JPS6340201B2 - - Google Patents

Info

Publication number
JPS6340201B2
JPS6340201B2 JP17402281A JP17402281A JPS6340201B2 JP S6340201 B2 JPS6340201 B2 JP S6340201B2 JP 17402281 A JP17402281 A JP 17402281A JP 17402281 A JP17402281 A JP 17402281A JP S6340201 B2 JPS6340201 B2 JP S6340201B2
Authority
JP
Japan
Prior art keywords
monomer
film
vinyl
forming
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17402281A
Other languages
Japanese (ja)
Other versions
JPS5874701A (en
Inventor
Masahiro Hotsuta
Takeshi Aragai
Yoshuki Fukumoto
Yoji Kono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP17402281A priority Critical patent/JPS5874701A/en
Publication of JPS5874701A publication Critical patent/JPS5874701A/en
Publication of JPS6340201B2 publication Critical patent/JPS6340201B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は基材表面に高分子薄膜を形成させる方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a thin polymer film on the surface of a substrate.

近年、厚さ数ミクロン以下の有機高分子薄膜、
無機(化合物)薄膜を応用する分野が拡大し、膜
品質が均一かつ信頼度の高い極薄膜の開発及びそ
の製造方法の開発が要望されている。例えば、薄
膜コンデンサーにおける薄膜誘電体層、IC等の
パツシベーシヨン膜としての薄膜絶縁体層、メガ
ネ、カメラレンズ等の表面損傷防止被膜、蒸着磁
気テープの防錆保護膜等の用途には、ピンホール
の不存在、膜厚の均一性、膜品質の均一性等につ
き非常に高度な信頼性が要求されている。
In recent years, organic polymer thin films with a thickness of several microns or less,
The field of application of inorganic (compound) thin films is expanding, and there is a demand for the development of ultrathin films with uniform film quality and high reliability, as well as the development of methods for producing the same. For example, pinholes are used for applications such as thin film dielectric layers in thin film capacitors, thin film insulator layers as passivation films for ICs, surface damage prevention coatings for glasses and camera lenses, and antirust protective coatings for vapor-deposited magnetic tapes. A very high degree of reliability is required in terms of non-existence, uniformity of film thickness, uniformity of film quality, etc.

これらの要望にこたえ得る薄膜の形成方法には
プラズマ重合法、スパツタリング蒸着法、イオン
プレーテイング法、プラズマCVD(Chemcal
Vapor−Deposition)法等が知られている。
Methods for forming thin films that meet these demands include plasma polymerization, sputtering deposition, ion plating, and plasma CVD (Chemcal).
Vapor-Deposition) method and the like are known.

しかし、後三者はいずれも無機(化合物)薄膜
の形成方法で、既にかなり広範囲に実用に供され
ているが、有機高分子薄膜の形成方法は、プラズ
マ重合法が提案されているにすぎない。
However, while the latter three are methods for forming inorganic (compound) thin films and have already been put into practical use in a fairly wide range, plasma polymerization has only been proposed as a method for forming organic polymer thin films. .

これまで提案されているプラズマ重合法は、ア
ルゴン、ヘリウム等の不活性ガス及びモノマーを
導入し、真空室を10torr〜10-2torrという低真空
に保つた状態でほとんど真空室全領域においてグ
ロー放電を発生せしめ、グロー放電中に置かれた
基材上に気相重合物を堆積せしめるという方式で
あるため次の如き欠点を有していた。
The plasma polymerization method that has been proposed so far involves introducing an inert gas such as argon or helium and a monomer, and maintaining the vacuum chamber at a low vacuum of 10 torr to 10 -2 torr, causing glow discharge in almost the entire area of the vacuum chamber. Since the system generates gas and deposits a gas phase polymer on a substrate placed during glow discharge, it has the following drawbacks.

(a) 基材と形成される高分子薄膜との密着強度が
小さく、特に無機質基材との密着性は極端に小
さい。
(a) The adhesion strength between the base material and the formed polymer thin film is low, especially the adhesion strength with the inorganic base material is extremely low.

(b) 薄膜形成過程において常時プラズマにさらさ
れる結果、過剰活性種の生成、基材の加熱等で
重合と分解が同時に生じ、形成される高分子膜
が着色したり、また、寿命の長いラジカルが残
留し、経時安定性を欠く。
(b) As a result of constant exposure to plasma during the thin film formation process, polymerization and decomposition occur simultaneously due to generation of excessive active species, heating of the substrate, etc., resulting in coloring of the formed polymer film, and long-lived radicals. remains and lacks stability over time.

(c) 薄膜形成過程において、常時導入ガスイオン
によるスパツタリングを受け、膜成長速度が小
さい。
(c) During the thin film formation process, the film growth rate is slow due to sputtering caused by constantly introduced gas ions.

(d) 形成される高分子薄膜がポーラスであり、パ
ツキング密度が低く、ピンホールを生じ易い。
(d) The polymer thin film formed is porous, has a low packing density, and is prone to pinholes.

本発明はこのような欠点、問題点を解消すべ
く、鋭意研究の結果、新規な高分子薄膜の形成方
法を見出し、本発明に到つたものであり、特に基
材との密着強度が高く、高密度で膜強度が大きく
ピンホールのない均質な高分子重合薄膜を形成し
得る方法を提供することを目的とし、特にその厚
みが数ミクロン以下でその膜質に高度の信頼性を
要求される高分子薄膜を形成する方法を提供せん
とするものである。
In order to solve these drawbacks and problems, the present invention has been made by discovering a new method of forming a thin polymer film as a result of intensive research, and has arrived at the present invention. The purpose is to provide a method for forming a homogeneous polymeric thin film with high density, high film strength, and no pinholes. The present invention aims to provide a method for forming molecular thin films.

即ち本発明の要旨は、高真空状態となした真空
槽内に炭素、炭素二重結合を有するモノマー蒸気
を噴入し、該モノマーを冷却された基材上に付着
させると同時に電子ビームを照射することによ
り、該基材表面に高密度に架橋した重合膜を形成
することを特徴とする高分子薄膜の形成方法に存
する。
That is, the gist of the present invention is to inject monomer vapor having carbon and carbon double bonds into a vacuum chamber in a high vacuum state, and to deposit the monomer on a cooled base material and simultaneously irradiate it with an electron beam. The present invention provides a method for forming a thin polymer film, which comprises forming a highly densely crosslinked polymer film on the surface of the substrate.

以下本発明につき図面に基いて説明する。第1
図は本発明に用いられる装置の一例を示す模式図
である。
The present invention will be explained below based on the drawings. 1st
The figure is a schematic diagram showing an example of a device used in the present invention.

第1図に於て、1は真空槽であり、排気管2に
連結される排気系装置(油回転ポンプ、油拡散ポ
ンプ、コールドトラツプ等で構成されているが図
示されていない)によつて1×10-7torrまでの高
真空に排気することができる様になされている。
In Fig. 1, 1 is a vacuum chamber, which is connected to an exhaust pipe 2 by an exhaust system device (composed of an oil rotary pump, an oil diffusion pump, a cold trap, etc., but not shown). It is designed so that it can be evacuated to a high vacuum of up to 1×10 -7 torr.

3はモノマー蒸気を特定方向に噴出するための
細管ノズルであるが、モノマー蒸気の運動方向を
揃えるためその口径が3ミリφ以下の細管状とな
している。モノマーガス導入は真空槽1外に配置
されているモノマーボンベ4から減圧弁5、導入
管6及びスローリークバルブ7を経て供給され
る。
Reference numeral 3 designates a capillary nozzle for ejecting monomer vapor in a specific direction, and in order to align the movement direction of the monomer vapor, the nozzle is shaped like a capillary with a diameter of 3 mm or less. Monomer gas is introduced from a monomer cylinder 4 located outside the vacuum chamber 1 through a pressure reducing valve 5, an introduction pipe 6, and a slow leak valve 7.

8は基材フイルムの供給ロールであり9はその
巻取りロールである。
8 is a supply roll for the base film, and 9 is a take-up roll thereof.

基材フイルム10は冷却された円筒ドラム11
に沿つて移動できるように設置されている。12
は電子照射装置でありフイラメント13を交流電
源14により通電加熱せしめ熱電子を発生させ該
ライラメント13に直流電源15により負の高電
圧を印加することで加速電子が得られる。
The base film 10 is a cooled cylindrical drum 11
It is set up so that it can be moved along. 12
is an electron irradiation device, which heats a filament 13 by energizing it with an AC power source 14 to generate thermoelectrons, and then applies a negative high voltage to the filament 13 with a DC power source 15 to obtain accelerated electrons.

次に上記装置を用いて本発明にもとづいて高分
子薄膜を形成させる方法について説明する。先ず
真空槽1内を排気系装置によつて8×10-4torr以
下、好ましくは1×10-4torr以下の高真空に排気
する。このとき減圧弁5を閉じ、スローリークバ
ルブ7を開の状態にしておき、モノマーガス導入
管6内を充分排気しておく。モノマーガスの導入
は、ガスボンベ4に取り付けられた減圧弁5を開
にし、スローリークバルブ7を調節することによ
つてその導入量を調節し、細管ノズル3を経て真
空槽1内に噴入するが、このとき細管ノズル3と
排気方向の配置関係により運動方向が揃えられ、
該ノズル3を出た後も比較的方向の揃つた分子流
若しくは凝集体流となつて基材フイルム10の表
面上に入射する。
Next, a method for forming a polymer thin film based on the present invention using the above-mentioned apparatus will be explained. First, the inside of the vacuum chamber 1 is evacuated to a high vacuum of 8×10 -4 torr or less, preferably 1×10 -4 torr or less using an exhaust system. At this time, the pressure reducing valve 5 is closed, the slow leak valve 7 is kept open, and the inside of the monomer gas introduction pipe 6 is sufficiently exhausted. To introduce the monomer gas, open the pressure reducing valve 5 attached to the gas cylinder 4, adjust the amount of introduction by adjusting the slow leak valve 7, and inject it into the vacuum chamber 1 through the thin tube nozzle 3. However, at this time, the movement directions are aligned due to the arrangement relationship between the thin tube nozzle 3 and the exhaust direction,
Even after exiting the nozzle 3, the particles enter the surface of the base film 10 as a relatively oriented molecular stream or aggregate stream.

基材フイルム表面へ入射されたモノマーは、フ
イルム面に付着し、又その一部は真空領域内に再
蒸発する。
The monomer incident on the surface of the base film adheres to the film surface, and a portion of it is re-evaporated in the vacuum region.

この際、モノマーのフイルム表面への付着効率
を高めるためには、基材フイルム温度を、モノマ
ー蒸気圧が常温(20℃)に於る蒸気圧の1/10とな
る温度以下となるように冷却ドラムの温度制御を
するのが好ましい。
At this time, in order to increase the adhesion efficiency of the monomer to the film surface, the base film temperature must be cooled to a temperature below which the monomer vapor pressure is 1/10 of the vapor pressure at room temperature (20°C). Preferably, the temperature of the drum is controlled.

該モノマー蒸気の噴入と同時に若しくはそれ以
前に電子照射装置12を作動させ、フイルム表面
へ付着したモノマーに対して電子ビームを照射す
る。このときの電子ビームのエネルギーは、5eV
以上より好ましくは10eV以上とするのがよく、
これはフイラメント13に印加する負の直流電圧
を電源15にて制御することで容易に達せられ
る。
Simultaneously with or before the injection of the monomer vapor, the electron irradiation device 12 is operated to irradiate the monomer attached to the film surface with an electron beam. The energy of the electron beam at this time is 5eV
From the above, it is preferable to set it to 10 eV or more,
This can be easily achieved by controlling the negative DC voltage applied to the filament 13 using the power supply 15.

連続的に基材フイルム10上に入射、付着した
モノマーは、電子ビーム照射により、イオン化モ
ノマー、イオン化分子、解離分子、ラジカル、励
起分子等を生じ、該各種の活性種の作用により重
合反応が進み高密度に架橋した高分子薄膜が形成
される。
The monomers that are continuously incident on and attached to the base film 10 generate ionized monomers, ionized molecules, dissociated molecules, radicals, excited molecules, etc. by electron beam irradiation, and the polymerization reaction progresses due to the action of the various active species. A densely crosslinked polymer thin film is formed.

上記の高分子薄膜の形成は、連続的に移動する
フイルム表面上で行なわれ、フイルムの移動は供
給ロール8、巻き取りロール9、及び円筒ドラム
11の駆動系によつてなされる。
The formation of the above-mentioned polymeric thin film is carried out on the surface of a continuously moving film, and the film is moved by a drive system including a supply roll 8, a take-up roll 9, and a cylindrical drum 11.

本発明において用いられる炭素、炭素二重結合
を有するモノマーとしては次の種類のものが挙げ
られる。
The following types of monomers having carbon and carbon double bonds may be used in the present invention.

(a) エチレン、プロピレン、イソブチレン、トリ
クロロプロピレンなどのオレフインとその誘導
体 (b) ブタジエン、トリクロロブタジエンなどのジ
エンとその誘導体やビニルアセチレン、クロル
ビニルアセチレンなどのビニルアセチレン類 (c) 塩化ビニル、塩化ビニリデン、ジクロロエチ
レン、トリクロロエチレン、塩化アリルなどの
ハロゲン化エチレン類 (d) アクリル酸、メタアクリル酸、アクリルモル
ホリン、アクリルピロリジンなどのアクリル酸
及びメタクリル酸とその誘導体 (e) アクリル酸エチル、アクリル酸ブチルなどの
アクリル酸エステル類 (f) メタクリル酸メチル、β−クロルメタクリル
酸エチル、β−エトキシメタクリル酸エチルな
どのメタクリル酸エステル類 (g) アクリルアミド、N−n−ブトキシカルボニ
ルアクリルアミドなどのアクリルアミドとその
誘導体 (h) N−o−アニシルメタクリルアミドなどのメ
タクリルアミドとその誘導体 (i) アクリロニトリル、メタクリロニトリル、α
−クロロアクリロニトリル、α−エテルアクリ
ロニトリルなどのアクリロ又はメタアクリロニ
トリル類 (j) 酢酸ビニル、モノクロル酢酸ビニル、トリフ
ロロ酢酸ビニルなどのビニルエステル類 (k) メチルアクリルマレート、ビニルエチルフマ
レートなどの不飽和二塩基性酸とそのエステル
類 (l) 酢酸アリル、フタル酸ジアリルなどのアリル
エステル類 (m) メチルビニルケトン、ジビニルケトンなど
のビニルケトンとその誘導体 (n) アリルビニルエーテル、エチルビニルエー
テル、ジビニルエーテルなどの不飽和エーテル
類 (o) スチレン、クロロスチレン、メチルスチレ
ンなどのスチレンとその誘導体 (p) ビニルイソシアネート、N−ビニルエチレ
ンアミンなどのビニルアミンとその誘導体 (q) マレイミドとその誘導体 (r) ビニルチオエーテル、チオ酢酸ビニル、ビ
ニルスルホンなどの含イオウ化合物 (s) N−ビニルピリジン、クロルビニルナフタ
レンなどの多環式炭化水素及び複素環を有する
ビニル化合物 (t) トリクロロビニルシランなどのケイ素を含
む化合物 (u) ビニルフエノールなどのフエノールとその
誘導体 本発明高分子薄膜の形成方法は、前記したプラ
ズマ重合法やプラズマCVD法等と異なり次の各
効果を奏する。
(a) Olefins and their derivatives such as ethylene, propylene, isobutylene, and trichloropropylene (b) Dienes and their derivatives such as butadiene and trichlorobutadiene, and vinyl acetylenes such as vinyl acetylene and chlorvinylacetylene (c) Vinyl chloride and vinylidene chloride , dichloroethylene, trichloroethylene, allyl chloride, and other halogenated ethylenes (d) Acrylic acid, methacrylic acid, acrylic morpholine, acrylic pyrrolidine, and other acrylic acids and methacrylic acids and their derivatives (e) Ethyl acrylate, butyl acrylate, etc. Acrylic esters (f) Methacrylic esters such as methyl methacrylate, β-chloroethyl methacrylate, and β-ethoxyethyl methacrylate (g) Acrylamide and its derivatives such as acrylamide and N-n-butoxycarbonylacrylamide (h ) Methacrylamide and its derivatives such as N-o-anisylmethacrylamide (i) Acrylonitrile, methacrylonitrile, α
- Acrylo or methacrylonitriles such as chloroacrylonitrile and α-ethyl acrylonitrile (j) Vinyl esters such as vinyl acetate, monochlorovinyl acetate, and vinyl trifluoroacetate (k) Unsaturated dichloromethane such as methyl acrylic maleate and vinyl ethyl fumarate Basic acids and their esters (l) Allyl esters such as allyl acetate and diallyl phthalate (m) Vinyl ketones and their derivatives such as methyl vinyl ketone and divinyl ketone (n) Allyl esters such as allyl vinyl ether, ethyl vinyl ether, and divinyl ether Saturated ethers (o) Styrene and its derivatives such as styrene, chlorostyrene and methylstyrene (p) Vinyl amines and their derivatives such as vinyl isocyanate and N-vinylethyleneamine (q) Maleimide and its derivatives (r) Vinyl thioether, thio Sulfur-containing compounds such as vinyl acetate and vinyl sulfone (s) Vinyl compounds having polycyclic hydrocarbons and heterocycles such as N-vinylpyridine and chlorvinylnaphthalene (t) Silicon-containing compounds such as trichlorovinylsilane (u) Vinyl Phenol and its derivatives such as phenol The method for forming a polymer thin film of the present invention differs from the plasma polymerization method, plasma CVD method, etc. described above, and has the following effects.

第1に、高真空領域にて薄膜形成がおこなわれ
るため残留ガスの取込み、反応が少なく、不純物
の少ない高分子薄膜が得られるとともに、残留酸
素ガス等反応性ガスとの反応も少なくなり、酸化
に基づく薄膜の着色または、高分子薄膜形成後に
酸化劣化をひき起す原因となる寿命の長いパーオ
キサイドラジカル等の発生を減少できる。更には
高真空でおこなうことから、モノマー粒子の平均
自由行程(ミーンフリーパス)が大きくなる結
果、細管状ノズルから方向を揃えて噴入されたモ
ノマー蒸気は、真空室内全領域に拡散することな
く比較的集束された状態の分子流となつて基材方
向に進むことができる。第2に本発明はモノマー
蒸気流が基材表面に入射した直後に加速電子の衝
撃を受けイオン化、活性化をなし重合せしめる方
法であつて、プラズマ重合法即ち、アルゴン、ヘ
リウム等の不活性ガスを導入し真空室全領域
10torr〜10-2torrという低真空に保ち、この不活
性ガスを高周波もしくは直流高電圧電界によりイ
オン化せしめてグロー放電を生ぜしめる方法とは
異なるため次のような各効果を有する。
First, since the thin film is formed in a high vacuum region, there is less incorporation of residual gases and reactions, and a thin polymer film with fewer impurities can be obtained, as well as less reaction with reactive gases such as residual oxygen gas, resulting in less oxidation. It is possible to reduce the generation of long-lived peroxide radicals, etc., which cause discoloration of the thin film due to oxidation and oxidative deterioration after the formation of the polymer thin film. Furthermore, since the process is carried out in a high vacuum, the mean free path of the monomer particles becomes large, and as a result, the monomer vapor injected from the capillary nozzle in the same direction does not diffuse into the entire area of the vacuum chamber. A relatively focused molecular stream can travel toward the substrate. Second, the present invention is a method in which a monomer vapor stream is ionized and activated by bombardment of accelerated electrons immediately after it enters the surface of a base material, and is polymerized. Introduced all areas of vacuum chamber
This method differs from the method of maintaining a low vacuum of 10 torr to 10 -2 torr and ionizing this inert gas with a high frequency or direct current high voltage electric field to generate a glow discharge, so it has the following effects.

(a) グロー放電を用いないため薄膜形成速度に悪
影響を与えるプラズマ粒子によるスパツタリン
グ現象が防止できる。
(a) Since no glow discharge is used, the sputtering phenomenon caused by plasma particles, which adversely affects the thin film formation rate, can be prevented.

(b) スパツタリング現象がないためこれに基づく
発熱がなく形成される高分子の不必要な熱分解
を防止できる。
(b) Since there is no sputtering phenomenon, there is no heat generation caused by this phenomenon, and unnecessary thermal decomposition of the formed polymer can be prevented.

(c) 基材上で重合、高分子化するために必要とさ
れる活性種の濃度を照射する電子ビームの電子
密度即ち出力によつて、容易に制御できる。又
電子ビームの照射量の照射分布の均一化も比較
的容易に制御できる結果、形成される高分子薄
膜の性状を広い面積で均質化することができ
る。
(c) The concentration of the active species required for polymerization and polymerization on the substrate can be easily controlled by the electron density, that is, the output of the irradiating electron beam. Further, since the uniformity of the irradiation distribution of the electron beam irradiation amount can be controlled relatively easily, the properties of the formed polymer thin film can be made uniform over a wide area.

第3に本発明は、モノマーが基材表面に付着し
た時点もしくは基材表面近傍で加速電子に衝撃さ
れイオン化、活性化させる方式のため、用いる加
速電子のエネルギーは通常大気中で行なわれる電
子線重合と比し圧到的に低いエネルギーで済み、
5eV以上、高々10eVもあれば良い。
Thirdly, the present invention uses a method in which monomers are ionized and activated by being bombarded with accelerated electrons at the time they adhere to the surface of the substrate or near the surface of the substrate. Compared to polymerization, it requires significantly less energy,
5eV or more, 10eV at most is fine.

即ち従来の電子線重合で必要なエネルギーの1/
1000程度で良いのである。
In other words, 1/ of the energy required in conventional electron beam polymerization
About 1000 is sufficient.

第4に本発明によつて得られる高分子重合体は
高度に架橋したものとなるため、特に強度を要請
される用途に好適なものとなる。
Fourthly, since the high molecular weight polymer obtained by the present invention is highly crosslinked, it is particularly suitable for applications requiring strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いられる装置の一例を示す
模式図である。 1……真空槽、2……排気管、3……細管ノズ
ル、4……モノマーボンベ、6……導入管、8…
…供給ロール、9……巻取ロール、10……基材
フイルム、11……冷却された円筒ドラム、12
……電子照射装置、13……フイラメント、14
……交流電源、15……直流電源。
FIG. 1 is a schematic diagram showing an example of an apparatus used in the present invention. 1... Vacuum chamber, 2... Exhaust pipe, 3... Thin tube nozzle, 4... Monomer cylinder, 6... Inlet pipe, 8...
... Supply roll, 9 ... Take-up roll, 10 ... Base film, 11 ... Cooled cylindrical drum, 12
...Electron irradiation device, 13...Filament, 14
...AC power supply, 15...DC power supply.

Claims (1)

【特許請求の範囲】 1 高真空状態となした真空槽内に炭素、炭素二
重結合を有するモノマー蒸気を噴入し、該モノマ
ーを冷却された基材上に付着させると同時に電子
ビームを照射することにより、該基材表面に高密
度に架橋した重合膜を形成することを特徴とする
高分子薄膜の形成方法。 2 基材の温度を、用いるモノマーの蒸気圧が20
℃のおける蒸気圧の1/10の蒸気圧となる温度以下
にすることを特徴とする第1項記載の高分子薄膜
の形成方法。
[Claims] 1. Monomer vapor having carbon and carbon double bonds is injected into a vacuum chamber in a high vacuum state, and the monomer is deposited on a cooled base material, and simultaneously irradiated with an electron beam. A method for forming a thin polymer film, which comprises forming a highly densely crosslinked polymer film on the surface of the substrate. 2 The temperature of the base material and the vapor pressure of the monomer used are 20
2. The method for forming a thin polymer film according to claim 1, wherein the temperature is lower than the temperature at which the vapor pressure is 1/10 of the vapor pressure at ℃.
JP17402281A 1981-10-29 1981-10-29 Formation of thin polymer film Granted JPS5874701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17402281A JPS5874701A (en) 1981-10-29 1981-10-29 Formation of thin polymer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17402281A JPS5874701A (en) 1981-10-29 1981-10-29 Formation of thin polymer film

Publications (2)

Publication Number Publication Date
JPS5874701A JPS5874701A (en) 1983-05-06
JPS6340201B2 true JPS6340201B2 (en) 1988-08-10

Family

ID=15971267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17402281A Granted JPS5874701A (en) 1981-10-29 1981-10-29 Formation of thin polymer film

Country Status (1)

Country Link
JP (1) JPS5874701A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164304A (en) * 1983-03-07 1984-09-17 Mitsubishi Electric Corp Apparatus for forming polymer membrane
JPS60104134A (en) * 1983-11-09 1985-06-08 Matsushita Electric Ind Co Ltd Device for plasma polymerization and coating
US5018048A (en) * 1983-12-19 1991-05-21 Spectrum Control, Inc. Miniaturized monolithic multi-layer capacitor and apparatus and method for making
US5125138A (en) * 1983-12-19 1992-06-30 Spectrum Control, Inc. Miniaturized monolithic multi-layer capacitor and apparatus and method for making same
US5097800A (en) * 1983-12-19 1992-03-24 Spectrum Control, Inc. High speed apparatus for forming capacitors
US4842893A (en) * 1983-12-19 1989-06-27 Spectrum Control, Inc. High speed process for coating substrates
US5032461A (en) * 1983-12-19 1991-07-16 Spectrum Control, Inc. Method of making a multi-layered article

Also Published As

Publication number Publication date
JPS5874701A (en) 1983-05-06

Similar Documents

Publication Publication Date Title
US4863756A (en) Method and equipment for coating substrates by means of a plasma discharge using a system of magnets to confine the plasma
US4267202A (en) Method for modifying the surface properties of polymer substrates
US5071670A (en) Method for chemical vapor deposition under a single reactor vessel divided into separate reaction chambers each with its own depositing and exhausting means
US4264642A (en) Deposition of thin film organic coatings by ion implantation
JPH0247256A (en) Formation of an oxide coating by reactive-sputtering
JPH0773994A (en) Hollow cathode array and surface treatment using it
JP2001518561A (en) Plasma accelerated chemical vapor deposition using low vapor pressure compounds.
JPH08505186A (en) Protective film and method for articles
KR20010032692A (en) Apparatus for surface modification of polymer, metal and ceramic materials using ion beam
US3663265A (en) Deposition of polymeric coatings utilizing electrical excitation
JPS6340201B2 (en)
JPS63157148A (en) Resist film and its resist pattern forming method
JPS61238962A (en) Method and apparatus for forming film
JPS6123924B2 (en)
JPS60251269A (en) Method and apparatus for ionic plating
JPS6350463A (en) Method and apparatus for ion plating
KR100295618B1 (en) High vacuum magnetron sputtering method using ion beam
JP3485960B2 (en) Method for depositing a coating on a substrate by reactive sputtering
Hori et al. Gold particles containing plasma-polymerized styrene as an X-ray absorber
JPS6357768A (en) Continuous ion plating device for high-speed moving film
JP2687468B2 (en) Thin film forming equipment
JPH0463323A (en) Treatment of orienting liquid crystal
JP3291088B2 (en) Coating method
WO1987005637A1 (en) Continuous ion plating device for rapidly moving film
Yamamoto et al. Surface grafting of polyethylene by mutual irradiation in methyl acrylate vapor