JPH0463323A - Treatment of orienting liquid crystal - Google Patents

Treatment of orienting liquid crystal

Info

Publication number
JPH0463323A
JPH0463323A JP17590690A JP17590690A JPH0463323A JP H0463323 A JPH0463323 A JP H0463323A JP 17590690 A JP17590690 A JP 17590690A JP 17590690 A JP17590690 A JP 17590690A JP H0463323 A JPH0463323 A JP H0463323A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal alignment
oriented film
crystal oriented
argon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17590690A
Other languages
Japanese (ja)
Inventor
Hisashi Nobunaga
延永 尚志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP17590690A priority Critical patent/JPH0463323A/en
Publication of JPH0463323A publication Critical patent/JPH0463323A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the dustfree treatment method of high productivity by exposing the surface of a liquid crystal oriented film to an ion shower by which the liquid crystal oriented film is subjected to a uniform orientation treatment without peeling the liquid crystal oriented film. CONSTITUTION:The inside of a vacuum chamber 1 is evacuated to 1X10<-6> Torr by a vacuum pump 3 and thereafter, gaseous argon is introduced into the vacuum chamber 1 from a gas introducing port 4 and is set at a desired vacuum degree in the case of using polyimide as the liquid crystal oriented film and argon as gas species. Argon plasma is thereafter generated in a glow discharge generating chamber 2 by using a microwave power source which generates 2.45GHz microwaves 5. Active particles, such as ions, electrons, excited atoms, excited molecules, and light are formed in the generated argon plasma and ions are drawn out by an ion drawing out electrode 7. The substrate 8 on which the liquid crystal oriented film of the polyimide is previously formed is exposed to these ions.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液晶表示素子の電極基板上に積層される液晶配
向膜の液晶配向処理法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a liquid crystal alignment treatment method for a liquid crystal alignment film laminated on an electrode substrate of a liquid crystal display element.

[従来の技術1 従来、この種液晶配向膜の液晶配向処理法として、例え
ばポリイミドの表面を布などを用いて摩擦するラビング
処理法が知られている。また、別の方法として、液晶配
向膜材であるSiOx自体を基板に対して斜方から蒸着
する斜方蒸着法がある。
[Prior Art 1] Conventionally, as a liquid crystal alignment treatment method for this type of liquid crystal alignment film, a rubbing treatment method is known in which, for example, the surface of polyimide is rubbed with a cloth or the like. Moreover, as another method, there is an oblique vapor deposition method in which SiOx itself, which is a liquid crystal alignment film material, is vapor-deposited obliquely onto a substrate.

[発明が解決しようとする課題1 しかしながら、前記ラビング処理を用いた液晶配向膜の
配向処理法では、ポリイミド等の配向膜が剥れたり、こ
の方法の中で使用する布から発生する繊維状の塵による
表示不良が発生し易いという不都合を有する。
[Problem to be Solved by the Invention 1] However, in the above-mentioned alignment treatment method for a liquid crystal alignment film using the rubbing process, the alignment film such as polyimide may peel off, and fibrous particles generated from the cloth used in this method may occur. This has the disadvantage that display defects are likely to occur due to dust.

一方、SiOxの斜方蒸着を用いる方法では上記不都合
はないが、生産性が低いという問題点を有する。
On the other hand, although the method using oblique evaporation of SiOx does not have the above disadvantages, it has the problem of low productivity.

本発明は、このような課題を解決するものでその目的と
するところは、液晶配向膜が剥れたりすることなく均一
に液晶配向処理が施されかつダストフリーで生産性の高
い液晶配向処理法を提供するところにある。
The present invention is intended to solve these problems, and its purpose is to provide a liquid crystal alignment treatment method that is dust-free and highly productive, in which liquid crystal alignment treatment is performed uniformly without peeling of the liquid crystal alignment film. It is in a place where we provide.

[課題を解決するための手段] 本発明の液晶配向処理法は、以下のことを特徴とする。[Means to solve the problem] The liquid crystal alignment treatment method of the present invention is characterized by the following.

(1)液晶配向膜表面をイオンシャワーに晒すことから
成ること。
(1) Consists of exposing the surface of the liquid crystal alignment film to an ion shower.

(2)前記液晶配向膜がポリイミド、ポリビニルアルコ
ール、ポリエチレンオキサイド、ポリアクリロニトリル
、S i Ox 、 Tax Os 、  I T。
(2) The liquid crystal alignment film is made of polyimide, polyvinyl alcohol, polyethylene oxide, polyacrylonitrile, SiOx, TaxOs, IT.

のうち少なくとも一つを含む膜からなること。consisting of a film containing at least one of the following.

(3)@紀イオンシャワーとなるガス種が水素、ヘリウ
ム、酸素、窒素、アルゴン、水蒸気のうち少なくとも一
つを含むこと。
(3) The gas species forming the ion shower contains at least one of hydrogen, helium, oxygen, nitrogen, argon, and water vapor.

〔実 施 例] 以下図面に従って本発明の詳細な説明する。〔Example] The present invention will be described in detail below with reference to the drawings.

第1図は本発明方法を実施するための装置の一例を示す
もので、1は真空チャンバで、チャンバ内にグロー放電
発生室2を設けている。3は真空ポンプて、4はガス導
入口であり、圧力コントロールはマスフローコントロー
ラを用いるが、真空ポンプ3側で排気スピードをコント
ロールしてもよい。5はマイクロ波で、電磁石6による
磁界との共鳴を用いるいわゆるECR放電を発生させる
FIG. 1 shows an example of an apparatus for carrying out the method of the present invention, in which 1 is a vacuum chamber, and a glow discharge generation chamber 2 is provided within the chamber. 3 is a vacuum pump, 4 is a gas inlet port, and a mass flow controller is used for pressure control, but the exhaust speed may be controlled on the vacuum pump 3 side. 5 is a microwave, which generates a so-called ECR discharge using resonance with a magnetic field generated by an electromagnet 6.

このグロー放電の発生の方法も、ECR敢電に限らず、
DC放電、RF放電でも可能である。7はイオン引き出
し電極で直流のマイナス電位が印加てきる電源を具備し
ている。8は被処理基板でイオンシャワーに晒す角度を
変えることのできる換角機構を具備した基板ホルダー9
で支持する。
The method of generating this glow discharge is not limited to ECR power generation.
DC discharge and RF discharge are also possible. Reference numeral 7 denotes an ion extraction electrode, which is equipped with a power source that applies a direct current negative potential. Reference numeral 8 denotes a substrate holder 9 equipped with an angle changing mechanism that can change the angle at which the substrate to be processed is exposed to the ion shower.
I support it.

この装置を用いた液晶配向処理法の一例を液晶配向膜と
してポリイミドを、ガス種としてアルゴンを用いた場合
について以下に説明する。
An example of a liquid crystal alignment treatment method using this apparatus will be described below in the case where polyimide is used as the liquid crystal alignment film and argon is used as the gas species.

真空チャンバ1内を真空ポンプ3でlXl0−’Tor
rに排気後、ガス導入口4よりアルゴンガスを真空チャ
ンバ1内に導入して、所望の真空度に設定する。その後
、図には示さないが、245GHzのマイクロ波5を発
生するマイクロ波電源を用いて、グロー放電発生室2内
にアルゴンプラズマを発生させる。発生したアルゴンプ
ラズマ中にはイオン、電子、励起原子、励起分子、光等
の活性粒子が生成され、イオン引き出し電極7によりイ
オンを引き出し、ポリイミド液晶配向膜を予め形成しで
ある基板8に晒す。
The inside of the vacuum chamber 1 is heated with lXl0-'Tor by the vacuum pump 3.
After exhausting the vacuum chamber 1, argon gas is introduced into the vacuum chamber 1 through the gas inlet 4 to set the desired degree of vacuum. Thereafter, although not shown in the figure, argon plasma is generated in the glow discharge generation chamber 2 using a microwave power source that generates microwaves 5 of 245 GHz. Active particles such as ions, electrons, excited atoms, excited molecules, and light are generated in the generated argon plasma, and the ions are extracted by an ion extraction electrode 7 and exposed to a substrate 8 on which a polyimide liquid crystal alignment film has been previously formed.

製造、形成条件は幅広いが一例を示すと、処理ガス圧は
当然放電可能領域である訳だが、ガス圧が高い程イオン
引き出し電極7により引き出されるイオンは多くなり処
理時間は短くなる。また、イオン引き出し電極7に印加
するマイナス電位を太き(しても処理時間は短くなる。
The manufacturing and forming conditions are wide-ranging, but to give one example, the processing gas pressure is naturally in the dischargeable range, but the higher the gas pressure, the more ions will be extracted by the ion extraction electrode 7, and the processing time will be shorter. Further, even if the negative potential applied to the ion extraction electrode 7 is made thicker, the processing time will be shortened.

しかし、この場合、マイナス電位を大きくし過ぎると液
晶配向膜表面に物理的な衝撃によるダメージが発生する
にのダメージは従来のラビング処理時に強く擦った場合
とよく似ている。結局、イオン引き出し電極7に印加す
るマイナス電位は、従来のラビング処理時の液晶配向膜
へのローラーの加圧に匹敵し、従って、このイオン引き
出し電極7の電位により液晶配向力を調整できるのであ
る。また、基板8の法線方向に対するイオンシャワーの
角度は、40°〜80°位が最も効率的で、角度が大き
いほど液晶分子のプレティルト角が小さくなる。すなわ
ち、基板8のイオンシャワーに対する角度により、液晶
分子のプレティルト角を調整できるのである。
However, in this case, if the negative potential is made too large, the surface of the liquid crystal alignment film is damaged by physical impact, which is similar to that caused by strong rubbing during conventional rubbing treatment. After all, the negative potential applied to the ion extraction electrode 7 is comparable to the pressure applied by a roller to the liquid crystal alignment film during conventional rubbing processing, and therefore, the liquid crystal alignment force can be adjusted by the potential of the ion extraction electrode 7. . Further, the most efficient angle of the ion shower with respect to the normal direction of the substrate 8 is about 40° to 80°, and the larger the angle, the smaller the pretilt angle of the liquid crystal molecules. That is, the pretilt angle of the liquid crystal molecules can be adjusted by adjusting the angle of the substrate 8 with respect to the ion shower.

以上の方法で、アルゴンガス圧をl O−2Torr、
イオン引き出し電位を一100■、基板の法線方向に対
するイオンシャワーの角度を70°、処理時間1分とし
て配向処理を行なったところ、均一性の高い配向が得ら
れ、磁界電位法によって測定した液晶分子のプレティル
ト角は05°であった。
By the above method, the argon gas pressure is set to 1 O-2Torr,
When alignment treatment was performed at an ion extraction potential of -100 cm, an ion shower angle of 70 degrees with respect to the normal direction of the substrate, and a processing time of 1 minute, a highly uniform alignment was obtained, and the liquid crystal as measured by magnetic field potential method was The pretilt angle of the molecule was 05°.

液晶配向膜にポリビニルアルコール、ポリエチレンオキ
サイド、ポリアクリロニトリル、S i Oa 、Ta
g Os 、ITOを使用した場合もポリイミドと同様
均一な配向が得られるが、5io2.Taa Os、I
TOの場合は他の有機膜と同等の配向性を得るには、有
機膜の配向処理条件に比べて、イオン引き出し電極7に
印加するマイナス電位を大きくするが、処理時間を長く
する必要がある。
Polyvinyl alcohol, polyethylene oxide, polyacrylonitrile, SiOa, Ta for liquid crystal alignment film
When using gOs and ITO, uniform orientation can be obtained similarly to polyimide, but when using 5io2. Taa Os, I
In the case of TO, in order to obtain the same orientation as other organic films, the negative potential applied to the ion extraction electrode 7 is increased compared to the alignment treatment conditions for organic films, but it is necessary to lengthen the treatment time. .

ガス種に関しては、水素、ヘリウム、酸素、窒素、水蒸
気のいずれにおいても配向処理の効果があったが、酸素
を含むガス種を使用する場合は、装置を使用し続けると
イオン引き出し電極7の表面が酸化され引き出し効果が
薄れるため、定期的に電極のクリーニングあるいは交換
を必要とする。
Regarding the gas type, the alignment treatment was effective with hydrogen, helium, oxygen, nitrogen, and water vapor, but when using a gas type containing oxygen, the surface of the ion extraction electrode 7 may deteriorate if the device is continued to be used. The electrodes need to be cleaned or replaced regularly because they become oxidized and the extraction effect weakens.

[発明の効果〕 以上述べたように、本発明によれば、液晶配向膜表面を
イオンシャワーに晒すことにより、液晶配向膜が剥れた
りすることなく均一に液晶配向処理が施されかつダスト
フリーで生産性の高い液晶配向処理を行なうことができ
るという効果を有する。
[Effects of the Invention] As described above, according to the present invention, by exposing the surface of the liquid crystal alignment film to an ion shower, the liquid crystal alignment film can be uniformly subjected to a liquid crystal alignment treatment without peeling and is dust-free. This has the effect that liquid crystal alignment treatment can be performed with high productivity.

また、イオン引き出し電位により液晶配向力を調整でき
る。
Furthermore, the liquid crystal alignment force can be adjusted by adjusting the ion extraction potential.

さらに、基板に対するイオンシャワーの角度により液晶
分子のプレティルト角を調整できるという多大な効果を
有する。
Furthermore, it has the great effect that the pretilt angle of the liquid crystal molecules can be adjusted by adjusting the angle of the ion shower with respect to the substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明液晶配向処理法を実施するための装!
の一例を示す概略図。 1 ・ ・ 2 ・ 3 ・ ・ 4 ・ ・ 5 ・ ・ 6 ・ ・ 7 ・ ・ 8 ・ ・ 9 ・ ・ 真空チャンバ グロー111電発生室 真空ポンプ ガス導入口 マイクロ波 を磁石 イオン引き出し電極 被処理基板 基板ホルダ 以上 出願人 セイコーエプソン株式会社
Figure 1 shows the equipment for carrying out the liquid crystal alignment treatment method of the present invention!
Schematic diagram showing an example. 1 ・ ・ 2 ・ 3 ・ ・ 4 ・ ・ 5 ・ ・ 6 ・ ・ 7 ・ ・ 8 ・ ・ 9 ・ ・ Vacuum chamber glow 111 Electron generation chamber Vacuum pump Gas inlet Microwave magnet Ion extraction electrode Substrate to be processed Substrate holder and above Applicant Seiko Epson Corporation

Claims (3)

【特許請求の範囲】[Claims] (1)液晶配向膜表面をイオンシャワーに晒すことから
成ることを特徴とする液晶配向処理法。
(1) A liquid crystal alignment treatment method comprising exposing the surface of a liquid crystal alignment film to an ion shower.
(2)前記液晶配向膜がポリイミド、ポリビニルアルコ
ール、ポリエチレンオキサイド、ポリアクリロニトリル
、SiO_2、Ta_2O_5、ITOのうち少なくと
も一つを含む膜からなることを特徴とする請求項1記載
の液晶配向処理法。
(2) The liquid crystal alignment method according to claim 1, wherein the liquid crystal alignment film is a film containing at least one of polyimide, polyvinyl alcohol, polyethylene oxide, polyacrylonitrile, SiO_2, Ta_2O_5, and ITO.
(3)前記イオンシャワーとなるガス種が水素、ヘリウ
ム、酸素、窒素、アルゴン、水蒸気のうち少なくとも一
つを含むことを特徴とする請求項1記載の液晶配向処理
法。
(3) The liquid crystal alignment method according to claim 1, wherein the gas species forming the ion shower contains at least one of hydrogen, helium, oxygen, nitrogen, argon, and water vapor.
JP17590690A 1990-07-03 1990-07-03 Treatment of orienting liquid crystal Pending JPH0463323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17590690A JPH0463323A (en) 1990-07-03 1990-07-03 Treatment of orienting liquid crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17590690A JPH0463323A (en) 1990-07-03 1990-07-03 Treatment of orienting liquid crystal

Publications (1)

Publication Number Publication Date
JPH0463323A true JPH0463323A (en) 1992-02-28

Family

ID=16004307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17590690A Pending JPH0463323A (en) 1990-07-03 1990-07-03 Treatment of orienting liquid crystal

Country Status (1)

Country Link
JP (1) JPH0463323A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770826A (en) * 1996-05-10 1998-06-23 International Business Machines Corporation Atomic beam alignment of liquid crystals
WO2002057839A3 (en) * 2000-11-30 2003-03-13 Ibm Improving the stability of ion beam generated alignment layers by surface modification
KR100937844B1 (en) * 2002-12-27 2010-01-21 엘지디스플레이 주식회사 Method for manufacturing liquid crystal display device
CN103728785A (en) * 2013-11-05 2014-04-16 友达光电股份有限公司 Optical alignment device and optical alignment method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770826A (en) * 1996-05-10 1998-06-23 International Business Machines Corporation Atomic beam alignment of liquid crystals
WO2002057839A3 (en) * 2000-11-30 2003-03-13 Ibm Improving the stability of ion beam generated alignment layers by surface modification
US6665033B2 (en) 2000-11-30 2003-12-16 International Business Machines Corporation Method for forming alignment layer by ion beam surface modification
KR100937844B1 (en) * 2002-12-27 2010-01-21 엘지디스플레이 주식회사 Method for manufacturing liquid crystal display device
CN103728785A (en) * 2013-11-05 2014-04-16 友达光电股份有限公司 Optical alignment device and optical alignment method
CN103728785B (en) * 2013-11-05 2016-04-06 友达光电股份有限公司 Optical alignment device and optical alignment method

Similar Documents

Publication Publication Date Title
JP2010242224A (en) Improved chamber cleaning method and apparatus
JPH07245193A (en) Plasma generating device and plasma processing device
JPH0463323A (en) Treatment of orienting liquid crystal
JP2900546B2 (en) Liquid crystal alignment processing equipment
JP2819559B2 (en) Sputtering equipment
JPH07183284A (en) Apparatus and method for etching thin layer
JP3009209B2 (en) Surface protection method
JPH0463324A (en) Treating device for orienting liquid crystal
JPH06280030A (en) Thin film forming device
JPH0273963A (en) Formation of thin film on low-temperature substrate
JPS6267822A (en) Plasma processor
JPH03123022A (en) Plasma film forming device
JP2567843B2 (en) Hybrid ion plating method and apparatus
JP2000269202A (en) Plasma treatment method and apparatus
JPH0627476A (en) Formation of liquid crystal panel electrode
JPH0672300B2 (en) Hybrid ion plating device
JPH02281730A (en) Plasma etching method
JP3349519B2 (en) Sputtering equipment
JPH07106097A (en) Plasma processing device
JPH06275564A (en) Microwave plasma etching device
JPS6223987A (en) Dry etching device
JPH0729829A (en) Method and system for dc discharge plasma processing
JPH04314864A (en) Method for plasma-cleaning substrate surface
JPH01184267A (en) Insulating film coating method
JPS60109233A (en) Plasma treatment device