WO2007029743A1 - Method for formation of film of molecular substance and apparatus for said method - Google Patents

Method for formation of film of molecular substance and apparatus for said method Download PDF

Info

Publication number
WO2007029743A1
WO2007029743A1 PCT/JP2006/317659 JP2006317659W WO2007029743A1 WO 2007029743 A1 WO2007029743 A1 WO 2007029743A1 JP 2006317659 W JP2006317659 W JP 2006317659W WO 2007029743 A1 WO2007029743 A1 WO 2007029743A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular
light
molecular substance
light source
substance
Prior art date
Application number
PCT/JP2006/317659
Other languages
French (fr)
Japanese (ja)
Inventor
Hideomi Koinuma
Yuji Matsumoto
Kenji Itaka
Seiichirou Yanaginuma
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to JP2007534454A priority Critical patent/JP4775801B2/en
Publication of WO2007029743A1 publication Critical patent/WO2007029743A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/421Thermal treatment, e.g. annealing in the presence of a solvent vapour using coherent electromagnetic radiation, e.g. laser annealing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom

Definitions

  • the present invention relates to a film forming method and apparatus for producing a thin film of a molecular substance, and more particularly to a film forming method and apparatus capable of forming a molecular substance by light irradiation. .
  • an organic EL (Electro Luminescence) element is composed of an organic thin film as described below. That is, the organic EL element has a configuration in which an organic thin film called an organic light emitting layer having a thickness of less than m is sandwiched by organic thin films called an electron transport layer and a hole transport layer.
  • the organic light-emitting layer is formed of a so-called conjugated molecular layer in which units composed of carbon single bonds and double bonds are periodically linked.
  • the ⁇ -electron level of the conjugated molecule is a single bond. It forms an energy band based on the periodicity of units consisting of double bonds!
  • Electrons and holes injected into the organic light-emitting thin film emit light by releasing and recombining photons corresponding to the band gap energy.
  • the thicknesses of the electron transport thin film and the hole transport thin film are set to optimum thicknesses so that the number of electrons and holes supplied to the organic light emitting thin film becomes equal.
  • a device composed of an organic thin film depends on the molecular structure of the molecules that make up the organic thin film. In addition, it is necessary that the molecular structure of the molecules constituting the organic thin film is not damaged. In addition, since organic materials differ greatly in electronic conductivity and hole conductivity compared to inorganic materials, it is essential to manufacture the organic thin film with precise thickness control.
  • the conventional organic EL element vapor deposition method uses an organic material raw material powder constituting an electron transport layer, an organic material raw material powder constituting an organic light emitting layer, and an organic material raw material powder constituting a hole transport layer, respectively. These are placed on the holder of the material to be deposited, and each holder is sequentially controlled to the sublimation temperature of each raw material to sublimate organic molecules and vapor-deposit on the substrate on which the transparent electrode is formed. .
  • the organic material to be deposited is put into Knudsen cells 20 and 21 provided for each organic material to be deposited, and the temperatures of the Knudsen cells 20 and 21 are set to the respective organic materials to be deposited.
  • Vapor deposition is controlled at the sublimation temperature of the material, but as explained above, Knudsen cells 20 and 21 each have a built-in temperature control device, resulting in a thermal equilibrium state with a large surface area, volume and heat capacity. If it takes a long time to control it to a predetermined temperature in a short time, temperature overshoot, that is, overtemperature rise occurs, It is inevitable that the molecular structure of the organic material is damaged.
  • the molecular orientation of the organic thin film affects the conductivity of the organic thin film, but the molecular orientation also depends on the deposition rate.
  • the conventional deposition method keeps the deposition rate sufficiently constant. It is difficult to control the orientation sufficiently. Since the temperature control of the Knudsen cell is difficult as described above, it is difficult to control the film thickness, which makes it difficult to keep the deposition rate sufficiently constant.
  • a film thickness sensor 22 is provided in the vicinity of the evaporation substrate, and shutters 20a and 20b are provided to prevent evaporation of the evaporation target substance. The film thickness is controlled by the method of closing the shutters 20a and 20b by detecting the film thickness sensor 20 with the film thickness sensor 20, but waste of depositing valuable organic material on the shutter occurs.
  • the temperature-controlling holder is large, so when manufacturing a device that requires the deposition of a plurality of deposition materials in succession, a large holding The vapor deposition equipment has become extremely large to accommodate multiple tools, and the cost of the equipment is inevitable.
  • a laser ablation method (PLD method) is known as a method for producing a thin film mainly of an inorganic substance.
  • PLD method a laser ablation method
  • a laser beam with high energy such as visible light or ultraviolet light
  • the light energy of the laser beam pulse is directly absorbed by the vapor deposition material and evaporated.
  • molecular structures are damaged in the case of molecular substances, particularly organic substances, and functions based on the molecular structure of the material to be deposited can be fully expressed. (See Non-Patent Documents 3 and 4).
  • Non-patent literature l http: ZZwww. Nanoelectronics.jp/kaitai/oel/3.htm 20 05/08/05
  • Non-Patent Document 2 http: ZZ www.nanoelectronics.jp/kaitai/ printableofet / 2.htm 2005/08/05
  • Non-Patent Document 3 K. ITAKI et al., “Pulsed laser deposition of axis oriented pentacen films” Appl. Phs. A, Vol. 79, pp. 875—877, 2004
  • Non-Patent Document 4 Jun Yamaguti et al. , “Combinatorial Pulsed Laser Deposition of PentacenFilms for Field Effect Device” Macromol Rapid C ommun., Vol. 25, pp. 334— 338, 2004
  • Non-Patent Document 5 M. Haemori and 4 others, "Fabrication of Highly Oriented Rubrene Thin Films by the Use of Atomically Finished Substrate and Pentacene Buffer Layer", Jap. J. Appl. Phys., Vol. 44, p. 3740 , 200
  • Vapor deposition can be performed without destroying the molecular structure of molecular substances, particularly organic substances. As a result, the physical properties of organic substances can be fully expressed, the deposition rate can be controlled, and the orientation of molecular substances can be controlled. In addition to being able to control the thickness of this thin film sufficiently, low-cost film formation technology and vapor deposition equipment are required, but the method and apparatus have not yet been realized.
  • the present invention provides a low-cost film-forming method that can be deposited without destroying the molecular structure of a molecular substance, particularly an organic substance, and that can be deposited by controlling the deposition rate.
  • the first object is to provide such a film forming apparatus. Means for solving the problem
  • the present invention is a method of depositing a molecular substance on a substrate by irradiating light to the deposition target material with light source power and controlling the deposition rate of the deposition target substance.
  • the film formation is performed while maintaining the molecular structure of the molecular substance by selecting and irradiating one or more of the high value, the pulse width, and the pulse interval.
  • the light having continuous wave power preferably has a wavelength energy smaller than the binding energy of the molecular substance.
  • the pulsed light source preferably has a wavelength energy smaller than the binding energy of the molecular substance with respect to the peak energy density intensity in the single photon region.
  • the molecular substance may be an organic semiconductor such as pentacene, in which case the light wavelength is in the vicinity of 808 nm to 981 nm.
  • the molecular substance is formed by irradiating light that can be formed while maintaining the molecular structure of the molecular substance, the above-mentioned phenomenon does not occur.
  • the molecular structure of is not destroyed.
  • the raw material powder of the molecular substance absorbs photons to be irradiated and rises to a temperature corresponding to the number of photons, and the absorbed energy diffuses as thermal energy toward the surrounding low-temperature part, but diffuses. Since the magnitude of the thermal energy is proportional to the temperature difference from the surroundings, the temperature rises until the magnitude of the diffusing thermal energy becomes equal to the photon energy supplied per unit time, and the temperature becomes constant. If the intensity of the continuous wave of light is selected and irradiated, or if the light is a pulse, it is extremely effective to select and irradiate one or more of the pulse peak value, pulse width, and pulse interval.
  • the photon energy supplied per unit time can be controlled with a wide range of accuracy and accuracy
  • the raw material powder of the organic substance can be controlled to a predetermined temperature, and as a result, the deposition rate can be controlled to a desired constant value.
  • the method of the present invention According to the method, it is possible to carry out deposition without damaging the molecular structure of the molecular substance and precisely controlling the molecular orientation and the film thickness.
  • the material to be deposited is irradiated with light emitted from a light source, and the deposition rate of the substance to be deposited is controlled to form the molecular substance on the substrate.
  • the material to be deposited absorbs light and releases the absorbed light energy as light, and mixes the material that does not react with the molecular material and does not evaporate at the deposition temperature of the molecular material. Select or irradiate, or if the light is a pulsed light, select one of the peak value, pulse width, and pulse interval of the pulse! The film is formed while maintaining the molecular structure of the substance.
  • the light having continuous wave power preferably has a wavelength energy smaller than the binding energy of the molecular substance.
  • the pulsed light source preferably has a wavelength energy that is smaller than the binding energy of the molecular substance with respect to the peak energy density in the single photon region.
  • the molecular substance is preferably an organic semiconductor.
  • the substance that does not react with the molecular substance and does not evaporate is, for example, any one of a refractory metal, a carbide, and a nitride.
  • the molecular substance is rubrene or C, does not react with rubrene or C, and
  • One material that does not evaporate is Si powder, and the wavelength of the infrared laser is around 808 nm to 981 nm.
  • the mixed material force absorbs infrared light and absorbs the absorbed infrared light energy over a wide range. Since it is re-emitted as infrared light having a wavelength, the temperature of the molecular substance can be controlled to the desired temperature, the deposition rate can be kept constant, and thus the molecular structure of the molecular substance can be prevented from being damaged. In addition, the molecular orientation can be controlled, and the film thickness can be precisely controlled for deposition.
  • the substance to be mixed may be any substance that does not react with the deposition target substance and does not evaporate at the deposition temperature of the molecular substance to be deposited.
  • Si refractory metal
  • SiC It may be a carbide such as NiO or a nitride such as SiN.
  • the deposition rate can be controlled by selecting one or more of the pulse peak value, pulse width and pulse interval for one pulse, no film thickness sensor or shutter is required, and the deposition material can be controlled. Since no temperature control device for the holding tool is required, a plurality of vapor deposition materials can be arranged in the vacuum layer without increasing the size of the vapor deposition device. Therefore, a thin film having a molecular substance power can be produced at a low cost.
  • the molecular substance film-forming apparatus of the present invention holds a vacuum chamber having a window that transmits light, and a vapor deposition material disposed in the vacuum chamber. And a light source arranged so as to irradiate the vapor deposition material in the vacuum chamber through the window of the vacuum chamber.
  • the wavelength of the light source has a wavelength energy that allows film formation while maintaining the molecular structure of the molecular substance.
  • the light source may be a continuous wave light source, and the continuous wave light source has a wavelength energy smaller than the binding energy of the molecular substance.
  • the light source may be a pulsed light source.
  • the Nors light source has a wavelength energy smaller than the binding energy of the molecular substance in the peak energy density intensity of the single photon region.
  • This pulse light source is preferably formed by intermittently supplying a continuous wave light source.
  • a holding tool moving unit that moves the holding tool to the irradiation position of the light source can be further provided.
  • a molecular substance for example, a thin film having an organic substance force can be deposited without damaging the molecular structure.
  • a light source for example, a laser pulse
  • the energy of the irradiated infrared laser is selected by selecting one or more of the peak value, pulse width, and pulse interval of the infrared laser pulse. Because the size of the film can be controlled over a wide range and precisely, the deposition rate can be controlled to the desired value, and as a result, the orientation can be controlled and the film thickness can be controlled precisely. It is.
  • the method and apparatus for forming a molecular substance of the present invention it is possible to form a film by evaporating the deposition target material by irradiating light from a light source. Can be manufactured in a short time. In addition, it is necessary to continuously deposit multiple deposition materials. Even in the case of manufacturing a necessary device, it can be manufactured without increasing the cost of the apparatus.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of a molecular material deposition apparatus using an infrared laser according to the present invention.
  • FIG. 2 is a diagram showing an absorption spectrum of a pentacene thin film produced by a conventional vapor deposition method using a Knudsen cell.
  • FIG. 3 is a table showing absorption wavelengths of typical molecular vibrations.
  • FIG. 4 is a graph showing the relationship between bond dissociation energy in various bonds of a molecular substance and the wavelength of light corresponding to this energy.
  • FIG. 5 is a diagram showing the relationship between pulse width and pulse peak power density when the light source is a pulse laser.
  • FIG. 6 is a schematic diagram for explaining a molecular substance vapor deposition step using an infrared laser using the molecular substance vapor deposition apparatus according to the present invention.
  • FIG. 7 is a diagram showing the crystal structure of the pentacene thin film produced in Example 1.
  • FIG. 8 is an infrared absorption spectrum of the pentacene thin film produced in Example 1.
  • FIG. 9 is a view showing a surface SEM (operational electron microscope) image of the pentacene thin film produced in Example 1.
  • FIG. 10 is a diagram showing infrared absorption spectra of pentacene thin films prepared in Examples 2 and 3 and Comparative Examples 1 and 2.
  • FIG. 11 is a diagram showing an absorption spectrum in an ultraviolet-visible light region of the pentacene thin film produced in Example 3 and Comparative Example 2.
  • FIG. 12 is a view showing a measurement result of X-ray diffraction of a rubrene thin film produced in Example 4.
  • FIG. 13 Diffraction strength of reflection type high-energy electron beam observed during deposition of C thin film prepared in Example 5
  • FIG. 14 is a view showing a conventional vapor deposition apparatus using a Knudsen cell.
  • FIG. 1 is a schematic diagram showing a configuration of a molecular substance film forming apparatus according to the present invention.
  • the molecular substance film-forming apparatus 1 of the present invention includes a vacuum chamber 3 having a window 2 that transmits light, a holder 4 that holds a deposition target substance disposed in the vacuum chamber 3, and an evaporation from the holder 4.
  • a substrate holder 7 for holding a substrate 6 for depositing a deposition target material 5 to be deposited and a light source 8 capable of irradiating light disposed outside the vacuum chamber 3 are provided.
  • the light source 8 also has power such as a lamp and a laser device.
  • the light source 8 is arranged such that the irradiation light 11 generated by the light source 8 irradiates the deposition material disposed on the deposition material holder 4 through the window 2 of the vacuum chamber.
  • a plurality of the deposition target material holders 4 may be arranged according to the number of the deposition target materials.
  • the holder 4 for holding the vapor deposition material is held so as to be movable to the irradiation position of the irradiation light 11.
  • a plurality of holders 4 are arranged on the circumference of the holder mounting base 9. 4 is mounted, and the desired holder 4 is moved to the irradiation position of the irradiation light 11 by rotating the rod 10 coupled to the holder mounting base 9.
  • the substrate holder 7 may be the substrate holder 7 provided with a substrate temperature control unit that can control the temperature of the substrate 6.
  • the molecular substance is a conjugated molecular organic substance
  • a light source 8 that outputs photons corresponding to energy less than the band gap energy of the conjugated molecular organic substance is used.
  • the band gap energy of organic materials of conjugated molecular system can be obtained from the absorption spectrum of organic materials.
  • Fig. 2 shows the absorption spectrum of a pentacene thin film prepared by a conventional vapor deposition method using a Knudsen cell. As is clear from the figure, the absorption spectrum is low at about 700 nm or more.
  • the absorption edge wavelength corresponding to the gap energy is about 700 nm. Therefore, in the case of pentacene, for example, a light source 8 having a wavelength longer than 700 nm may be used.
  • a light source 8 for example, an infrared laser such as a semiconductor laser may be used.
  • This infrared laser device can control the intensity of the infrared laser continuous wave as long as it is an infrared laser device that outputs a time-coherent infrared laser continuous wave.
  • the pulse width and the pulse interval may be controlled by intermittently switching the wave with the optical chisba and controlling the rotation frequency of the optical chitna.
  • FIG. 3 is a diagram showing the absorption wavelength of a typical molecular vibration.
  • Fig. 3 shows the absorption wavelength due to stretching motion, which is a typical molecular vibration, but there are other types of molecular vibration, including angular vibration, rotational vibration, and combinations of these vibrations.
  • the infrared absorption wavelength range reaches from 0.7 m to 20 m.
  • FIG. 4 is a diagram showing the relationship between bond dissociation energy in various bonds of a molecular substance and the wavelength of light corresponding to this energy.
  • the horizontal axis indicates the wavelength (nm) and the vertical axis indicates the bond dissociation energy (kj / mol).
  • the bond dissociation energy is 3.61 eV.
  • the wavelength of light corresponding to one is about 344 nm.
  • a light source having a photon energy of 61 eV or less is the bond dissociation energy in order to form a film while maintaining the molecular structure of the molecular substance.
  • the wavelength may be the light source 8 having a wavelength of about 344 nm or more.
  • the light of the light source 8 used in the apparatus of the present invention is not limited to the molecular substance considering the band gap energy of the molecular substance, the molecular vibration, the bond binding energy in the binding of the molecular substance, and the like. What is necessary is just to set it as the wavelength which can hold
  • the emission wavelength can be in the range of 0.7 IX m to 20 m.
  • gas laser such as CO laser, CO laser, HF laser and YAG laser according to the type of material to be deposited
  • the light source 8 may be a lamp having a filter for transmitting only a wavelength capable of maintaining the molecular structure of the molecular substance.
  • the light source 8 is a pulse, for example, a combination of a laser device such as an infrared light that outputs a continuous wave and an optical chiba that interrupts the output light, and the continuous light is intermittently red.
  • An external light laser pulse is formed. Since the infrared laser pulse formed by the Q switch is a frequency coherent wave, multi-photon excitation occurs depending on the type of material to be deposited, and it tends to be a short light pulse with a short wavelength. In this case, the ground state electrons may be excited to an excited state to damage the molecular structure, or the atoms of the atoms constituting the deposition material may be excited to cause damage to the molecular structure. Since the laser pulse 8 formed intermittently is a temporally coherent wave, it does not cause damage to the molecular structure without the occurrence of multiphoton excitation.
  • FIG. 5 is a diagram showing the relationship between the pulse width and the peak power density of the pulse when the light source 8 is a pulse laser.
  • the horizontal axis indicates the pulse width (s)
  • the vertical axis indicates the peak power density (WZcm 2 ).
  • the peak power density is also called the peak value of the energy density, and is the maximum power density in one pulse.
  • the photon intensity of the pulse laser that is, the peak power density
  • the peak power density is a peak below the dotted line (about 5 ⁇ 10 5 W / cm 2 ) shown in the figure, which is a single photon region.
  • the power density may be used.
  • the figure also shows the relationship between the pulse width and peak power density used in conventional PLDs!
  • the photon intensity in the pulse used in this conventional PLD is not a single photon region but a multiphoton region.
  • FIG. 6 is a schematic diagram for explaining a film formation method of the molecular substance of the present invention using the molecular substance vapor deposition apparatus of the present invention.
  • a case where three types of organic thin films are laminated as in the case of manufacturing an organic EL element using an infrared laser pulse as the light source 8 will be described.
  • the raw material powders a, b, and c of the three kinds of organic thin films are loaded into the vapor deposition material holders 4a, 4b, and 4c, respectively, and the substrate 6 is attached to the substrate holder 7 and the vacuum chamber Vacuum 3 After reaching a predetermined degree of vacuum, the substrate holder 7 is heated to hold the substrate 6 at a predetermined temperature.
  • the holder 4a loaded with the raw material powder a of the organic thin film to be deposited first is moved to the irradiation position of the infrared laser pulse 11, and the deposition rate of the raw material powder a and the infrared laser pulse 11 determined in advance.
  • the crest value, pulse width, and pulse interval select one or more of the crest value, pulse width, and pulse interval at which the desired deposition rate is achieved, and achieve the desired film thickness. Irradiation with an infrared laser pulse 11 is performed for a corresponding time.
  • the holder 4b loaded with the raw material powder b of the organic thin film to be deposited is moved to the irradiation position of the infrared laser pulse 11, and the deposition rate of the raw material powder b and the infrared laser pulse determined in advance are moved.
  • the deposition rate of the raw material powder b and the infrared laser pulse determined in advance are moved.
  • the holder 4c loaded with the raw material powder c of the organic thin film to be deposited is moved to the irradiation position of the infrared laser pulse 11, and the deposition rate of the raw material powder c and the infrared laser pulse 11 determined in advance.
  • the crest value, pulse width, and pulse interval select one or more of the crest value, pulse width, and pulse interval at which the desired deposition rate is achieved, and achieve the desired film thickness. Irradiation with an infrared laser pulse 11 is performed for a corresponding time.
  • the molecular substance is an organic molecule
  • a ⁇ -conjugated organic molecule or an organic molecule having a benzene ring can be used.
  • the organic molecule include pentacene, fullerene, acene organic molecule, thiophene organic molecule, and derivatives thereof.
  • the light source 8 may be a continuous wave light source.
  • the light source comprising a continuous wave has a wavelength energy that is smaller than the binding energy of the molecular substance. It is possible to form a film while maintaining the molecular structure.
  • the pulse light source 8 one or more of the peak value, pulse width, and pulse interval of the optical pulse is selected and irradiated.
  • the pulsed light source 8 has a peak energy density intensity in the single photon region, which is smaller than the binding energy of the molecular substance and has a wavelength energy.
  • the film can be formed while maintaining the molecular structure.
  • the film formation method for a molecular substance of the present invention operates as follows.
  • a molecular substance connected by the bonding of multiple atoms is irradiated with visible light or ultraviolet light
  • the electrons of the atoms constituting the molecular substance are excited, and this excitation generally involves the molecular structure of the molecular substance.
  • the shared electrons of a molecular substance act like a panel that connects the atoms that make up the molecule, and when a photon with an energy equivalent to the natural vibration energy of this panel is irradiated, the molecular substance absorbs the photon energy.
  • causes molecular vibrations Since the natural vibrational energy of molecular vibrations is sufficiently small and is generally in the infrared region, the electrons that make up the atoms of the molecular substance are not excited. The child structure is not destroyed.
  • molecular vibration since molecular vibration is harmonic vibration, it absorbs photons to be irradiated and is excited by molecular vibration energy corresponding to the number of photons.
  • the excited molecular vibrational energy is a force that diffuses as thermal energy toward the surrounding low-temperature part.
  • the magnitude of the diffused thermal energy is proportional to the temperature difference from the surroundings. The temperature rises until it becomes equal to the photon energy supplied per unit time, and the temperature becomes constant at this temperature. Therefore, the unit time can be determined by selecting and irradiating one or more of the intensity of the continuous wave light source to irradiate, the irradiating force, the crest value of the light pulse, the pulse width and the pulse interval.
  • the deposition material can be controlled to a predetermined temperature, and as a result, the deposition rate can be controlled to a predetermined desired constant value. Therefore, according to the method of the present invention, deposition can be performed without damaging the molecular structure of the molecular substance, controlling the molecular orientation, and controlling the film thickness precisely.
  • the raw material powder is irradiated with an infrared laser pulse or a continuous wave infrared laser, and the temperature of the raw material powder is directly determined with these lasers. Since it is heated to a temperature, the molecular structure of the organic material to be deposited due to the time required to reach a thermal equilibrium state, which is a problem in the prior art, or the overshoot of the temperature that is generated when trying to control to a predetermined temperature in a short time The problem of damage is solved.
  • one or more of the peak value, pulse width, and pulse interval of the infrared laser pulse 8 are selected, or the continuous wave light source 8, for example, red
  • the continuous wave light source 8 for example, red
  • the temperature of the raw material powder is selected from one or more of the peak value of the infrared laser pulse, the pulse width and the pulse interval, or the continuous wave light source 8
  • the surface area that incorporates a heating device that maintains a predetermined temperature for each raw material which is necessary in the prior art.
  • the conventional laser ablation method uses visible light or ultraviolet light, the molecular structure of the material to be deposited is damaged.
  • the apparatus and method of the present invention as described above, Since pulsed light and continuous light that can maintain the molecular structure of the active substance are used, it is possible to deposit without damaging the molecular structure of the deposited material.
  • the infrared absorption wavelength of the material to be deposited is significantly deviated from the center wavelength of the infrared laser to be used, so that sufficient heating may not be possible.
  • using an infrared laser device having a peak in the absorption wavelength, or using a tunable laser to match the peak wavelength to the absorption wavelength is a solution.
  • a method capable of vapor deposition without changing the infrared laser apparatus will be described.
  • it is a substance that efficiently absorbs infrared light, re-emits the absorbed infrared light energy as infrared light in a wide wavelength range, does not react with the material to be deposited at the deposition temperature of the raw material powder, and
  • a powder of a substance that does not evaporate at the deposition temperature of the powder is mixed with the raw material powder, and this mixed powder is used as the raw material powder.
  • Such a vapor deposition substance may be organic or inorganic as long as it is a molecular substance and does not absorb infrared light to be used or cannot be heated to the evaporation temperature by a weak irradiation light source.
  • organic substance include rubrene and fullerene (C 3).
  • Anthracene, tetracene, and c which are materials with a relatively large forbidden band (band gap) And so on.
  • a carbide such as Si, a refractory metal, SiC, or a nitride such as NiO or SiN can be used.
  • organic matter consisting of conjugated molecules
  • examples include metals such as A1, Si, and SiC.
  • this material efficiently absorbs and absorbs the infrared laser. Since the infrared light energy is emitted as infrared light including the absorption wavelength of the deposited material, the deposited material can be heated and evaporated indirectly.
  • Example 1 shows a case where the molecular substance is an organic substance such as a conjugated molecular molecule.
  • the external light laser pulse is irradiated by selecting one or more of the pulse peak value, pulse width, and pulse interval to control the vapor deposition rate of the material to be deposited. is there.
  • a pentacene thin film was produced using the pentacene raw material powder by the method of the present invention.
  • the infrared laser pulse is continuously transmitted from an infrared semiconductor laser having a wavelength of 0.808 (808 nm).
  • the wave was used intermittently.
  • the pulse width was lsec, the repetition frequency was 0.5 Hz, and the irradiation energy density was about lOWZcm 2 .
  • a sapphire substrate was used as the substrate, and the substrate temperature was 100 ° C.
  • the thickness of the deposited pentacene thin film was 50 nm.
  • the deposition rate at this time was 4.4 nmZ.
  • a pentacene thin film was formed in the same manner as in Example 1 except that a continuous wave infrared semiconductor laser having a wavelength of 981 nm and an output of 2.5 W was used. Power per unit area of the infrared semiconductor laser was 12WZcm 2. The thickness of the deposited pentacene thin film was lOOnm. The deposition rate at this time was 4.4 nmZ.
  • the above-mentioned infrared semiconductor lasers have the ability to change the wavelength by ⁇ 5 nm due to fluctuations in the output level. It did not affect the degree.
  • a pentacene thin film was formed in the same manner as in Example 1 except that a continuous wave infrared semiconductor laser having a wavelength of 808 nm and an output of 2.5 W was used. Power per unit area of the infrared semiconductor laser was 8WZcm 2. The thickness of the deposited pentacene thin film was lOOnm. The deposition rate at this time was 4.4 nmZ.
  • Example 1 As in Example 1, except that a continuous wave infrared semiconductor laser with a wavelength of 981 nm and an output of 2.5 W was used, rubrene powder and Si powder were used as raw materials, and a sapphire substrate was used. A rubrene thin film was formed. The power per unit area of the infrared semiconductor laser was 8WZcm2. Since the rubrene thin film has poor orientation to the substrate, first, a single molecular layer of pentacene was formed on the substrate as a buffer layer to promote the two-dimensional growth of rubrene, and then the rubrene thin film was formed. The thickness of the rubrene film was 20 nm. The deposition rate at this time was 3. OnmZ.
  • a C thin film was formed in the same manner as in Example 1 except that a continuous wave infrared semiconductor laser with a wavelength of 981 nm and an output of 2.5 W was used, and fullerene (C) powder and Si powder were used as raw materials. Film formation
  • the film thickness was lOOnm.
  • the deposition rate at this time was 3.92 nmZ.
  • a mica substrate was used as the substrate.
  • a pentacene thin film having the same thickness as in Example 1 was formed.
  • the wavelength of the pulse laser was 266 nm
  • the pulse width was 5 ns
  • the repetition frequency was 10 Hz
  • the irradiation energy per unit area was 0.0 j / cm 2 .
  • the raw material powder was heated in the same manner as in Example 3 using only the Si powder without mixing the Si powder. In this case, it was found that the rubrene thin film was not formed on the substrate and the rubrene powder was evaporated.
  • FIG. 7 is a diagram showing the crystal structure of the pentacene thin film prepared in Example 1, where (a) shows the ⁇ / 2 ⁇ diffraction X-ray measurement results, and (b) shows the diffraction peak (001) 2 The result of measuring the half-width of the diffraction peak by rotating the angle ⁇ of the sample while fixing ⁇ and measuring the size of the crystal grain is shown. For comparison, the results for the pentacene thin film produced by the conventional MBE method using Knudsen cells are also shown.
  • FIG. 8 is a diagram showing an infrared absorption spectrum of the pentacene thin film of Example 1 produced by the method and apparatus of the present invention.
  • the horizontal axis indicates the wave number (cm 2) and the vertical axis indicates the absorptance (arbitrary scale).
  • the infrared absorption spectrum of the pentacene powder used as a raw material is also shown.
  • the measurement device used was an FTIR (Fourier transform infrared spectrophotometer).
  • FIG. 9 is a diagram showing a surface SEM (scanning electron microscope) image of the pentacene thin film produced in Example 1.
  • the pentacene produced by the conventional MBE method using a Knudsen cell A thin film image is also shown.
  • Figure 9 shows that the in-plane crystallinity is equivalent to that of a pentacene thin film fabricated by the conventional MBE method using Knudsen cells.
  • a pentacene thin film with no damage to the molecular structure can be produced by the method of the present invention.
  • This effect is mainly due to the fact that the method of the present invention uses an infrared laser pulse corresponding to an energy less than the band gap energy formed by the ⁇ electrons of pentacene.
  • the irradiation peak power density of the infrared laser pulse by the method of the present invention is about lOWZcm 2
  • One of the factors is that it is extremely low.
  • FIG. 10 is a diagram showing an infrared absorption spectrum of the pentacene thin film produced in Examples 2 and 3 and Comparative Examples 1 and 2.
  • the horizontal axis indicates wave number (cm 2), and the vertical axis indicates transmittance (arbitrary scale).
  • the infrared absorption spectrum of pentacene powder is also shown. FTIR was used.
  • FIG. 10 shows that the infrared absorption spectrum of the pentacene thin film prepared by irradiating with continuous laser light in Examples 1 and 2 agrees very well with the infrared absorption spectrum of the pentacene powder.
  • the infrared absorption spectrum of the pentacene thin film prepared by irradiating with ultraviolet light pulsed laser light by the conventional PLD method of Comparative Example 1 has a higher irradiation peak energy density than that of Examples 1 and 2, and thus is almost molecular. The structure was not observed, and the molecular structure was destroyed. Although the molecular structure is observed in the infrared absorption spectrum of the pentacene thin film produced by irradiating infrared light pulsed laser light by the conventional PLD method of Comparative Example 2, the irradiation peak energy density is large, so that Example 1 and Compared with 2, the transmittance was remarkably lowered, and it was found that a part of the molecular structure was destroyed.
  • FIG. 11 is a graph showing an absorption spectrum in the ultraviolet-visible light region of the pentacene thin film produced in Example 3 and Comparative Example 2.
  • the horizontal axis indicates the wavelength (nm), and the vertical axis indicates the absorption rate (arbitrary scale).
  • the absorption spectrum in the ultraviolet-visible light region of the pentacene thin film prepared by irradiating with continuous laser light having a wavelength of 808 nm in Example 3 a peak due to the band edge is observed in the vicinity of 700 nm.
  • Absorption structures were also observed at other wavelengths, but the optical absorption structure was not observed in the pentacene thin film fabricated in Comparative Example 2!
  • the absorption spectrum is not observed in the ultraviolet-visible light region! Because the peak power of the pulsed light is very large, the multiphoton process occurs and the molecular structure of pentacene is destroyed. It is estimated that
  • FIG. 12 is a diagram showing a measurement result of X-ray diffraction of the rubrene thin film produced in Example 4.
  • the horizontal axis indicates the angle (°), that is, an angle corresponding to twice the incident angle ⁇ of the X-ray to the atomic plane
  • the vertical axis indicates the diffracted X-ray intensity (cps).
  • FIG. 13 shows the reflection high-speed electron beam observed during the deposition of the C thin film prepared in Example 5.
  • a thin film of a molecular material that does not damage the molecular structure of the molecular material can be produced, and the deposition rate is controlled to a predetermined constant rate. Therefore, the orientation of the thin film of the molecular substance can be controlled and the film thickness can be accurately controlled. Therefore, device growth using organic thin films is expected for future growth. It is extremely useful if it is used in the manufacture of devices using superlattices that have a molecular material force, in which the fabrication of semiconductor devices and the control of film thickness are extremely important.

Abstract

This invention provides a method for formation of a film of a molecular substance, comprising applying light from a light source to a material to be vapor deposited and forming a film of a molecular substance on a substrate while regulating the vapor deposition speed of the vapor deposition material. The film can be formed while maintaining the molecular structure of the molecular substance by applying light with the strength of the continuous wave thereof being selected. In this case, when the light is in a pulse form, in the light irradiation, any one of or a plurality of the pulse wave height value, the pulse width, and the pulse spacing are selected. The apparatus (1) for forming a film of a molecular substance comprises a vacuum tank (3) having a light permeable window (2), a holding fixture (4) for holding a material to be vapor deposited disposed within the vacuum tank (3), a substrate holding fixture (7) for holding a substrate (6) on which the vapor deposition material evaporated from the holding fixture (4) is deposited, and a light source (8) disposed so that light is applied to the vapor deposition material within the vacuum tank (3) through the window (2) of the vacuum tank. The wavelength of the light source (8) has a wavelength energy which can form a film while maintaining the molecular structure of the molecular substance.

Description

分子性物質の成膜方法及びその装置  Molecular material deposition method and apparatus
技術分野  Technical field
[0001] 本発明は分子性物質の薄膜を作製する成膜方法及びその装置に係り、さらに詳し くは、分子性物質を光照射により成膜することができる成膜方法及びその装置に関 する。  TECHNICAL FIELD [0001] The present invention relates to a film forming method and apparatus for producing a thin film of a molecular substance, and more particularly to a film forming method and apparatus capable of forming a molecular substance by light irradiation. .
背景技術  Background art
[0002] 近年、有機物質の物性の解明が進み、有機物質によって金属と同様の導電特性、 無機物半導体と同様の半導体特性、或いは、電流によって発光する発光特性を実 現することが可能になった。有機物質薄膜は無機物質薄膜と較べて、曲げたりしても 壊れにく!、と 、うフレキシビリティに優れ、無機物の薄膜に較べて薄膜化し易!、と言う 特性を有し、また、無機物質には無い有機物質特有の物性を有することから、有機 物質薄膜を用いたディスプレイや電子デバイスが実用化されつつある (非特許文献 1 , 2参照)。  In recent years, elucidation of the physical properties of organic substances has progressed, and it has become possible to realize conductive characteristics similar to metals, semiconductor characteristics similar to inorganic semiconductors, or light-emitting characteristics that emit light by current. . Compared to inorganic thin films, organic thin films are less likely to break even when bent, and they have excellent flexibility and are easier to make thinner than inorganic thin films. Due to the unique physical properties of organic substances, displays and electronic devices using organic thin films are being put into practical use (see Non-Patent Documents 1 and 2).
[0003] 例えば、有機 EL (Electro Luminescence)素子は、以下に説明するように有機 物薄膜で構成されている。すなわち、有機 EL素子は、 m未満の厚さの有機発光 層と呼ばれる有機薄膜を電子輸送層及び正孔輸送層と呼ばれる有機薄膜でサンド イッチした構成を有している。有機発光層は、炭素の単結合と 2重結合とからなる単 位が周期的に連なった、所謂共役系分子層で形成されており、共役系分子の π電 子準位が、単結合と 2重結合とからなる単位の周期性に基づ ヽたエネルギーバンドを 形成して!/、る。有機発光薄膜に注入された電子とホールはバンドギャップエネルギー に相当する光子を放出して再結合することにより発光する。また、発光効率を高める ために、有機発光薄膜に供給される電子とホールの数を等しくなるように、電子輸送 薄膜及び正孔輸送薄膜の厚さはそれぞれ最適な厚さに構成されている。  [0003] For example, an organic EL (Electro Luminescence) element is composed of an organic thin film as described below. That is, the organic EL element has a configuration in which an organic thin film called an organic light emitting layer having a thickness of less than m is sandwiched by organic thin films called an electron transport layer and a hole transport layer. The organic light-emitting layer is formed of a so-called conjugated molecular layer in which units composed of carbon single bonds and double bonds are periodically linked. The π-electron level of the conjugated molecule is a single bond. It forms an energy band based on the periodicity of units consisting of double bonds! Electrons and holes injected into the organic light-emitting thin film emit light by releasing and recombining photons corresponding to the band gap energy. In addition, in order to increase the luminous efficiency, the thicknesses of the electron transport thin film and the hole transport thin film are set to optimum thicknesses so that the number of electrons and holes supplied to the organic light emitting thin film becomes equal.
[0004] 上記のように有機薄膜からなるデバイスは、有機薄膜を構成する分子の分子構造 に依存するものであるから、有機物質の物性を最大限生力して作製するためには、 作製中に有機薄膜を構成する分子の分子構造が損傷を受けな ヽことが必要である。 また、有機物は無機物に較べて、電子導電率とホール導電率が大きく異なるので、 有機薄膜の厚さを精密に制御して作製することが必要不可欠である。 [0004] As described above, a device composed of an organic thin film depends on the molecular structure of the molecules that make up the organic thin film. In addition, it is necessary that the molecular structure of the molecules constituting the organic thin film is not damaged. In addition, since organic materials differ greatly in electronic conductivity and hole conductivity compared to inorganic materials, it is essential to manufacture the organic thin film with precise thickness control.
このように、有機物質薄膜を作製するためには、無機物質薄膜にない特有の課題 を解決する必要がある。  Thus, in order to produce an organic material thin film, it is necessary to solve a specific problem that is not found in inorganic material thin films.
[0005] 従来の有機物質薄膜の製造方法の一つとして蒸着法がある。例えば、従来の有機 EL素子の蒸着法は、電子輸送層を構成する有機物質原料粉末、有機発光層を構 成する有機物質原料粉末及び正孔輸送層を構成する有機物質原料粉末を、それぞ れの被蒸着物質の保持具に配置し、順次それぞれの保持具をそれぞれの原料の昇 華温度に制御して、有機分子を昇華させて透明電極が形成された基板上に蒸着し て形成する。  [0005] There is a vapor deposition method as one of conventional methods for producing an organic material thin film. For example, the conventional organic EL element vapor deposition method uses an organic material raw material powder constituting an electron transport layer, an organic material raw material powder constituting an organic light emitting layer, and an organic material raw material powder constituting a hole transport layer, respectively. These are placed on the holder of the material to be deposited, and each holder is sequentially controlled to the sublimation temperature of each raw material to sublimate organic molecules and vapor-deposit on the substrate on which the transparent electrode is formed. .
[0006] 有機 EL素子を例に前述したように、有機物質薄膜を用いたディスプレイや電子デ バイスを蒸着法を用いて作製するためには、蒸着された有機薄膜の分子構造が作製 中に破壊されな 、こと、及び薄膜の膜厚を精密に制御できることが不可欠である。 有機薄膜の分子構造が破壊されな ヽようにし、及び薄膜の膜厚を精密に制御でき るようにするためには、被蒸着物質の保持具全体を、分子構造が破壊されずに蒸着 できる温度、すなわち、蒸着する有機物質の昇華温度に精密に制御しなければなら ないが、被蒸着物質の保持具に温度制御装置を付加すると、保持具の表面積、容 積及び熱容量が大きくなり、熱平衡状態になるまでに長時間を必要とし、短時間に所 定の温度に制御するのは極めて困難である。また、保持具を支える治具を介して逃 げる熱量が蒸着装置の稼働状況によって一定でないので、装置の稼動初期に設定 した保持具の温度制御条件は、装置全体が温度上昇するにつれ狂いを生ずる。この ため、長時間にわたって所定の温度に制御することは極めて困難である。  [0006] As described above with an example of an organic EL element, in order to produce a display or an electronic device using an organic material thin film by vapor deposition, the molecular structure of the deposited organic thin film is destroyed during the production. However, it is essential to be able to precisely control the thickness of the thin film. In order to prevent the molecular structure of the organic thin film from being destroyed and to be able to precisely control the film thickness of the thin film, the temperature at which the entire holder for the deposited material can be deposited without destroying the molecular structure. In other words, it must be precisely controlled to the sublimation temperature of the organic material to be deposited, but if a temperature control device is added to the holder for the deposited material, the surface area, volume and heat capacity of the holder will increase, and the thermal equilibrium state will increase. It takes a long time to reach the desired temperature, and it is extremely difficult to control it to a predetermined temperature in a short time. In addition, since the amount of heat released through the jig that supports the holder is not constant depending on the operating status of the vapor deposition apparatus, the temperature control conditions for the holder set at the beginning of the operation of the apparatus are upset as the temperature of the entire apparatus rises. Arise. For this reason, it is extremely difficult to control to a predetermined temperature for a long time.
[0007] 例えば、従来の装置は図 14に示すように、被蒸着有機物質毎に設けたクヌーセン セル 20, 21に被蒸着有機物質を入れ、クヌーセンセル 20, 21の温度をそれぞれの 被蒸着有機物質の昇華温度に制御して蒸着しているが、上に説明したように、クヌー センセル 20, 21はそれぞれ温度制御装置を内蔵しているので、表面積、容積及び 熱容量が大きぐ熱平衡状態になるまでに長時間を必要とし、短時間に所定の温度 に制御しょうとすると、温度のオーバーシュート、つまり、過温度上昇が生じ、被蒸着 有機物質の分子構造を損傷してしまうことが避けられない。また、有機薄膜の分子の 配向性は有機薄膜の導電率に影響を与えるが、分子の配向性は蒸着速度によって も左右され、上記のように従来の蒸着方法では、蒸着速度を十分一定に保つことが 難しいので、配向性を十分制御できない。クヌーセンセルの温度制御が上記のように 難しいために蒸着速度を十分一定に保つことが難しぐ膜厚制御が難しい。膜厚制 御性を向上させるために、従来の装置では、蒸着基板近傍に膜厚センサー 22を設 け、また、被蒸着物質の蒸発を防止するシャッター 20a, 20bを設けて、所定の膜厚 に達したことを膜厚センサー 20で検出してシャッター 20a, 20bを閉じる方法で膜厚 を制御しているが、貴重な有機物質原料をシャッターに蒸着してしまうという無駄が生 じる。 For example, as shown in FIG. 14, in the conventional apparatus, the organic material to be deposited is put into Knudsen cells 20 and 21 provided for each organic material to be deposited, and the temperatures of the Knudsen cells 20 and 21 are set to the respective organic materials to be deposited. Vapor deposition is controlled at the sublimation temperature of the material, but as explained above, Knudsen cells 20 and 21 each have a built-in temperature control device, resulting in a thermal equilibrium state with a large surface area, volume and heat capacity. If it takes a long time to control it to a predetermined temperature in a short time, temperature overshoot, that is, overtemperature rise occurs, It is inevitable that the molecular structure of the organic material is damaged. In addition, the molecular orientation of the organic thin film affects the conductivity of the organic thin film, but the molecular orientation also depends on the deposition rate. As described above, the conventional deposition method keeps the deposition rate sufficiently constant. It is difficult to control the orientation sufficiently. Since the temperature control of the Knudsen cell is difficult as described above, it is difficult to control the film thickness, which makes it difficult to keep the deposition rate sufficiently constant. In order to improve the film thickness controllability, in the conventional apparatus, a film thickness sensor 22 is provided in the vicinity of the evaporation substrate, and shutters 20a and 20b are provided to prevent evaporation of the evaporation target substance. The film thickness is controlled by the method of closing the shutters 20a and 20b by detecting the film thickness sensor 20 with the film thickness sensor 20, but waste of depositing valuable organic material on the shutter occurs.
[0008] 図 14のクヌーセンセルのように、温度を制御する保持具は大型であるため、複数の 被蒸着物質を連続して蒸着することが必要なデバイスを製造する場合には、大型の 保持具を複数収納するために蒸着装置が極めて大型化してしま 、、装置コストの上 昇が避けられない。  [0008] Like the Knudsen cell in FIG. 14, the temperature-controlling holder is large, so when manufacturing a device that requires the deposition of a plurality of deposition materials in succession, a large holding The vapor deposition equipment has become extremely large to accommodate multiple tools, and the cost of the equipment is inevitable.
[0009] また、コンビナトリアル成膜技術分野にぉ 、ては、マスクを移動させながら、異なる 材料を交互に数分子層 (又は原子層)ずつ蒸着して約 1万分子層 (又は原子層)の 組成傾斜膜を形成するが、蒸着材料の切り替え速度が早くないと作製に時間がかか る。  [0009] Also, in the combinatorial film forming technology field, different materials are alternately deposited by several molecular layers (or atomic layers) while moving the mask, and about 10,000 molecular layers (or atomic layers) are deposited. Although a composition gradient film is formed, if the switching speed of the deposition material is not fast, it takes a long time to manufacture.
[0010] また従来、主に無機物質の薄膜を作製する方法としてレーザアブレーシヨン法 (PL D法)が知られている。レーザアブレーシヨン法は、可視光や紫外光の高エネルギー のレーザ光パルスを照射して、レーザ光パルスの有する光エネルギーを直接蒸着物 質に吸収させて蒸発させるものである。しかしながら、レーザアブレーシヨン法は、分 子性の物質、特に、有機物質の場合には分子構造が損傷を受けてしまい、被蒸着物 質の分子構造に基づく機能を十分に発現させることができな 、 (非特許文献 3, 4参 照)。  [0010] Conventionally, a laser ablation method (PLD method) is known as a method for producing a thin film mainly of an inorganic substance. In the laser ablation method, a laser beam with high energy such as visible light or ultraviolet light is irradiated, and the light energy of the laser beam pulse is directly absorbed by the vapor deposition material and evaporated. However, in the case of a laser ablation method, molecular structures are damaged in the case of molecular substances, particularly organic substances, and functions based on the molecular structure of the material to be deposited can be fully expressed. (See Non-Patent Documents 3 and 4).
[0011] 非特許文献 l :http : ZZwww. nanoelectronics. jp/kaitai/oel/3. htm 20 05/08/05  [0011] Non-patent literature l: http: ZZwww. Nanoelectronics.jp/kaitai/oel/3.htm 20 05/08/05
非特許文献 2 : http : Z Z www. nanoelectronics. jp/kaitai/ printableofet/ 2. htm 2005/08/05 Non-Patent Document 2: http: ZZ www.nanoelectronics.jp/kaitai/ printableofet / 2.htm 2005/08/05
非特許文献 3 :K. ITAKI et al. , "Pulsed laser deposition of axis o riented pentacen films" Appl. Phs. A, Vol. 79, pp. 875— 877, 2004 非特許文献 4:Jun Yamaguti et al. , "Combinatorial Pulsed Laser Depo sition of PentacenFilms for Field Effect Device" MacromolRapid C ommun. , Vol. 25, pp. 334— 338, 2004  Non-Patent Document 3: K. ITAKI et al., “Pulsed laser deposition of axis oriented pentacen films” Appl. Phs. A, Vol. 79, pp. 875—877, 2004 Non-Patent Document 4: Jun Yamaguti et al. , "Combinatorial Pulsed Laser Deposition of PentacenFilms for Field Effect Device" Macromol Rapid C ommun., Vol. 25, pp. 334— 338, 2004
非特許文献 5 : M. Haemori,他 4名, "Fabrication of Highly Oriented Ru brene Thin Films bythe Use of Atomically Finished Substrate and Pentacene Buffer Layer", Jap. J. Appl. Phys. , Vol. 44, p. 3740, 200 Non-Patent Document 5: M. Haemori and 4 others, "Fabrication of Highly Oriented Rubrene Thin Films by the Use of Atomically Finished Substrate and Pentacene Buffer Layer", Jap. J. Appl. Phys., Vol. 44, p. 3740 , 200
5 Five
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] 上記説明から理解されるように、クヌーセンセルを用いた蒸着の場合には、蒸着温 度の制御に時間が力かりすぎる上に、成膜速度が一定ではない。一方、レーザアブ レーシヨン法の場合には、成膜のデジタル制御は可能であるが、分子性の物質、特 に、有機物質の場合には分子構造が損傷を受けてしまい、被蒸着物質の分子構造 に基づく機能を十分に発現させることができな 、。  As understood from the above description, in the case of vapor deposition using a Knudsen cell, it takes too much time to control the vapor deposition temperature, and the film deposition rate is not constant. On the other hand, in the case of the laser ablation method, digital control of film formation is possible, but in the case of molecular substances, especially organic substances, the molecular structure is damaged, and the molecular structure of the material to be deposited is damaged. The function based on can not be fully expressed.
[0013] 分子性物質、特に有機物質の分子構造が破壊されずに蒸着でき、その結果、有機 物質の物性を十分発現でき、且つ、蒸着速度が制御でき、さらに、分子性物質の配 向性とこの薄膜の膜厚が十分制御できると共に、低コストな成膜技術及び蒸着装置 等が求められて 、るが、その方法及び装置は未だ実現されて 、な 、。  [0013] Vapor deposition can be performed without destroying the molecular structure of molecular substances, particularly organic substances. As a result, the physical properties of organic substances can be fully expressed, the deposition rate can be controlled, and the orientation of molecular substances can be controlled. In addition to being able to control the thickness of this thin film sufficiently, low-cost film formation technology and vapor deposition equipment are required, but the method and apparatus have not yet been realized.
[0014] 上記課題に鑑み本発明は、分子性物質、特に、有機物質の分子構造を破壊するこ となく蒸着でき、且つ、蒸着速度を制御して蒸着できる低コストな成膜方法を提供す ることを第 1の目的とし、このような成膜装置を提供することを第 2の目的としている。 課題を解決するための手段  [0014] In view of the above problems, the present invention provides a low-cost film-forming method that can be deposited without destroying the molecular structure of a molecular substance, particularly an organic substance, and that can be deposited by controlling the deposition rate. The first object is to provide such a film forming apparatus. Means for solving the problem
[0015] 上記第 1の目的を達成するため、本発明は、被蒸着物質に光源力も光を照射し、 被蒸着物質の蒸着速度を制御して基板に分子性物質を成膜する方法であって、光 の連続波の強度を選択して照射するカゝ、又は、光がパルスの場合には、パルスの波 高値、パルス幅及びパルス間隔の内のいずれか又は複数を選択して照射することに より、分子性物質の分子構造を保持しながら成膜することを特徴とする。 [0015] In order to achieve the first object, the present invention is a method of depositing a molecular substance on a substrate by irradiating light to the deposition target material with light source power and controlling the deposition rate of the deposition target substance. Select the intensity of the continuous wave of light to irradiate, or if the light is a pulse, the pulse wave The film formation is performed while maintaining the molecular structure of the molecular substance by selecting and irradiating one or more of the high value, the pulse width, and the pulse interval.
上記構成において、連続波力 なる光は、好ましくは、分子性物質の結合エネルギ 一よりも小さい波長エネルギーを有している。パルス光源は、好ましくは、シングルフ オトンの領域のピークエネルギー密度強度にぉ 、て、分子性物質の結合エネルギー よりも小さい波長エネルギーを有している。分子性物質は有機半導体、例えばペンタ センであってよぐその場合は、光の波長は 808nmから 981nm近傍である。  In the above configuration, the light having continuous wave power preferably has a wavelength energy smaller than the binding energy of the molecular substance. The pulsed light source preferably has a wavelength energy smaller than the binding energy of the molecular substance with respect to the peak energy density intensity in the single photon region. The molecular substance may be an organic semiconductor such as pentacene, in which case the light wavelength is in the vicinity of 808 nm to 981 nm.
[0016] 従来の方法によれば、 π電子が形成するバンドギャップエネルギー以上のェネル ギ一に相当する光子を照射すると、基底状態(Highest Occupied Molecular Orbital State)の π電子が励起状態(Lowest Unoccupied Molecular Stat e)に励起され、励起された電子は自由電子となり、自由に動き回る現象が生じる。有 機物質の蒸着中には有機物質が個々の分子に分解されるので、蒸着中にこの現象 が生じると、励起された π電子は基底状態に戻ることができず、このため、 π電子を 形成している有機物質の 2重結合が壊れて 1重結合になり、有機物質の共役系分子 構造が破壊される。有機物質の共役系分子構造が破壊されると、有機物質の共役系 分子構造に基づく π電子の物性を利用する有機デバイスは機能を失う。  [0016] According to the conventional method, when a photon equivalent to energy equal to or higher than the band gap energy formed by π electrons is irradiated, the π electrons in the ground state (Highest Occupied Molecular Orbital State) are excited (Lowest Unoccupied Molecular). The electrons excited by (State) become free electrons, causing a phenomenon of free movement. Since organic substances are decomposed into individual molecules during the vapor deposition of organic materials, if this phenomenon occurs during vapor deposition, excited π electrons cannot return to the ground state, and π electrons are The double bond of the organic material that is formed is broken to a single bond, and the conjugated molecular structure of the organic material is destroyed. When the conjugated molecular structure of an organic material is destroyed, the organic device that utilizes the physical properties of π electrons based on the conjugated molecular structure of the organic material loses its function.
一方、本発明の方法によれば、分子性物質の分子構造を保持しながら成膜できる光 を照射して、分子性物質を成膜するので、上記の現象が生じず、従って、有機物質 薄膜の分子構造が破壊されな 、。  On the other hand, according to the method of the present invention, since the molecular substance is formed by irradiating light that can be formed while maintaining the molecular structure of the molecular substance, the above-mentioned phenomenon does not occur. The molecular structure of is not destroyed.
[0017] また、分子性物質の原料粉末は、照射する光子を吸収し、光子数に応じた温度に 上昇し、吸収したエネルギーは周囲の低温部分に向かって熱エネルギーとして拡散 するが、拡散する熱エネルギーの大きさは周囲との温度差に比例するので、拡散す る熱エネルギーの大きさが単位時間に供給される光子エネルギーと等しくなるまで温 度上昇して温度が一定になる。光の連続波の強度を選択して照射するか、又は、光 がパルスの場合には、パルスの波高値、パルス幅及びパルス間隔の内のいずれか 又は複数を選択して照射すれば、極めて広範隨こ、また、精度良ぐ単位時間に供 給する光子エネルギーを制御できるので、有機物質の原料粉末を所定の温度に制 御でき、その結果、蒸着速度を所望の一定値に制御できる。従って、本発明の方法 によれば、分子性物質の分子構造に損傷を与えることなぐ且つ、分子の配向性と膜 厚を精密に制御して蒸着できる。 [0017] In addition, the raw material powder of the molecular substance absorbs photons to be irradiated and rises to a temperature corresponding to the number of photons, and the absorbed energy diffuses as thermal energy toward the surrounding low-temperature part, but diffuses. Since the magnitude of the thermal energy is proportional to the temperature difference from the surroundings, the temperature rises until the magnitude of the diffusing thermal energy becomes equal to the photon energy supplied per unit time, and the temperature becomes constant. If the intensity of the continuous wave of light is selected and irradiated, or if the light is a pulse, it is extremely effective to select and irradiate one or more of the pulse peak value, pulse width, and pulse interval. Since the photon energy supplied per unit time can be controlled with a wide range of accuracy and accuracy, the raw material powder of the organic substance can be controlled to a predetermined temperature, and as a result, the deposition rate can be controlled to a desired constant value. Thus, the method of the present invention According to the method, it is possible to carry out deposition without damaging the molecular structure of the molecular substance and precisely controlling the molecular orientation and the film thickness.
本発明による分子性物質の成膜方法の他の態様は、被蒸着物質に光源から照射 される光を照射し、被蒸着物質の蒸着速度を制御して基板に分子性物質を成膜する に当たり、被蒸着物質に、光を吸収し且つ吸収した光エネルギーを光として放出し、 分子性物質の蒸着温度で該分子性物質と反応せず且つ蒸発しない物質を混合し、 光の連続波の強度を選択して照射するか、又は、光がパルス光の場合には、パルス の波高値、パルス幅及びパルス間隔の内の!/、ずれか又は複数を選択して照射する ことにより、分子性物質の分子構造を保持しながら成膜することを特徴とする。  In another embodiment of the method for forming a molecular substance according to the present invention, the material to be deposited is irradiated with light emitted from a light source, and the deposition rate of the substance to be deposited is controlled to form the molecular substance on the substrate. The material to be deposited absorbs light and releases the absorbed light energy as light, and mixes the material that does not react with the molecular material and does not evaporate at the deposition temperature of the molecular material. Select or irradiate, or if the light is a pulsed light, select one of the peak value, pulse width, and pulse interval of the pulse! The film is formed while maintaining the molecular structure of the substance.
上記構成において、連続波力 なる光は、好ましくは、分子性物質の結合エネルギ 一よりも小さい波長エネルギーを有している。パルス光源は、好ましくは、シングルフ オトンの領域のピークエネルギー密度にぉ 、て、分子性物質の結合エネルギーよりも 小さい波長エネルギーを有している。分子性物質は、好ましくは有機半導体である。 分子性物質と反応せず且つ蒸発しない物質は、例えば、高融点金属、炭化物、窒化 物の何れかである。  In the above configuration, the light having continuous wave power preferably has a wavelength energy smaller than the binding energy of the molecular substance. The pulsed light source preferably has a wavelength energy that is smaller than the binding energy of the molecular substance with respect to the peak energy density in the single photon region. The molecular substance is preferably an organic semiconductor. The substance that does not react with the molecular substance and does not evaporate is, for example, any one of a refractory metal, a carbide, and a nitride.
好ましくは、分子性物質がルブレン又は C であり、ルブレン又は C と反応せず且  Preferably, the molecular substance is rubrene or C, does not react with rubrene or C, and
60 60  60 60
つ蒸発しない物質が Si粉末であり、赤外光レーザの波長が 808nmから 981nm近傍 である。 One material that does not evaporate is Si powder, and the wavelength of the infrared laser is around 808 nm to 981 nm.
この方法によれば、分子性物質の吸収波長が、使用する光源のピーク波長から大 幅にずれていても、混合した物質力 赤外光を吸収し且つ吸収した赤外光エネルギ 一を広範囲の波長を有する赤外光として再放出するので、分子性物質の温度を所 望の温度に制御でき、蒸着速度を一定とすることができ、従って、分子性物質の分子 構造に損傷を与えることなぐ且つ、分子の配向性を制御し、膜厚を精密に制御して 蒸着することができる。  According to this method, even if the absorption wavelength of the molecular substance is greatly deviated from the peak wavelength of the light source used, the mixed material force absorbs infrared light and absorbs the absorbed infrared light energy over a wide range. Since it is re-emitted as infrared light having a wavelength, the temperature of the molecular substance can be controlled to the desired temperature, the deposition rate can be kept constant, and thus the molecular structure of the molecular substance can be prevented from being damaged. In addition, the molecular orientation can be controlled, and the film thickness can be precisely controlled for deposition.
混合する物質は、蒸着する分子性物質の蒸着温度で、被蒸着物質と反応せず、か つ、蒸発しない物質であれば良ぐ例えば、有機物質の場合には、 Si、高融点金属、 SiC等の炭化物、あるいは、 NiO、 Si N等の窒化物であっても良い。  The substance to be mixed may be any substance that does not react with the deposition target substance and does not evaporate at the deposition temperature of the molecular substance to be deposited.For example, in the case of an organic substance, Si, refractory metal, SiC It may be a carbide such as NiO or a nitride such as SiN.
3 4  3 4
この方法によれば、光の連続波の強度を選択して照射する力 或いは、赤外光レ 一ザパルスを、パルスの波高値、パルス幅及びパルス間隔の内のいずれか又は複数 を選択することによって、蒸着速度を制御できるので、膜厚センサーやシャッターを 必要とせず、また、被蒸着物質を保持する保持具の温度制御装置を必要としないの で、蒸着装置を大型化すること無しに、複数の被蒸着物質を真空層内に配置できる 。従って、分子性物質力もなる薄膜を、低コストで製造することができる。 According to this method, it is possible to select the intensity of the continuous wave of light to irradiate, or the infrared light Since the deposition rate can be controlled by selecting one or more of the pulse peak value, pulse width and pulse interval for one pulse, no film thickness sensor or shutter is required, and the deposition material can be controlled. Since no temperature control device for the holding tool is required, a plurality of vapor deposition materials can be arranged in the vacuum layer without increasing the size of the vapor deposition device. Therefore, a thin film having a molecular substance power can be produced at a low cost.
[0019] 上記第 2の目的を達成するため、本発明の分子性物質の成膜装置は、光を透過す る窓を有した真空槽と、真空槽内に配置される被蒸着物質を保持する保持具と、保 持具から蒸発する被蒸発物質を堆積する基板を保持する基板保持具と、真空槽の 窓を介して真空槽内の被蒸着物質に照射されるように配置された光源と、を備え、光 源の波長は、分子性物質の分子構造を保持しながら成膜できる波長エネルギーを有 することを特徴とする。  [0019] In order to achieve the second object, the molecular substance film-forming apparatus of the present invention holds a vacuum chamber having a window that transmits light, and a vapor deposition material disposed in the vacuum chamber. And a light source arranged so as to irradiate the vapor deposition material in the vacuum chamber through the window of the vacuum chamber. The wavelength of the light source has a wavelength energy that allows film formation while maintaining the molecular structure of the molecular substance.
上記構成において、光源は連続波光源であってよぐ連続波光源は分子性物質の 結合エネルギーよりも小さ 、波長エネルギーを有して 、る。光源はパルス光源であつ てもよい。ノルス光源は、シングルフオトンの領域のピークエネルギー密度強度にお いて、分子性物質の結合エネルギーよりも小さい波長エネルギーを有している。この パルス光源は、好ましくは、連続波光源を断続させて形成される。保持具を光源の照 射位置に移動する保持具移動部を、さらに備えることもできる。  In the above configuration, the light source may be a continuous wave light source, and the continuous wave light source has a wavelength energy smaller than the binding energy of the molecular substance. The light source may be a pulsed light source. The Nors light source has a wavelength energy smaller than the binding energy of the molecular substance in the peak energy density intensity of the single photon region. This pulse light source is preferably formed by intermittently supplying a continuous wave light source. A holding tool moving unit that moves the holding tool to the irradiation position of the light source can be further provided.
[0020] 本発明の分子性物質の成膜装置によれば、光源を使用するので、分子性物質、例 えば、有機物質力もなる薄膜をその分子構造に損傷を与えずに蒸着でき、また、例 えば赤外光レーザパルスを使用した場合には、赤外光レーザパルスの波高値、パル ス幅及びパルス間隔の内のいずれか又は複数を選択することにより、照射する赤外 光レーザのエネルギーの大きさを広範囲にわたって、また、精密に制御できるので、 蒸着速度を所望の値に制御することができ、その結果、配向性を制御し且つ膜厚を 精密に制御して製造することが可能である。 [0020] According to the molecular substance film-forming apparatus of the present invention, since a light source is used, a molecular substance, for example, a thin film having an organic substance force can be deposited without damaging the molecular structure. For example, when an infrared laser pulse is used, the energy of the irradiated infrared laser is selected by selecting one or more of the peak value, pulse width, and pulse interval of the infrared laser pulse. Because the size of the film can be controlled over a wide range and precisely, the deposition rate can be controlled to the desired value, and as a result, the orientation can be controlled and the film thickness can be controlled precisely. It is.
発明の効果  The invention's effect
[0021] 本発明の分子性物質の成膜方法及びその装置によれば、光源からの光照射により 、被蒸着物質を蒸発させて成膜することができ、被蒸着物質を無駄に消費せず、短 時間に製造することができる。また、複数の被蒸着物質を連続して蒸着することが必 要なデバイスの製造の場合にも、装置のコストを増大させることなく製造することがで きる。 [0021] According to the method and apparatus for forming a molecular substance of the present invention, it is possible to form a film by evaporating the deposition target material by irradiating light from a light source. Can be manufactured in a short time. In addition, it is necessary to continuously deposit multiple deposition materials. Even in the case of manufacturing a necessary device, it can be manufactured without increasing the cost of the apparatus.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]本発明の赤外光レーザによる分子性物質の蒸着装置の構成を示す概略タツ面 図である。  FIG. 1 is a schematic cross-sectional view showing the configuration of a molecular material deposition apparatus using an infrared laser according to the present invention.
[図 2]クヌーセンセルを用いた従来の蒸着法で作製したペンタセン薄膜の吸収スぺク トルを示す図である  FIG. 2 is a diagram showing an absorption spectrum of a pentacene thin film produced by a conventional vapor deposition method using a Knudsen cell.
[図 3]代表的な分子振動の吸収波長を示す表である。  FIG. 3 is a table showing absorption wavelengths of typical molecular vibrations.
[図 4]分子性物質の有する各種結合における結合解離エネルギーとこのエネルギー に対応する光の波長との関係を示すグラフである。  FIG. 4 is a graph showing the relationship between bond dissociation energy in various bonds of a molecular substance and the wavelength of light corresponding to this energy.
[図 5]光源がパルスレーザの場合にお!、て、パルス幅とパルスのピークパワー密度と の関係を示す図である。  FIG. 5 is a diagram showing the relationship between pulse width and pulse peak power density when the light source is a pulse laser.
[図 6]本発明の赤外光レーザによる分子性物質の蒸着装置を用いた赤外光レーザに よる分子性物質の蒸着工程を説明するための模式図である。  FIG. 6 is a schematic diagram for explaining a molecular substance vapor deposition step using an infrared laser using the molecular substance vapor deposition apparatus according to the present invention.
[図 7]実施例 1で作製したペンタセン薄膜の結晶構造を示す図である。  FIG. 7 is a diagram showing the crystal structure of the pentacene thin film produced in Example 1.
[図 8]実施例 1により作製したペンタセン薄膜の赤外吸収スペクトルを示す図である。  FIG. 8 is an infrared absorption spectrum of the pentacene thin film produced in Example 1.
[図 9]実施例 1により作製したペンタセン薄膜の表面 SEM (操作電子顕微鏡)像を示 す図である。  FIG. 9 is a view showing a surface SEM (operational electron microscope) image of the pentacene thin film produced in Example 1.
[図 10]実施例 2, 3及び比較例 1, 2で作製したペンタセン薄膜の赤外吸収スペクトル を示す図である。  FIG. 10 is a diagram showing infrared absorption spectra of pentacene thin films prepared in Examples 2 and 3 and Comparative Examples 1 and 2.
[図 11]実施例 3及び比較例 2で作製したペンタセン薄膜の紫外可視光領域の吸収ス ベクトルを示す図である。  FIG. 11 is a diagram showing an absorption spectrum in an ultraviolet-visible light region of the pentacene thin film produced in Example 3 and Comparative Example 2.
[図 12]実施例 4で作製したルブレン薄膜の X線回折の測定結果を示す図である。  FIG. 12 is a view showing a measurement result of X-ray diffraction of a rubrene thin film produced in Example 4.
[図 13]実施例 5で作製した C 薄膜の成膜中に観察した反射型高速電子線の回折強  FIG. 13: Diffraction strength of reflection type high-energy electron beam observed during deposition of C thin film prepared in Example 5
60  60
度の時間依存性を示す図である。  It is a figure which shows the time dependence of a degree.
[図 14]クヌーセンセルを用いた従来の蒸着装置を示す図である。  FIG. 14 is a view showing a conventional vapor deposition apparatus using a Knudsen cell.
符号の説明  Explanation of symbols
[0023] 1:分子性物質の成膜装置 (蒸着装置) 2 :光透過窓 [0023] 1: Molecular material deposition system (vapor deposition system) 2: Light transmission window
3 :真空槽  3: Vacuum chamber
4 :被蒸着物質保持具  4: Deposition material holder
4a, 4b, 4c :被蒸着物質保持具  4a, 4b, 4c: Deposition material holder
5 :被蒸着物質の蒸気  5: Vapor of vapor deposition material
6 :基板  6: Board
7 :基板保持具  7: Board holder
8 :光源(レーザ装置)  8: Light source (laser device)
9 :保持具載置台  9: Holder mounting table
10 :ロッド、  10: Rod,
11:照射光 (連続波又はパルス光)  11: Irradiation light (continuous wave or pulsed light)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、本発明を実施するための最良の形態を、図面を参照して詳細に説明する。  Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.
初めに本発明の装置を説明する。  First, the apparatus of the present invention will be described.
図 1は本発明に係る分子性物質の成膜装置の構成を示す模式図である。本発明 の分子性物質の成膜装置 1は、光を透過する窓 2を有した真空槽 3と、真空槽 3内に 配置した被蒸着物質を保持する保持具 4と、保持具 4から蒸発する被蒸着物質 5を蒸 着する基板 6を保持する基板保持具 7と、真空槽 3の外部に配置した光を照射するこ とができる光源 8とを少なくとも備えている。光源 8は、ランプやレーザ装置など力も成 る。光源 8は、光源 8の発生する照射光 11が真空槽の窓 2を介して被蒸着物質の保 持具 4に配置した被蒸着物質を照射するように配置されて ヽる。被蒸着物質の保持 具 4の数は、被蒸着物質の数に応じて複数個配置してもよい。被蒸着物質を保持す る保持具 4は、照射光 11の照射位置に移動可能に保持されており、例えば、図に示 すように、保持具搭載台 9の円周上に複数の保持具 4が載置され、保持具搭載台 9 に結合したロッド 10を回転することによって所望の保持具 4を照射光 11の照射位置 に移動する。上記の基板保持具 7は、基板 6の温度を制御することができる基板温度 制御部を備えた基板保持具 7としてもよ ヽ。  FIG. 1 is a schematic diagram showing a configuration of a molecular substance film forming apparatus according to the present invention. The molecular substance film-forming apparatus 1 of the present invention includes a vacuum chamber 3 having a window 2 that transmits light, a holder 4 that holds a deposition target substance disposed in the vacuum chamber 3, and an evaporation from the holder 4. At least a substrate holder 7 for holding a substrate 6 for depositing a deposition target material 5 to be deposited and a light source 8 capable of irradiating light disposed outside the vacuum chamber 3 are provided. The light source 8 also has power such as a lamp and a laser device. The light source 8 is arranged such that the irradiation light 11 generated by the light source 8 irradiates the deposition material disposed on the deposition material holder 4 through the window 2 of the vacuum chamber. A plurality of the deposition target material holders 4 may be arranged according to the number of the deposition target materials. The holder 4 for holding the vapor deposition material is held so as to be movable to the irradiation position of the irradiation light 11. For example, as shown in the figure, a plurality of holders 4 are arranged on the circumference of the holder mounting base 9. 4 is mounted, and the desired holder 4 is moved to the irradiation position of the irradiation light 11 by rotating the rod 10 coupled to the holder mounting base 9. The substrate holder 7 may be the substrate holder 7 provided with a substrate temperature control unit that can control the temperature of the substrate 6.
[0025] 次に、光源 8について説明する。 初めに、分子性物質が共役分子系の有機物質である場合を例として説明する。 分子性物質が共役分子系の有機物質である場合には、共役分子系の有機物質の バンドギャップエネルギー未満のエネルギーに相当する光子を出力する光源 8を用 いる。共役分子系の有機物質のバンドギャップエネルギーは、有機物質の吸収スぺ クトルカも知ることができる。例えば、図 2は、クヌーセンセルを用いた従来の蒸着法 で作製したペンタセン薄膜の吸収スペクトルを示す図であるが、図から明らかなように 、約 700nm以上で吸収が少ないことから、ペンタセンのバンドギャップエネルギーに 相当する吸収端波長は約 700nmであることがわかり、従って、ペンタセンの場合に は、例えば、 700nmより長波長の光源 8を用いればよい。このような光源 8として、例 えば、半導体レーザなどの赤外光レーザを用いればよい。この赤外光レーザ装置は 、時間コヒーレントな赤外光レーザ連続波を出力する赤外光レーザ装置であれば良 ぐ赤外光レーザ連続波の強度を制御するか、あるいは、赤外光レーザ連続波を光 チヨツバで断続し、光チヨツバの回転周波数を制御して、パルス幅及びパルス間隔を 制御しても良い。 Next, the light source 8 will be described. First, the case where the molecular substance is a conjugated molecular organic substance will be described as an example. When the molecular substance is a conjugated molecular organic substance, a light source 8 that outputs photons corresponding to energy less than the band gap energy of the conjugated molecular organic substance is used. The band gap energy of organic materials of conjugated molecular system can be obtained from the absorption spectrum of organic materials. For example, Fig. 2 shows the absorption spectrum of a pentacene thin film prepared by a conventional vapor deposition method using a Knudsen cell. As is clear from the figure, the absorption spectrum is low at about 700 nm or more. It can be seen that the absorption edge wavelength corresponding to the gap energy is about 700 nm. Therefore, in the case of pentacene, for example, a light source 8 having a wavelength longer than 700 nm may be used. As such a light source 8, for example, an infrared laser such as a semiconductor laser may be used. This infrared laser device can control the intensity of the infrared laser continuous wave as long as it is an infrared laser device that outputs a time-coherent infrared laser continuous wave. The pulse width and the pulse interval may be controlled by intermittently switching the wave with the optical chisba and controlling the rotation frequency of the optical chitna.
[0026] 次に、分子性物質が共役分子系の有機物質以外である場合の光源 8について説 明する。  Next, the light source 8 when the molecular substance is other than a conjugated molecular organic substance will be described.
図 3は、代表的な分子振動の吸収波長を示す図である。図 3は、代表的な分子振 動である伸縮運動による吸収波長を示したものであるが、分子振動には、その他、変 角振動、回転振動及びこれらの振動の組み合わせ振動があり、これらの振動による 吸収も含めると赤外吸収波長範囲は 0. 7 mから 20 mの範囲に達する。  FIG. 3 is a diagram showing the absorption wavelength of a typical molecular vibration. Fig. 3 shows the absorption wavelength due to stretching motion, which is a typical molecular vibration, but there are other types of molecular vibration, including angular vibration, rotational vibration, and combinations of these vibrations. Including the absorption due to vibration, the infrared absorption wavelength range reaches from 0.7 m to 20 m.
[0027] 図 4は、分子性物質の有する各種結合における結合解離エネルギーとこのエネル ギ一に対応する光の波長との関係を示す図である。図において、横軸は波長 (nm) を示し、縦軸は結合解離エネルギー (kj/モル)を示して 、る。 [0027] FIG. 4 is a diagram showing the relationship between bond dissociation energy in various bonds of a molecular substance and the wavelength of light corresponding to this energy. In the figure, the horizontal axis indicates the wavelength (nm) and the vertical axis indicates the bond dissociation energy (kj / mol).
図から明らかように、 C≡C結合(828kjZモル(8. 58eV) )、 C = C結合(607kjZ モル(6. 29eV) )、 O H結合(463kjZモル(4. 8eV) )、 C H結合(413kjZモ ル (4. 28eV) )、 C C結合(348kjZモル(3. 6 leV) )の順に結合解離エネルギー (結合エネルギーとも呼ばれる)が低下していることが分かる。例えば、分子性物質が As shown in the figure, C≡C bond (828kjZ mole (8.58eV)), C = C bond (607kjZ mole (6.29eV)), OH bond (463kjZ mole (4.8eV)), CH bond (413kjZ) It can be seen that the bond dissociation energy (also called the bond energy) decreases in the order of mol (4.28 eV)) and CC bond (348 kjZ mol (3.6 leV)). For example, molecular substances
C C結合を有している場合には、結合解離エネルギーが 3. 61eVであり、このエネ ルギ一に対応する光の波長は約 344nmである。分子性物質が C— C結合だけを有 している場合には、分子性物質の分子構造を保持しながら成膜するためには、結合 解離エネルギーである 3. 61eV以下の光子エネルギーを有する光源を用いればよ い。つまり、波長としては、約 344nm以上の波長を有する光源 8とすればよい。分子 性物質が上記結合やこれらの結合の組み合わせである場合には、結合解離エネル ギ一が最も低 、波長に対応した光源 8を用いればょ 、。 In the case of having a CC bond, the bond dissociation energy is 3.61 eV. The wavelength of light corresponding to one is about 344 nm. When a molecular substance has only C—C bonds, a light source having a photon energy of 61 eV or less is the bond dissociation energy in order to form a film while maintaining the molecular structure of the molecular substance. Should be used. That is, the wavelength may be the light source 8 having a wavelength of about 344 nm or more. When the molecular substance is the above bond or a combination of these bonds, use the light source 8 corresponding to the wavelength with the lowest bond dissociation energy.
[0028] 従って、本発明の装置に使用する光源 8の光は、分子性物質のバンドギャップエネ ルギ一、分子振動、分子性物質の結合におけるボンド結合エネルギー等を考慮して 、分子性物質の分子構造を保持できる波長とすればよい。例えば、発光波長を 0. 7 IX mから 20 mの範囲とすることができる。光源 8は、被蒸着物質の種類に応じて、 COレーザ、 COレーザ、 HFレーザ及び YAGレーザ等のガスレーザの内力 選択[0028] Therefore, the light of the light source 8 used in the apparatus of the present invention is not limited to the molecular substance considering the band gap energy of the molecular substance, the molecular vibration, the bond binding energy in the binding of the molecular substance, and the like. What is necessary is just to set it as the wavelength which can hold | maintain molecular structure. For example, the emission wavelength can be in the range of 0.7 IX m to 20 m. For light source 8, select the internal force of gas laser such as CO laser, CO laser, HF laser and YAG laser according to the type of material to be deposited
2 2
することができる。また、半導体からなる GaAs、 GaAlAs、 PbSnSe、 PbSSe及び In AsSb系の半導体レーザを使用してもよい。自由電子レーザを使用しても良い。光源 8は、上記分子性物質の分子構造を保持できる波長だけを透過するためのフィルタ 一を備えたランプであってもよ 、。  can do. Further, GaAs, GaAlAs, PbSnSe, PbSSe and In AsSb semiconductor lasers made of semiconductors may be used. A free electron laser may be used. The light source 8 may be a lamp having a filter for transmitting only a wavelength capable of maintaining the molecular structure of the molecular substance.
[0029] 光源 8がパルスである場合には、例えば、連続波を出力するこれらの赤外光などの レーザ装置と、出力光を断続する光チヨツバとを組み合わせて、連続光を断続して赤 外光レーザパルスを形成する。 Qスィッチで形成する赤外光レーザパルスは、周波数 コヒーレント波であるので、被蒸着物質の種類によってはマルチフオトン励起が生じ、 また、波長の短い短光パルスとなりやすいので、共役系分子からなる有機物質の場 合には、基底状態の電子が励起状態に励起されて分子構造が損傷したり、被蒸着 物質を構成する原子の電子が励起されて分子構造に損傷をもたらす場合があるが、 連続光を断続して形成したレーザパルス 8は、時間的コヒーレント波であるので、マル チフオトン励起が生じることが無ぐ分子構造に損傷をもたらすことがない。  [0029] When the light source 8 is a pulse, for example, a combination of a laser device such as an infrared light that outputs a continuous wave and an optical chiba that interrupts the output light, and the continuous light is intermittently red. An external light laser pulse is formed. Since the infrared laser pulse formed by the Q switch is a frequency coherent wave, multi-photon excitation occurs depending on the type of material to be deposited, and it tends to be a short light pulse with a short wavelength. In this case, the ground state electrons may be excited to an excited state to damage the molecular structure, or the atoms of the atoms constituting the deposition material may be excited to cause damage to the molecular structure. Since the laser pulse 8 formed intermittently is a temporally coherent wave, it does not cause damage to the molecular structure without the occurrence of multiphoton excitation.
[0030] 図 5は、光源 8がパルスレーザの場合において、パルス幅とパルスのピークパワー 密度との関係を示す図である。図において、横軸はパルス幅(s)を示し、縦軸はピー クパワー密度(WZcm2)を示している。ピークパワー密度は、エネルギー密度の尖頭 値とも呼ばれており、 1パルスにおけるパワー密度の最大値である。分子性物質の分 子構造を保持しながら成膜するためには、上記パルスレーザの光子強度、即ち、ピ ークパワー密度をシングルフオトン領域である図示する点線 (約 5 X 105W/cm2)以 下のピークパワー密度とすればよい。図には、従来の PLDに用いられていたパルス 幅とピークパワー密度の関係も併せて示して!/、る。この従来の PLDに用いられて ヽ たパルスにおける光子強度はシングルフオトン領域ではなくマルチフオトン領域であ る。 FIG. 5 is a diagram showing the relationship between the pulse width and the peak power density of the pulse when the light source 8 is a pulse laser. In the figure, the horizontal axis indicates the pulse width (s), and the vertical axis indicates the peak power density (WZcm 2 ). The peak power density is also called the peak value of the energy density, and is the maximum power density in one pulse. Molecular substances In order to form a film while maintaining the child structure, the photon intensity of the pulse laser, that is, the peak power density, is a peak below the dotted line (about 5 × 10 5 W / cm 2 ) shown in the figure, which is a single photon region. The power density may be used. The figure also shows the relationship between the pulse width and peak power density used in conventional PLDs! The photon intensity in the pulse used in this conventional PLD is not a single photon region but a multiphoton region.
次に、本発明の光による分子性物質の成膜を行なう蒸着装置用いて、本発明の光 を用いた分子性物質を蒸着する工程を説明する。  Next, the process of vapor-depositing the molecular substance using the light of the present invention using the vapor deposition apparatus for forming the molecular substance by the light of the present invention will be described.
図 6は、本発明の分子性物質の蒸着装置を用いた本発明の分子性物質の成膜方 法を説明するための模式図である。以下、光源 8として、赤外光レーザパルスを用い 、有機 EL素子の製造のように、 3種類の有機物薄膜を積層する場合について説明 する。  FIG. 6 is a schematic diagram for explaining a film formation method of the molecular substance of the present invention using the molecular substance vapor deposition apparatus of the present invention. Hereinafter, a case where three types of organic thin films are laminated as in the case of manufacturing an organic EL element using an infrared laser pulse as the light source 8 will be described.
(1)初めに、 3種類の有機物薄膜の原料粉末 a, b, cのそれぞれについて、蒸着速 度と赤外光レーザパルス 11の波高値、パルス幅及びパルス間隔との関係を求めて おく。  (1) First, for each of the three kinds of raw material powders a, b, and c of the organic thin film, the relationship between the deposition rate and the crest value, pulse width, and pulse interval of the infrared laser pulse 11 is determined.
(2)次に、 3種類の有機物薄膜の原料粉末 a, b, cをそれぞれ、被蒸着物質保持具 4a, 4b, 4cにそれぞれ装填し、基板保持具 7に基板 6を装着して真空槽 3を真空引 きする。所定の真空度に達した後、基板保持具 7を加熱して基板 6を所定の温度に 保持する。  (2) Next, the raw material powders a, b, and c of the three kinds of organic thin films are loaded into the vapor deposition material holders 4a, 4b, and 4c, respectively, and the substrate 6 is attached to the substrate holder 7 and the vacuum chamber Vacuum 3 After reaching a predetermined degree of vacuum, the substrate holder 7 is heated to hold the substrate 6 at a predetermined temperature.
(3)最初に蒸着する有機物薄膜の原料粉末 aが装填された保持具 4aを赤外光レー ザパルス 11の照射位置に移動し、予め求めた原料粉末 aの蒸着速度と赤外光レー ザパルス 11の波高値、パルス幅及びパルス間隔との関係を用いて、所望の蒸着速 度が実現される波高値、パルス幅及びパルス間隔の内の一つ又は複数を選択し、所 望の膜厚に応じた時間、赤外光レーザパルス 11を照射する。  (3) The holder 4a loaded with the raw material powder a of the organic thin film to be deposited first is moved to the irradiation position of the infrared laser pulse 11, and the deposition rate of the raw material powder a and the infrared laser pulse 11 determined in advance. Using the relationship between the crest value, pulse width, and pulse interval, select one or more of the crest value, pulse width, and pulse interval at which the desired deposition rate is achieved, and achieve the desired film thickness. Irradiation with an infrared laser pulse 11 is performed for a corresponding time.
(4)次に、蒸着する有機物薄膜の原料粉末 bが装填された保持具 4bを赤外光レー ザパルス 11の照射位置に移動し、予め求めた原料粉末 bの蒸着速度と赤外光レー ザパルス 11の波高値、パルス幅及びパルス間隔との関係を用いて、所望の蒸着速 度が実現される波高値、パルス幅及びパルス間隔の内の一つ又は複数を選択し、所 望の膜厚に応じた時間、赤外光レーザパルス 11を照射する。 (4) Next, the holder 4b loaded with the raw material powder b of the organic thin film to be deposited is moved to the irradiation position of the infrared laser pulse 11, and the deposition rate of the raw material powder b and the infrared laser pulse determined in advance are moved. Using the relationship between 11 crest values, pulse width, and pulse interval, select one or more of crest values, pulse width, and pulse interval that achieve the desired deposition rate, and Irradiate the infrared laser pulse 11 for a time according to the desired film thickness.
(5)また、蒸着する有機物薄膜の原料粉末 cが装填された保持具 4cを赤外光レー ザパルス 11の照射位置に移動し、予め求めた原料粉末 cの蒸着速度と赤外光レー ザパルス 11の波高値、パルス幅及びパルス間隔との関係を用いて、所望の蒸着速 度が実現される波高値、パルス幅及びパルス間隔の内の一つ又は複数を選択し、所 望の膜厚に応じた時間、赤外光レーザパルス 11を照射する。  (5) Also, the holder 4c loaded with the raw material powder c of the organic thin film to be deposited is moved to the irradiation position of the infrared laser pulse 11, and the deposition rate of the raw material powder c and the infrared laser pulse 11 determined in advance. Using the relationship between the crest value, pulse width, and pulse interval, select one or more of the crest value, pulse width, and pulse interval at which the desired deposition rate is achieved, and achieve the desired film thickness. Irradiation with an infrared laser pulse 11 is performed for a corresponding time.
(6)蒸着終了後、基板 6を取り出して完了する。  (6) After deposition is completed, the substrate 6 is taken out and completed.
[0032] 分子性物質が有機分子である場合には、 π共役有機分子やベンゼン環を有する 有機分子を用いることができる。具体的には、有機分子としては、ペンタセン、フラー レン、ァセン系有機分子、チォフェン系有機分子、或いは、これらの誘導体が挙げら れる。  [0032] When the molecular substance is an organic molecule, a π-conjugated organic molecule or an organic molecule having a benzene ring can be used. Specifically, examples of the organic molecule include pentacene, fullerene, acene organic molecule, thiophene organic molecule, and derivatives thereof.
[0033] 上記光源 8を連続波からなる光源を用いてもょ 、。この場合には、連続波からなる 光源は、分子性物質の結合エネルギーよりも小さ 、波長エネルギーを有して 、るよう にして、連続波の強度を選択して照射すれば、分子性物質の分子構造を保持しなが ら成膜することがでさる。  [0033] The light source 8 may be a continuous wave light source. In this case, the light source comprising a continuous wave has a wavelength energy that is smaller than the binding energy of the molecular substance. It is possible to form a film while maintaining the molecular structure.
[0034] 上記パルス光源 8において、光パルスの波高値、パルス幅及びパルス間隔の内の いずれか又は複数を選択して照射する。この場合のパルス光源 8は、シングルフォト ンの領域のピークエネルギー密度強度にお!、て、分子性物質の結合エネルギーより も小さ 、波長エネルギーを有して 、るようにすれば、分子性物質の分子構造を保持 しながら成膜することができる。  [0034] In the pulse light source 8, one or more of the peak value, pulse width, and pulse interval of the optical pulse is selected and irradiated. In this case, the pulsed light source 8 has a peak energy density intensity in the single photon region, which is smaller than the binding energy of the molecular substance and has a wavelength energy. The film can be formed while maintaining the molecular structure.
[0035] 本発明の分子性物質の成膜方法によれば以下のように作用する。すなわち、複数 の原子の結合によって結ばれた分子性物質に可視光又は紫外光を照射すると、分 子性物質を構成する原子の電子が励起され、一般にこの励起は、分子性物質の分 子構造に損傷を与える。一方、分子性物質の共有電子は分子を構成する原子間を 繋いだパネのように作用し、このパネの固有振動エネルギーに相当するエネルギー の光子を照射すると、分子性物質は光子エネルギーを吸収して分子振動をおこす。 分子振動の固有振動エネルギーは十分小さぐ一般に赤外光領域のエネルギーで あるから、分子性物質の原子を構成する電子は励起されず、従って分子性物質の分 子構造は破壊されない。 [0035] The film formation method for a molecular substance of the present invention operates as follows. In other words, when a molecular substance connected by the bonding of multiple atoms is irradiated with visible light or ultraviolet light, the electrons of the atoms constituting the molecular substance are excited, and this excitation generally involves the molecular structure of the molecular substance. To damage. On the other hand, the shared electrons of a molecular substance act like a panel that connects the atoms that make up the molecule, and when a photon with an energy equivalent to the natural vibration energy of this panel is irradiated, the molecular substance absorbs the photon energy. Cause molecular vibrations. Since the natural vibrational energy of molecular vibrations is sufficiently small and is generally in the infrared region, the electrons that make up the atoms of the molecular substance are not excited. The child structure is not destroyed.
また、分子振動は調和振動であるから、照射する光子を吸収し、光子数に応じた分 子振動エネルギーに励起される。励起された分子振動エネルギーは、周囲の低温部 分に向力つて熱エネルギーとして拡散する力 拡散する熱エネルギーの大きさは周 囲との温度差に比例するので、拡散する熱エネルギーの大きさが単位時間に供給さ れる光子エネルギーと等しくなるまで温度上昇し、この温度で温度が一定になる。従 つて、照射する連続波の光源の強度を選択して照射する力、光パルスの波高値、パ ルス幅及びパルス間隔の内のいずれか又は複数を選択して照射することにより、単 位時間に供給する光子エネルギーを制御することができるので、被蒸着物質を所定 の温度に制御でき、その結果、蒸着速度を所定の所望の一定値に制御することがで きる。従って本発明の方法によれば、分子性物質の分子構造に損傷を与えることなく 、且つ、分子の配向性を制御して、また、膜厚を精密に制御して蒸着することができ る。  In addition, since molecular vibration is harmonic vibration, it absorbs photons to be irradiated and is excited by molecular vibration energy corresponding to the number of photons. The excited molecular vibrational energy is a force that diffuses as thermal energy toward the surrounding low-temperature part.The magnitude of the diffused thermal energy is proportional to the temperature difference from the surroundings. The temperature rises until it becomes equal to the photon energy supplied per unit time, and the temperature becomes constant at this temperature. Therefore, the unit time can be determined by selecting and irradiating one or more of the intensity of the continuous wave light source to irradiate, the irradiating force, the crest value of the light pulse, the pulse width and the pulse interval. Since the photon energy supplied to the substrate can be controlled, the deposition material can be controlled to a predetermined temperature, and as a result, the deposition rate can be controlled to a predetermined desired constant value. Therefore, according to the method of the present invention, deposition can be performed without damaging the molecular structure of the molecular substance, controlling the molecular orientation, and controlling the film thickness precisely.
[0036] 本発明の装置及び方法によれば、例えば、赤外光レーザパルス又は連続波の赤 外光レーザを原料粉末のみに照射し、これらのレーザで直接、原料粉末の温度を所 定の温度に加熱するので、従来技術で課題であった、熱平衡状態になるまでに要す る時間、あるいは、短時間に所定の温度に制御しょうとして生ずる温度のオーバーシ ユートによる被蒸着有機物質の分子構造の損傷の問題が解決する。  [0036] According to the apparatus and method of the present invention, for example, only the raw material powder is irradiated with an infrared laser pulse or a continuous wave infrared laser, and the temperature of the raw material powder is directly determined with these lasers. Since it is heated to a temperature, the molecular structure of the organic material to be deposited due to the time required to reach a thermal equilibrium state, which is a problem in the prior art, or the overshoot of the temperature that is generated when trying to control to a predetermined temperature in a short time The problem of damage is solved.
[0037] 本発明の装置と方法によれば、光パルス 8、例えば赤外光レーザパルスの波高値、 パルス幅及びパルス間隔の内の一つ又は複数を選択する力、連続波光源 8、例えば 赤外光レーザの連続波の強度を選択して照射すれば、所望の一定蒸着速度を実現 できる。従って、蒸着速度を十分一定に保つことが難しいために配向性を十分制御 できな 、と 、う従来技術の課題が解決する。  [0037] According to the apparatus and method of the present invention, a force for selecting one or more of the peak value, pulse width, and pulse interval of an optical pulse 8, eg, an infrared laser pulse, a continuous wave light source 8, eg, If the intensity of the continuous wave of the infrared laser is selected and irradiated, a desired constant deposition rate can be realized. Therefore, it is difficult to keep the deposition rate sufficiently constant, so that the orientation cannot be controlled sufficiently.
[0038] 本発明の装置と方法によれば、例えば赤外光レーザパルス 8の波高値、パルス幅 及びパルス間隔の内の一つ又は複数を選択するか、又は、連続波光源 8、例えば赤 外光レーザの連続波の強度を選択して照射することにより、所望の一定蒸着速度を 実現でき、所定の膜厚を実現するためには赤外光レーザパルスの照射時間を制御 するだけでよいので、従来技術で必要とした、膜厚センサーやシャッターを必要とせ ず、また、貴重な有機物質原料を無駄に消費することが無くなる。 [0038] According to the apparatus and method of the present invention, for example, one or more of the peak value, pulse width, and pulse interval of the infrared laser pulse 8 are selected, or the continuous wave light source 8, for example, red By selecting and irradiating the intensity of the continuous wave of the external light laser, a desired constant deposition rate can be realized, and in order to achieve a predetermined film thickness, it is only necessary to control the irradiation time of the infrared laser pulse. Therefore, the film thickness sensor and shutter required by the conventional technology In addition, valuable organic materials are not wasted.
[0039] 本発明の装置と方法によれば、原料粉末の温度を赤外光レーザパルスの波高値、 パルス幅及びパルス間隔の内の一つ又は複数を選択する力、又は、連続波光源 8、 例えば赤外光レーザの連続波の強度を選択して照射することのみによって制御でき るので、従来技術で必要であった、原料毎に所定の温度に保持する加熱装置を内 蔵した、表面積、容積及び熱容量が大きい保持具を必要とせず、原料粉末を保持で きる程度の小型の形状であれば良ぐ小型であるので、真空層内により多くの保持具 を収納でき、複数の被蒸着物質を連続して蒸着することが必要なデバイスの製造の 場合にも、装置コストを上昇させることなく製造することができる。  [0039] According to the apparatus and method of the present invention, the temperature of the raw material powder is selected from one or more of the peak value of the infrared laser pulse, the pulse width and the pulse interval, or the continuous wave light source 8 For example, since it can be controlled only by selecting and irradiating the intensity of the continuous wave of the infrared laser, the surface area that incorporates a heating device that maintains a predetermined temperature for each raw material, which is necessary in the prior art. In addition, it is sufficient to have a small shape that can hold the raw material powder without the need for a large volume and heat capacity holder. Even devices that require continuous deposition of materials can be manufactured without increasing equipment costs.
[0040] 従来のレーザアブレーシヨン法は、可視光又は紫外光を利用するため、被蒸着物 質の分子構造が損傷を受けるが、本発明の装置並びに方法によれば、上記のように 分子性物質の分子構造を保持できるパルス光や連続光を使用するので、被蒸着物 質の分子構造を損傷することなく蒸着できる。  [0040] Since the conventional laser ablation method uses visible light or ultraviolet light, the molecular structure of the material to be deposited is damaged. According to the apparatus and method of the present invention, as described above, Since pulsed light and continuous light that can maintain the molecular structure of the active substance are used, it is possible to deposit without damaging the molecular structure of the deposited material.
[0041] 次に、本発明による他の実施の形態を説明する。  Next, another embodiment according to the present invention will be described.
被蒸着物質の種類によっては、被蒸着物質の赤外光の吸収波長が、使用する赤 外光レーザの中心波長から大幅にずれており、そのため、十分加熱できない場合が ある。このような場合、吸収波長にピークを有する赤外光レーザ装置を使用するか、 或いは、波長可変レーザを使用してピーク波長を吸収波長に一致させることも解決 策である力 装置コストが高くなると言った課題がある。このような場合に、赤外光レー ザ装置を変更せずに蒸着できる方法を説明する。  Depending on the type of material to be deposited, the infrared absorption wavelength of the material to be deposited is significantly deviated from the center wavelength of the infrared laser to be used, so that sufficient heating may not be possible. In such a case, using an infrared laser device having a peak in the absorption wavelength, or using a tunable laser to match the peak wavelength to the absorption wavelength is a solution. There is a problem I said. In such a case, a method capable of vapor deposition without changing the infrared laser apparatus will be described.
すなわち、赤外光を効率よく吸収し、吸収した赤外光エネルギーを広い波長範囲 の赤外光として再放出する物質であり、原料粉末の蒸着温度では被蒸着物質と反応 せず、且つ、原料粉末の蒸着温度では蒸発しない物質の粉末を原料粉末に混合し 、この混合粉末を原料粉末として用いる方法である。  In other words, it is a substance that efficiently absorbs infrared light, re-emits the absorbed infrared light energy as infrared light in a wide wavelength range, does not react with the material to be deposited at the deposition temperature of the raw material powder, and In this method, a powder of a substance that does not evaporate at the deposition temperature of the powder is mixed with the raw material powder, and this mixed powder is used as the raw material powder.
[0042] このような被蒸着物質としては、分子性物質であり使用する赤外光の吸収がないか 又は弱ぐ照射光源により蒸発温度まで加熱できない材料であれば、有機、無機を 問わない。有機物質としては、ルブレンやフラーレン (C )などが挙げられる。さらに、  [0042] Such a vapor deposition substance may be organic or inorganic as long as it is a molecular substance and does not absorb infrared light to be used or cannot be heated to the evaporation temperature by a weak irradiation light source. Examples of the organic substance include rubrene and fullerene (C 3). In addition,
60  60
禁制帯幅 (バンドギャップ)が比較的大きな材料であるアントラセン、テトラセン、 c な どが挙げられる。 Anthracene, tetracene, and c, which are materials with a relatively large forbidden band (band gap) And so on.
[0043] 被蒸着物質に混合する物質としては、 Si、高融点金属、 SiC等の炭化物、或いは、 NiO、 Si N等の窒化物を用いることができる。例えば、共役系分子からなる有機物  [0043] As a material to be mixed with the material to be deposited, a carbide such as Si, a refractory metal, SiC, or a nitride such as NiO or SiN can be used. For example, organic matter consisting of conjugated molecules
3 4  3 4
質の場合、 A1等の金属や Si、 SiCが挙げられる。  In the case of quality, examples include metals such as A1, Si, and SiC.
[0044] この方法によれば、被蒸着物質の吸収波長が、使用する赤外光レーザなどの中心 波長から大幅にずれていても、この物質が赤外光レーザを効率よく吸収し、吸収した 赤外光エネルギーを被蒸着物質の吸収波長も含む赤外光として放出するので、間 接的に被蒸着物質が加熱され、蒸発させることができる。 [0044] According to this method, even if the absorption wavelength of the material to be deposited is significantly deviated from the center wavelength of the infrared laser used, this material efficiently absorbs and absorbs the infrared laser. Since the infrared light energy is emitted as infrared light including the absorption wavelength of the deposited material, the deposited material can be heated and evaporated indirectly.
実施例 1  Example 1
[0045] 次に、実施例によって本発明をさらに詳細に説明する。  Next, the present invention will be described in further detail with reference to examples.
この実施例 1は、分子性物質が共役系分子カゝらなる有機物の場合であり、有機物 質の原料粉末に、有機物質の π電子が形成するバンドギャップエネルギー未満のェ ネルギ一に相当する赤外光レーザパルスを、パルスの波高値、パルス幅及びパルス 間隔の内のいずれか又は複数を選択して照射することにより、被蒸着物質の蒸着速 度を制御して蒸着する方法の実施例である。  Example 1 shows a case where the molecular substance is an organic substance such as a conjugated molecular molecule. In the raw material powder of the organic substance, red corresponding to the energy less than the band gap energy formed by π electrons of the organic substance. In the embodiment of the method for vapor deposition, the external light laser pulse is irradiated by selecting one or more of the pulse peak value, pulse width, and pulse interval to control the vapor deposition rate of the material to be deposited. is there.
本発明の成膜装置を用いて本発明の方法により、ペンタセンの原料粉末を用いて ペンタセン薄膜を作製した。実施例 1においては、図 1に示した装置を用い、図 2に 示したペンタセンの吸収短波長から、赤外光レーザパルスには、波長 0. 808 (8 08nm)の赤外半導体レーザの連続波を断続して用いた。パルス幅 lsecであり、繰り 返し周波数が 0. 5Hzであり、照射エネルギー密度は lOWZcm2程度とした。基板と しては、サファイア基板を用い、基板温度は 100°Cとした。成膜したペンタセン薄膜の 厚さは 50nmであった。このときの蒸着速度は 4. 4nmZ分であった。 Using the film forming apparatus of the present invention, a pentacene thin film was produced using the pentacene raw material powder by the method of the present invention. In Example 1, using the apparatus shown in FIG. 1, from the absorption short wavelength of pentacene shown in FIG. 2, the infrared laser pulse is continuously transmitted from an infrared semiconductor laser having a wavelength of 0.808 (808 nm). The wave was used intermittently. The pulse width was lsec, the repetition frequency was 0.5 Hz, and the irradiation energy density was about lOWZcm 2 . A sapphire substrate was used as the substrate, and the substrate temperature was 100 ° C. The thickness of the deposited pentacene thin film was 50 nm. The deposition rate at this time was 4.4 nmZ.
実施例 2  Example 2
[0046] 波長 981nm、出力 2. 5Wの連続波の赤外半導体レーザを用いた以外は実施例 1 と同様にして、ペンタセン薄膜を成膜した。赤外半導体レーザの単位面積当りの電 力は 12WZcm2であった。成膜したペンタセン薄膜の厚さは lOOnmであった。このと きの蒸着速度は 4. 4nmZ分であった。上記レーザの赤外半導体レーザは、出カレ ベルの変動などで ± 5nm程度は波長が変動する力 この程度の波長変動は成膜速 度等には影響を与えな力つた。 A pentacene thin film was formed in the same manner as in Example 1 except that a continuous wave infrared semiconductor laser having a wavelength of 981 nm and an output of 2.5 W was used. Power per unit area of the infrared semiconductor laser was 12WZcm 2. The thickness of the deposited pentacene thin film was lOOnm. The deposition rate at this time was 4.4 nmZ. The above-mentioned infrared semiconductor lasers have the ability to change the wavelength by ± 5 nm due to fluctuations in the output level. It did not affect the degree.
実施例 3  Example 3
[0047] 波長 808nm、出力 2. 5Wの連続波の赤外半導体レーザを用いた以外は実施例 1 と同様にして、ペンタセン薄膜を成膜した。赤外半導体レーザの単位面積当りの電 力は 8WZcm2であった。成膜したペンタセン薄膜の厚さは lOOnmであった。このと きの蒸着速度は 4. 4nmZ分であった。 A pentacene thin film was formed in the same manner as in Example 1 except that a continuous wave infrared semiconductor laser having a wavelength of 808 nm and an output of 2.5 W was used. Power per unit area of the infrared semiconductor laser was 8WZcm 2. The thickness of the deposited pentacene thin film was lOOnm. The deposition rate at this time was 4.4 nmZ.
実施例 4  Example 4
[0048] 波長 981nm、出力 2. 5Wの連続波の赤外半導体レーザを用い、原料としてルブレ ンの粉末と Siの粉末を用い、サファイア基板を使用した以外は、実施例 1と同様にし て、ルブレン薄膜を成膜した。赤外半導体レーザの単位面積当りの電力は 8WZcm 2であった。ルブレン薄膜は、基板への配向性が悪いので、最初に、ルブレンの 2次 元成長を促進するためのバッファ層として、基板上にペンタセンを 1分子層形成し、 その後、ルブレン薄膜を形成した。ルブレン薄膜の厚さは 20nmであった。このときの 蒸着速度は 3. OnmZ分であった。  [0048] As in Example 1, except that a continuous wave infrared semiconductor laser with a wavelength of 981 nm and an output of 2.5 W was used, rubrene powder and Si powder were used as raw materials, and a sapphire substrate was used. A rubrene thin film was formed. The power per unit area of the infrared semiconductor laser was 8WZcm2. Since the rubrene thin film has poor orientation to the substrate, first, a single molecular layer of pentacene was formed on the substrate as a buffer layer to promote the two-dimensional growth of rubrene, and then the rubrene thin film was formed. The thickness of the rubrene film was 20 nm. The deposition rate at this time was 3. OnmZ.
実施例 5  Example 5
[0049] 波長 981nm、出力 2. 5Wの連続波の赤外半導体レーザを用い、原料としてフラー レン (C )の粉末と Siの粉末を用いた以外は、実施例 1と同様にして C 薄膜を成膜し [0049] A C thin film was formed in the same manner as in Example 1 except that a continuous wave infrared semiconductor laser with a wavelength of 981 nm and an output of 2.5 W was used, and fullerene (C) powder and Si powder were used as raw materials. Film formation
60 60 60 60
た。赤外半導体レーザの単位面積当りの電力は 8WZcm2であった。成膜した C 薄 It was. Power per unit area of the infrared semiconductor laser was 8WZcm 2. Thin film C
60 膜の厚さは lOOnmであった。このときの蒸着速度は 3. 92nmZ分であった。なお、 後述する反射型高速電子線の回折強度を調べる場合には、基板として雲母基板を 用いた。  60 The film thickness was lOOnm. The deposition rate at this time was 3.92 nmZ. When examining the diffraction intensity of the reflection type high-speed electron beam described later, a mica substrate was used as the substrate.
[0050] 次に、実施例に対する比較例について説明する。  [0050] Next, a comparative example for the embodiment will be described.
(比較例 1)  (Comparative Example 1)
紫外パルスレーザを加熱源とした PLD法を用 Vヽ、実施例 1と同じ膜厚のペンタセン 薄膜を成膜した。パルスレーザの波長は 266nmであり、パルス幅を 5ns、繰り返し周 波数を 10Hzとし、単位面積当りの照射エネルギーは 0. 0 j/cm2とした。 Using a PLD method using an ultraviolet pulse laser as a heating source, a pentacene thin film having the same thickness as in Example 1 was formed. The wavelength of the pulse laser was 266 nm, the pulse width was 5 ns, the repetition frequency was 10 Hz, and the irradiation energy per unit area was 0.0 j / cm 2 .
[0051] (比較例 2) [0051] (Comparative Example 2)
赤外パルスレーザを加熱源とした PLD法を用 Vヽ、実施例 1と同じ膜厚のペンタセン 薄膜を成膜した。このパルスレーザの波長は 1064nmであり、パルス幅を 6nsとし、 繰り返し周波数を 10Hzとし、単位面積当りの照射エネルギーは 0. 08j/cm2とした。 Using PLD method with infrared pulse laser as heating source V ヽ, pentacene with the same film thickness as Example 1 A thin film was formed. The wavelength of this pulse laser was 1064 nm, the pulse width was 6 ns, the repetition frequency was 10 Hz, and the irradiation energy per unit area was 0.08 j / cm 2 .
[0052] (比較例 3) [0052] (Comparative Example 3)
原料として、 Siの粉末を混合せず、 Siの粉末だけを用い、実施例 3と同様にしてル プレン粉末を加熱した。この場合には、基板にはルブレン薄膜が形成されず、ルブレ ン粉末が蒸発して 、な!、ことが判明した。  The raw material powder was heated in the same manner as in Example 3 using only the Si powder without mixing the Si powder. In this case, it was found that the rubrene thin film was not formed on the substrate and the rubrene powder was evaporated.
[0053] 作製した実施例 1及び比較例のペンタセン及びルブレン薄膜の結晶構造及び赤外 吸収波長等の測定結果にっ 、て説明する。 [0053] The measurement results of the crystal structures and infrared absorption wavelengths of the pentacene and rubrene thin films of Example 1 and Comparative Example that were produced will be described.
図 7は、実施例 1で作製したペンタセン薄膜の結晶構造を示す図であり、(a)は、 Θ /2 Θ回折 X線測定結果を示し、 (b)は、回折ピーク(001)に 2 Θを固定し、試料の 角度 Θを回転して回折ピークの半値幅を測定し、結晶粒の大きさを測定した結果を 示す。なお、比較のために、クヌーセンセルを用いる従来の MBE法で作製したペン タセン薄膜の結果も記載して 、る。  FIG. 7 is a diagram showing the crystal structure of the pentacene thin film prepared in Example 1, where (a) shows the Θ / 2 Θ diffraction X-ray measurement results, and (b) shows the diffraction peak (001) 2 The result of measuring the half-width of the diffraction peak by rotating the angle Θ of the sample while fixing Θ and measuring the size of the crystal grain is shown. For comparison, the results for the pentacene thin film produced by the conventional MBE method using Knudsen cells are also shown.
図 7 (a)から、結晶構造は MBE法で作製したペンタセン薄膜の結果と極めて良く一 致し、また、図 7 (b)から、ピークの半値幅が従来法で作製したペンタセン薄膜の結果 と極めて良く一致することがわかる。従って、本発明の方法と薄膜製造装置を用いれ ば、ペンタセンの分子構造が損傷を受けずにペンタセン薄膜を作製することができる  From Fig. 7 (a), the crystal structure agrees very well with the results of the pentacene thin film prepared by the MBE method, and from Fig. 7 (b), the peak half-value width is very similar to the results of the pentacene thin film prepared by the conventional method. You can see that they match well. Therefore, by using the method and thin film production apparatus of the present invention, a pentacene thin film can be produced without damaging the molecular structure of pentacene.
[0054] 図 8は、本発明の方法及び装置により作製した実施例 1のペンタセン薄膜の赤外吸 収スペクトルを示す図である。図において、横軸は波数 (cm を示し、縦軸は吸収率 (任意目盛)を示している。なお、比較のために、原料としたペンタセン粉末の赤外吸 収スペクトルも記載している。測定装置は、 FTIR (フーリエ変換赤外分光光度計)を 使用した。 FIG. 8 is a diagram showing an infrared absorption spectrum of the pentacene thin film of Example 1 produced by the method and apparatus of the present invention. In the figure, the horizontal axis indicates the wave number (cm 2) and the vertical axis indicates the absorptance (arbitrary scale). For comparison, the infrared absorption spectrum of the pentacene powder used as a raw material is also shown. The measurement device used was an FTIR (Fourier transform infrared spectrophotometer).
図 8から、実施例 1で作製したペンタセン薄膜の赤外吸収スペクトルは、ペンタセン 粉末の赤外吸収スペクトルに極めて良く一致することがわかる。なお、強度の違いは 、粉末と薄膜との FTIR測定に預カるペンタセンの量の違いによるものである。  From FIG. 8, it can be seen that the infrared absorption spectrum of the pentacene thin film prepared in Example 1 agrees very well with the infrared absorption spectrum of the pentacene powder. The difference in strength is due to the difference in the amount of pentacene deposited in the FTIR measurement between the powder and thin film.
従って、この結果からも、実施例 1によれば、ペンタセンの分子構造が損傷を受け ずにペンタセン薄膜を作製することができる。 [0055] 図 9は、実施例 1で作製したペンタセン薄膜の表面 SEM (走査電子顕微鏡)像を示 す図であり、比較のために、クヌーセンセルを用いた従来の MBE法で作製したペン タセン薄膜の像も記載している。図 9から、クヌーセンセルを用いた従来の MBE法で 作製したペンタセン薄膜と同等の面内結晶性を有していることがわかる。 Therefore, also from this result, according to Example 1, it is possible to produce a pentacene thin film without damaging the molecular structure of pentacene. [0055] FIG. 9 is a diagram showing a surface SEM (scanning electron microscope) image of the pentacene thin film produced in Example 1. For comparison, the pentacene produced by the conventional MBE method using a Knudsen cell. A thin film image is also shown. Figure 9 shows that the in-plane crystallinity is equivalent to that of a pentacene thin film fabricated by the conventional MBE method using Knudsen cells.
[0056] 上記に示した図 7から図 9の結果から、本発明の方法によれば、分子構造に損傷が ないペンタセン薄膜を作製できることが分かる。この効果は、本発明の方法はペンタ センの π電子が形成するバンドギャップエネルギー未満のエネルギーに相当する赤 外光レーザパルスを用いることが主な要因である力 可視光のレーザパルスを用いた 場合(図 5及び非特許文献 3参照)の照射ピークパワー密度 (尖頭値)が lOMWZc m2以上であることに較べ、本発明の方法による赤外光レーザパルスの照射ピークパ ヮー密度は lOWZcm2程度と格段に低いことも要因の一つである。 From the results of FIGS. 7 to 9 shown above, it can be seen that a pentacene thin film with no damage to the molecular structure can be produced by the method of the present invention. This effect is mainly due to the fact that the method of the present invention uses an infrared laser pulse corresponding to an energy less than the band gap energy formed by the π electrons of pentacene. Compared with the irradiation peak power density (peak value) of lOMWZc m 2 or higher in (see Fig. 5 and Non-Patent Document 3), the irradiation peak power density of the infrared laser pulse by the method of the present invention is about lOWZcm 2 One of the factors is that it is extremely low.
[0057] 図 10は、実施例 2, 3及び比較例 1, 2で作製したペンタセン薄膜の赤外吸収スぺク トルを示す図である。図において、横軸は波数 (cm を示し、縦軸は透過率 (任意目 盛)を示している。なお、比較のために、ペンタセン粉末の赤外吸収スペクトルも記載 している。測定装置は、 FTIRを使用した。  FIG. 10 is a diagram showing an infrared absorption spectrum of the pentacene thin film produced in Examples 2 and 3 and Comparative Examples 1 and 2. In the figure, the horizontal axis indicates wave number (cm 2), and the vertical axis indicates transmittance (arbitrary scale). For comparison, the infrared absorption spectrum of pentacene powder is also shown. FTIR was used.
図 10から、実施例 1及び 2で連続レーザ光を照射して作製したペンタセン薄膜の赤 外吸収スペクトルは、ペンタセン粉末の赤外吸収スペクトルに極めて良く一致するこ とがわかる。  FIG. 10 shows that the infrared absorption spectrum of the pentacene thin film prepared by irradiating with continuous laser light in Examples 1 and 2 agrees very well with the infrared absorption spectrum of the pentacene powder.
一方、比較例 1の従来の PLD法により紫外光パルスレーザ光を照射して作製した ペンタセン薄膜の赤外吸収スペクトルは、実施例 1及び 2と比較して照射ピークエネ ルギー密度が大きいので、殆ど分子構造が観測されず、分子構造が破壊されている ことが分力つた。比較例 2の従来の PLD法により赤外光パルスレーザ光を照射して作 製したペンタセン薄膜の赤外吸収スペクトルは、分子構造が観測されるものの、照射 ピークエネルギー密度が大きいので実施例 1及び 2と比較して透過率が著しく低下し 、分子構造の一部が破壊されていることが分力つた。  On the other hand, the infrared absorption spectrum of the pentacene thin film prepared by irradiating with ultraviolet light pulsed laser light by the conventional PLD method of Comparative Example 1 has a higher irradiation peak energy density than that of Examples 1 and 2, and thus is almost molecular. The structure was not observed, and the molecular structure was destroyed. Although the molecular structure is observed in the infrared absorption spectrum of the pentacene thin film produced by irradiating infrared light pulsed laser light by the conventional PLD method of Comparative Example 2, the irradiation peak energy density is large, so that Example 1 and Compared with 2, the transmittance was remarkably lowered, and it was found that a part of the molecular structure was destroyed.
[0058] 図 11は、実施例 3及び比較例 2で作製したペンタセン薄膜の紫外可視光領域の吸 収スペクトルを示す図である。図において、横軸は波長 (nm)を示し、縦軸は吸収率( 任意目盛)を示している。 図 11から、実施例 3で波長が 808nmの連続レーザ光を照射して作製したペンタセ ン薄膜の紫外可視光領域の吸収スペクトルにおいては、 700nm近傍にバンド端に 起因するピークが観測され、さらに、他の波長においても吸収構造が観測されたが、 比較例 2で作製したペンタセン薄膜にぉ 、ては、光学吸収の構造が観測されな!、こ とが分力つた。比較例 2で紫外可視光領域にぉ 、て吸収スペクトルが観測されな!、 のは、パルス光のピークパワーが非常に大きくなるために、マルチフオトンの過程が 発生して、ペンタセンの分子構造が破壊されることによると推定される。 FIG. 11 is a graph showing an absorption spectrum in the ultraviolet-visible light region of the pentacene thin film produced in Example 3 and Comparative Example 2. In the figure, the horizontal axis indicates the wavelength (nm), and the vertical axis indicates the absorption rate (arbitrary scale). From FIG. 11, in the absorption spectrum in the ultraviolet-visible light region of the pentacene thin film prepared by irradiating with continuous laser light having a wavelength of 808 nm in Example 3, a peak due to the band edge is observed in the vicinity of 700 nm. Absorption structures were also observed at other wavelengths, but the optical absorption structure was not observed in the pentacene thin film fabricated in Comparative Example 2! In Comparative Example 2, the absorption spectrum is not observed in the ultraviolet-visible light region! Because the peak power of the pulsed light is very large, the multiphoton process occurs and the molecular structure of pentacene is destroyed. It is estimated that
[0059] 図 12は、実施例 4で作製したルブレン薄膜の X線回折の測定結果を示す図である 。図において、横軸は角度 (° )、即ち X線の原子面への入射角度 Θの 2倍に相当す る角度を示し、縦軸は回折 X線強度 (cps)を示している。 [0059] FIG. 12 is a diagram showing a measurement result of X-ray diffraction of the rubrene thin film produced in Example 4. In the figure, the horizontal axis indicates the angle (°), that is, an angle corresponding to twice the incident angle Θ of the X-ray to the atomic plane, and the vertical axis indicates the diffracted X-ray intensity (cps).
図 12から、作製したルブレンの結晶構造は、 MBE法で作製したペンタセン薄膜の 結晶構造 (非特許文献 5参照)と極めて良く一致することがわかる。従って、本発明の 方法及び装置によれば、ルブレンの分子構造が損傷を受けずにルブレン薄膜を作 製することができる。  From Fig. 12, it can be seen that the crystal structure of the rubrene produced is in good agreement with the crystal structure of the pentacene thin film produced by the MBE method (see Non-Patent Document 5). Therefore, according to the method and apparatus of the present invention, a rubrene thin film can be produced without damaging the molecular structure of rubrene.
[0060] 図 13は、実施例 5で作製した C 薄膜の成膜中に観察した反射型高速電子線の回  FIG. 13 shows the reflection high-speed electron beam observed during the deposition of the C thin film prepared in Example 5.
60  60
折強度の時間依存性を示す図である。図において、横軸は時間(秒)を示し、縦軸は 電子線強度 (任意目盛)を示して 、る。  It is a figure which shows the time dependence of folding strength. In the figure, the horizontal axis indicates time (seconds), and the vertical axis indicates electron beam intensity (arbitrary scale).
図 13から、作製中の C 力もの回折電子線の強度が、最初に振動が生じて、さらに  From Fig. 13, the intensity of the diffracted electron beam of C force during fabrication
60  60
、挿入図に示す電子線の回折像も明瞭であり、 c  The diffraction pattern of the electron beam shown in the inset is also clear, c
60の分子構造が損傷を受けずに成 膜されていることが分力つた。  It was found that 60 molecular structures were formed without damage.
[0061] なお、上記説明では、分子性物質として有機物質の例を説明したが、本発明の蒸 着方法及び装置は、共有結合で結ばれた物質であれば適用でき、従って、無機元 素からなる分子性物質、例えば、 KBr薄膜等の製造にも有効なことは明らかである。 産業上の利用可能性 [0061] In the above description, an example of an organic substance as a molecular substance has been described. However, the vapor deposition method and apparatus of the present invention can be applied as long as it is a substance bonded by a covalent bond. It is clear that it is also effective for the production of molecular substances consisting of, for example, KBr thin films. Industrial applicability
[0062] 上記説明から理解されるように、本発明によれば、分子性物質の分子構造に損傷 を与えることなぐ分子性物質の薄膜を作製でき、また、蒸着速度を所定の一定速度 に制御できるので、分子性物質の薄膜の配向性を制御し得ると共に、膜厚を正確に 制御することができる。従って、今後の成長が予測される、有機薄膜を用いたデバイ スの作製や、さらには膜厚制御が極めて重要な、分子性物質力 なる超格子を用い たデバイス等の製造に用いれば極めて有用である。 [0062] As understood from the above description, according to the present invention, a thin film of a molecular material that does not damage the molecular structure of the molecular material can be produced, and the deposition rate is controlled to a predetermined constant rate. Therefore, the orientation of the thin film of the molecular substance can be controlled and the film thickness can be accurately controlled. Therefore, device growth using organic thin films is expected for future growth. It is extremely useful if it is used in the manufacture of devices using superlattices that have a molecular material force, in which the fabrication of semiconductor devices and the control of film thickness are extremely important.

Claims

請求の範囲 The scope of the claims
[1] 被蒸着物質に光源から光を照射し、該被蒸着物質の蒸着速度を制御して基板に 分子性物質を成膜する方法であって、  [1] A method of forming a molecular substance on a substrate by irradiating light from a light source to the substance to be vapor-deposited and controlling a vapor deposition rate of the substance to be vapor-deposited,
上記光の連続波の強度を選択して照射する力、又は、上記光がパルスの場合には Force to select and irradiate the intensity of the continuous wave of light, or if the light is a pulse
、該ノ ルスの波高値、パルス幅及びパルス間隔の内のいずれか又は複数を選択して 照射することにより、上記分子性物質の分子構造を保持しながら成膜することを特徴 とする、分子性物質の成膜方法。 A film formed while maintaining the molecular structure of the molecular substance by selecting and irradiating any one or more of the crest value, pulse width, and pulse interval of the Norse. Film forming method.
[2] 前記連続波からなる光は、前記分子性物質の結合エネルギーよりも小さい波長ェ ネルギーを有して 、ることを特徴とする、請求項 1に記載の分子性物質の成膜方法。 [2] The method for forming a molecular substance according to [1], wherein the light composed of the continuous wave has a wavelength energy smaller than a binding energy of the molecular substance.
[3] 前記パルス光源は、シングルフオトンの領域のピークエネルギー密度強度において[3] The pulsed light source has a peak energy density intensity in a single photon region.
、前記分子性物質の結合エネルギーよりも小さ 、波長エネルギーを有して 、ることを 特徴とする、請求項 1に記載の分子性物質の成膜方法。 2. The method for forming a molecular substance according to claim 1, wherein the molecular substance has a wavelength energy smaller than the binding energy of the molecular substance.
[4] 前記分子性物質が有機半導体であることを特徴とする、請求項 1に記載の分子性 物質の成膜方法。 [4] The method of forming a molecular substance according to claim 1, wherein the molecular substance is an organic semiconductor.
[5] 前記有機半導体がペンタセンであり、前記光の波長が 808nmから 981nm近傍で あることを特徴とする、請求項 4に記載の分子性物質の成膜方法。  [5] The method for forming a molecular substance according to claim 4, wherein the organic semiconductor is pentacene, and the wavelength of the light is in the vicinity of 808 nm to 981 nm.
[6] 被蒸着物質に光源から照射される光を照射し、該被蒸着物質の蒸着速度を制御し て基板に上記分子性物質を成膜する方法であって、 [6] A method of irradiating a material to be deposited with light emitted from a light source and controlling the deposition rate of the material to be deposited to form the molecular material on a substrate.
上記被蒸着物質には、光を吸収し且つ吸収した光エネルギーを光として放出し、 上記分子性物質の蒸着温度で該分子性物質と反応せず且つ蒸発しない物質からな る原料が混合されており、  The material to be deposited is mixed with a raw material composed of a material that absorbs light and emits absorbed light energy as light and does not react with the molecular material at the deposition temperature of the molecular material and does not evaporate. And
上記光の連続波の強度を選択して照射する力、又は、上記光がパルス光の場合に は、パルスの波高値、パルス幅及びパルス間隔の内のいずれか又は複数を選択して 照射することにより、上記分子性物質の分子構造を保持しながら成膜することを特徴 とする、分子性物質の成膜方法。  The irradiation power by selecting the intensity of the continuous wave of the light, or if the light is pulsed light, select one or more of the pulse peak value, pulse width, and pulse interval for irradiation. Thus, the method for forming a molecular substance is characterized in that the film is formed while maintaining the molecular structure of the molecular substance.
[7] 前記連続波からなる光は、前記分子性物質の結合エネルギーよりも小さい波長ェ ネルギーを有して 、ることを特徴とする、請求項 6に記載の分子性物質の成膜方法。 7. The method for forming a molecular substance according to claim 6, wherein the light comprising the continuous wave has a wavelength energy smaller than the binding energy of the molecular substance.
[8] 前記パルス光源は、シングルフオトンの領域のピークエネルギー密度において、前 記分子性物質の結合エネルギーよりも小さ 、波長エネルギーを有して 、ることを特徴 とする、請求項 6に記載の分子性物質の成膜方法。 [8] The pulsed light source has a peak energy density in a single photon region. 7. The method for forming a molecular substance according to claim 6, wherein the molecular substance has a wavelength energy smaller than the binding energy of the molecular substance.
[9] 前記分子性物質が有機半導体であることを特徴とする、請求項 6に記載の分子性 物質の成膜方法。 [9] The method for forming a molecular substance according to claim 6, wherein the molecular substance is an organic semiconductor.
[10] 前記分子性物質と反応せず且つ蒸発しない物質が、高融点金属、炭化物、窒化物 の何れかであることを特徴とする、請求項 6に記載の分子性物質の成膜方法。  10. The method for forming a molecular substance according to claim 6, wherein the substance that does not react with the molecular substance and does not evaporate is any one of a refractory metal, a carbide, and a nitride.
[11] 前記分子性物質がルブレン又は C であり、該ルブレン又は C と反応せず且つ蒸 [11] The molecular substance is rubrene or C, does not react with the rubrene or C, and is vaporized.
60 60  60 60
発しない物質が Si粉末であり、前記光が 808nmから 98 lnm近傍の波長の赤外光レ 一ザ光であることを特徴とする、請求項 6に記載の分子性物質の成膜方法。  7. The method for forming a molecular substance according to claim 6, wherein the substance that does not emit is Si powder, and the light is infrared laser light having a wavelength in the vicinity of 808 nm to 98 lnm.
[12] 光を透過する窓を有した真空槽と、 上記真空槽内に配置される、被蒸着物質を保 持する保持具と上記保持具から蒸発する上記被蒸発物質を堆積する基板を保持す る基板保持具と、 [12] A vacuum chamber having a window that transmits light, a holder that is disposed in the vacuum chamber, and holds a substrate on which the evaporated material evaporated from the holder is deposited. A substrate holder,
上記真空槽の窓を介して真空槽内の被蒸着物質に照射されるように配置された光 源と、を備え、  A light source arranged so as to irradiate the deposition material in the vacuum chamber through the window of the vacuum chamber,
上記光源は、上記分子性物質の分子構造を保持しながら成膜できる波長エネルギ 一を有することを特徴とする、分子性物質の成膜装置。  The molecular light source film forming apparatus, wherein the light source has a wavelength energy that allows film formation while maintaining the molecular structure of the molecular material.
[13] 前記光源は連続波光源であり、該連続波光源は前記分子性物質の結合エネルギ 一よりも小さい波長エネルギーを有していることを特徴とする、請求項 12に記載の分 子性物質の成膜装置。 13. The molecular property according to claim 12, wherein the light source is a continuous wave light source, and the continuous wave light source has a wavelength energy smaller than a binding energy of the molecular substance. Material deposition equipment.
[14] 前記光源はパルス光源であり、該パルス光源は、シングルフオトンの領域のピーク エネルギー密度にぉ 、て、前記分子性物質の結合エネルギーよりも小さ!/、波長エネ ルギーを有していることを特徴とする、請求項 12に記載の分子性物質の成膜装置。  [14] The light source is a pulse light source, and the pulse light source has a wavelength energy that is smaller than the binding energy of the molecular substance with respect to the peak energy density in a single photon region! 13. The molecular substance deposition apparatus according to claim 12, wherein
[15] 前記パルス光源は、連続波光源を断続させて形成されることを特徴とする、請求項 14に記載の分子性物質の成膜装置。  15. The molecular substance deposition apparatus according to claim 14, wherein the pulsed light source is formed by intermittently supplying a continuous wave light source.
[16] 前記保持具を前記光源の照射位置に移動する保持具移動部を、さらに備えること を特徴とする、請求項 12に記載の分子性物質の成膜装置。  16. The molecular substance deposition apparatus according to claim 12, further comprising a holder moving unit that moves the holder to an irradiation position of the light source.
PCT/JP2006/317659 2005-09-06 2006-09-06 Method for formation of film of molecular substance and apparatus for said method WO2007029743A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007534454A JP4775801B2 (en) 2005-09-06 2006-09-06 Molecular material deposition method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-258588 2005-09-06
JP2005258588 2005-09-06

Publications (1)

Publication Number Publication Date
WO2007029743A1 true WO2007029743A1 (en) 2007-03-15

Family

ID=37835861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317659 WO2007029743A1 (en) 2005-09-06 2006-09-06 Method for formation of film of molecular substance and apparatus for said method

Country Status (2)

Country Link
JP (1) JP4775801B2 (en)
WO (1) WO2007029743A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507175A (en) * 2008-10-28 2012-03-22 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガン Stacked white OLED with red, green and blue subelements
JP2013257148A (en) * 2012-06-11 2013-12-26 Hitachi High-Technologies Corp Coating device and preprocessing device of coating device
WO2016031727A1 (en) * 2014-08-29 2016-03-03 国立研究開発法人産業技術総合研究所 Method for laser deposition of organic material film or organic-inorganic composite material film
JP2021180300A (en) * 2020-05-12 2021-11-18 ソリュース先端素材株式会社Solus Advanced Materials Co., Ltd. Organic electroluminescent device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102193150B1 (en) * 2013-12-27 2020-12-21 삼성디스플레이 주식회사 Evaporating apparatus, method for controlling evaporation amount using the same
KR102192983B1 (en) * 2014-01-15 2020-12-21 삼성디스플레이 주식회사 Evaporating apparatus, method for mesuring evaporation speed using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259162A (en) * 1988-04-11 1989-10-16 Shimadzu Corp Equipment for producing thin film
JPH03164499A (en) * 1989-11-24 1991-07-16 Semiconductor Energy Lab Co Ltd Production of organic superconductor thin film
JP2001288561A (en) * 2000-04-05 2001-10-19 Japan Science & Technology Corp Method for producing polytetrafluoroethylene thin film by light sensitizing pulse laser abrasion deposition method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5211805A (en) * 1990-12-19 1993-05-18 Rangaswamy Srinivasan Cutting of organic solids by continuous wave ultraviolet irradiation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259162A (en) * 1988-04-11 1989-10-16 Shimadzu Corp Equipment for producing thin film
JPH03164499A (en) * 1989-11-24 1991-07-16 Semiconductor Energy Lab Co Ltd Production of organic superconductor thin film
JP2001288561A (en) * 2000-04-05 2001-10-19 Japan Science & Technology Corp Method for producing polytetrafluoroethylene thin film by light sensitizing pulse laser abrasion deposition method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YAMAGUCHI J. ET AL.: "Combinatorial Pulsed Laser Deposition of Pentacene Films for Field Effect Devices", MACROMOLECULAR RAPID COMMUNICATIONS, vol. 25, 2004, pages 334 - 338, XP003010104 *
YOSHIMOTO M. ET AL.: "Pulsed Laser Deposition of C60 Thin Films with Atomically Smooth Surface", JAPANESE JOURNAL OF APPLIED PHYSICS, PART 2. LETTERS, vol. 32, 1993, pages L1081 - L1084, XP000517395 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507175A (en) * 2008-10-28 2012-03-22 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガン Stacked white OLED with red, green and blue subelements
JP2013257148A (en) * 2012-06-11 2013-12-26 Hitachi High-Technologies Corp Coating device and preprocessing device of coating device
WO2016031727A1 (en) * 2014-08-29 2016-03-03 国立研究開発法人産業技術総合研究所 Method for laser deposition of organic material film or organic-inorganic composite material film
JPWO2016031727A1 (en) * 2014-08-29 2017-06-15 国立研究開発法人産業技術総合研究所 Laser deposition method and laser deposition apparatus for organic material film or organic-inorganic composite material film
CN107109628A (en) * 2014-08-29 2017-08-29 国立研究开发法人产业技术综合研究所 The laser ablation method of organic material film or organic/inorganic composite material film, laser ablation device
US10329659B2 (en) 2014-08-29 2019-06-25 National Institute Of Advanced Industrial Science And Technology Method for laser deposition of organic material film or organic-inorganic composite material film, and laser deposition apparatus
JP2021180300A (en) * 2020-05-12 2021-11-18 ソリュース先端素材株式会社Solus Advanced Materials Co., Ltd. Organic electroluminescent device
US11800731B2 (en) 2020-05-12 2023-10-24 Solus Advanced Materials Co., Ltd. Organic electroluminescent device

Also Published As

Publication number Publication date
JP4775801B2 (en) 2011-09-21
JPWO2007029743A1 (en) 2009-03-19

Similar Documents

Publication Publication Date Title
JP6538614B2 (en) Materials and methods for OLED microcavities and buffer layers
JP4580945B2 (en) Method and apparatus for depositing a transparent thin film and directly depositing a pattern structure
JP4775801B2 (en) Molecular material deposition method and apparatus
US20140227461A1 (en) Multiple Beam Pulsed Laser Deposition Of Composite Films
KR102113581B1 (en) Apparatus for deposition, method thereof and method for forming quntum-dot layer using the same
Nakanotani et al. Blue-light-emitting ambipolar field-effect transistors using an organic single crystal of 1, 4-bis (4-methylstyryl) benzene
Tong et al. 2D Derivative Phase Induced Growth of 3D all inorganic perovskite micro–nanowire array based photodetectors
KR20100135709A (en) Method for depositing metal oxide films
JP2009506200A (en) Thin film layer creation method
JP5678338B2 (en) Light emitting transistor
Chen et al. Vacuum‐assisted preparation of high‐quality quasi‐2D perovskite thin films for large‐area light‐emitting diodes
Blanchet et al. Laser evaporation and the production of pentacene films
JPH11102783A (en) Organic electroluminescence element and manufacture thereof
El Zein et al. Parametric study of self-forming ZnO Nanowall network with honeycomb structure by Pulsed Laser Deposition
Caricato et al. MAPLE deposition of methoxy Ge triphenylcorrole thin films
KR20210030775A (en) Method for forming transition metal dichalcogenide film and method of manufacturing an electric device including the same
JP4129528B2 (en) Thin film containing β-FeSi2 crystal particles and light emitting material using the same
Barraza et al. Phenomenological mechanisms of hybrid organic–inorganic perovskite thin film deposition by RIR-MAPLE
Ma et al. The light-emitting properties of Ge nanocrystals grown by pulsed laser deposition
Yaginuma et al. Continuous wave infrared laser deposition of organic thin films
Das Growth of ZnO Thin Films on Silicon and Glass Substrate by Pulsed Laser Deposition a Thesis
Das Growth of ZnO thin film on silicon and glass substrate by pulsed laser deposition technique
Luches et al. Fundamentals and applications of MAPLE
KR20100131695A (en) Doped nanowire based on zinc oxide using physical composition and manufacturing method thereof
JPS61215287A (en) Method for forming thin film and apparatus therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007534454

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797554

Country of ref document: EP

Kind code of ref document: A1