of molecular substance and apparatus for said method
JP2010062143A (en) * 2008-08-08 2010-03-18 Semiconductor Energy Lab Co Ltd Method of fabricating light emitting device
JP2012041615A (en) * 2010-08-20 2012-03-01 Hamamatsu Photonics Kk Laser ablation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029743A1 (en) * 2005-09-06 2007-03-15 Japan Science And Technology Agency Method for formation of film of molecular substance and apparatus for said method
JP4775801B2 (en) * 2005-09-06 2011-09-21 独立行政法人科学技術振興機構 Molecular material deposition method and apparatus
JP2010062143A (en) * 2008-08-08 2010-03-18 Semiconductor Energy Lab Co Ltd Method of fabricating light emitting device
JP2012041615A (en) * 2010-08-20 2012-03-01 Hamamatsu Photonics Kk Laser ablation device

Similar Documents

Publication Publication Date Title
Piqué et al. Growth of organic thin films by the matrix assisted pulsed laser evaporation (MAPLE) technique
US20130011440A1 (en) Method and device for depositing thin layers, especially for the production of multiple layers, nanolayers, nanostructures and nanocomposites
US20080187683A1 (en) Resonant infrared laser-assisted nanoparticle transfer and applications of same
JPH02310363A (en) Vapor deposition device by laser
JP2007517134A (en) Method and apparatus for coating an organic thin film on a substrate from a fluid source having a continuous supply function
JPS58167602A (en) Formation of thin film of organic substance
JPH01259162A (en) Equipment for producing thin film
JP2004256843A (en) Vacuum vapor deposition apparatus
KR100839222B1 (en) Apparatus for pulsed laser deposition and fabrication method of magnetic nanodot arrays using the same
JPH03174306A (en) Production of oxide superconductor
JPH03122283A (en) Apparatus for coating surface of base sheet
JPS6340201B2 (en)
JPS6350463A (en) Method and apparatus for ion plating
JP6512543B2 (en) Vapor deposition cell, thin film production apparatus and thin film production method
JP2548387B2 (en) Liquid crystal alignment film manufacturing equipment
RU2190628C2 (en) Method of applying thin polymer layers on surface of solids
DE102009031768A1 (en) Deposition of thin layers such as multi-layer coatings, nanolayers, nanostructures and nanocomposites by laser deposition from target materials on a substrate surface, comprises dividing the target into segments with materials
KR100578559B1 (en) Apparatus for thin film deposition and method for depositing to improve adhesion and deposition rate simultaneously
JPH01184273A (en) Method and apparatus for producing film with reactive plasma beam
JPS62243315A (en) Photoreaction and apparatus for the same
JP2867688B2 (en) Apparatus and method for producing organic thin film
JP3376181B2 (en) Method for preparing thin film of TFE-based polymer
RU2135633C1 (en) Method of vacuum deposition of thin films
KR20050109766A (en) Apparatus for depositing having curved surface target
JPS6347362A (en) Ion plating device