JPS61215287A - Method for forming thin film and apparatus therefor - Google Patents

Method for forming thin film and apparatus therefor

Info

Publication number
JPS61215287A
JPS61215287A JP5464885A JP5464885A JPS61215287A JP S61215287 A JPS61215287 A JP S61215287A JP 5464885 A JP5464885 A JP 5464885A JP 5464885 A JP5464885 A JP 5464885A JP S61215287 A JPS61215287 A JP S61215287A
Authority
JP
Japan
Prior art keywords
thin film
light
substrate
vacuum chamber
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5464885A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yokoyama
弘之 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5464885A priority Critical patent/JPS61215287A/en
Publication of JPS61215287A publication Critical patent/JPS61215287A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To enable the epitaxial growth of an element at a low temperature, by irradiating the surface of a specimen substrate with light having a wavelength effective to the rearrangement of the surface layer atoms during the vacuum-evaporation of the element. CONSTITUTION:One or more kinds of elements are evaporated by the electron gun 71 and deposited on the specimen substrate 81 placed in the vacuum chamber 32 to form a thin film consisting of monoatomic layer. One or more kinds of elements different from those used in the preceding deposition process are evaporated by the electron gun 71 and deposited on the monoatomic layer to an extent to form a monoatomic layer. A semiconductor thin film can be formed on the substrate 81 by repeating the above process several times. In the course of the above operation, the surface of the substrate 81 is irradiated with light (e.g. laser beam) effective to the rearrangement of the surface layer atoms through the window 22 from the light source 61 placed outside of the vacuum chamber 32.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、絶縁体や半導体の基板上に半導体の薄膜を形
成する方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for forming a semiconductor thin film on an insulator or semiconductor substrate.

〔従来技術とその問題点〕[Prior art and its problems]

近年、超高速デバイスや低閾値高信頼性の半導体レーザ
の開発に対する要求が大きくなるとともに、それらのデ
バイス製作の基盤技術として、λ単位の厚みの精度で半
導体結晶薄膜の成長が可能なMBC(分子線エピタキシ
ャル成長)法やALE(原子層エピタキシャル成長)法
が注目されている。また、異なった組成の半導体結晶薄
膜が数人から数10人程度の周期の多層構造になってい
る超格子は、これまでにない新しい動作原理に基づくデ
バイスを可能にするものとして期待されており、その研
究においても上記の成長法の盛んな導入が行われている
In recent years, there has been an increasing demand for the development of ultra-high-speed devices and low-threshold, highly reliable semiconductor lasers, and MBC (Molecular Boundary Synthesis), which can grow semiconductor crystal thin films with thickness precision in the λ unit, has become a fundamental technology for manufacturing these devices. The line epitaxial growth) method and the ALE (atomic layer epitaxial growth) method are attracting attention. In addition, superlattices, which have a multilayer structure of semiconductor crystal thin films with different compositions with periods ranging from a few to several tens of layers, are expected to enable devices based on unprecedented new operating principles. In this research, the above-mentioned growth method has also been actively introduced.

II−VI族化合物半導体のエピタキシャル成長を例に
とって、MBE法とALE法の両者を比較すると、MB
E法が厚み方向に連続的に成長するのに対し、ALE法
では■族および■族の原子が成長の1サイクルごとにそ
れぞれ交互に1原子層ずつ不連続的に成長する。このこ
とから、化合物半導体結晶の成長を化合物の分子層単位
で精密に制御するという点ではALE法がより有利であ
ると考えられ、最近になってこの方法に関する研究が非
常に活発化している。
Taking the epitaxial growth of II-VI group compound semiconductors as an example, comparing both the MBE method and the ALE method, the MB
While the E method grows continuously in the thickness direction, in the ALE method, group (1) and group (2) atoms grow discontinuously by alternating one atomic layer at each growth cycle. From this, it is thought that the ALE method is more advantageous in terms of precisely controlling the growth of compound semiconductor crystals on a compound molecular layer basis, and research on this method has recently become very active.

ALE法は原理的に2種類に分けられる。1つは化学反
応を利用する方式で、2元化合物半導体の成長に適用さ
れている。例としてZnSの成長の場合では、真空チェ
ンバ内にZnCj!ガスを導入して、適当な温度に加熱
された基板表面にガス圧と吸着時間の制御により一層分
だけ吸着させて残りのZnCfガスは排気し、次にH2
Sガスを導入すると化学反応が生じてZnSが1分子層
分だけ形成される。残りのH2Sガスはただちに排気す
る。この時、表面層がS原子になるため、ガス圧を適当
に選べば余剰のガス圧は化学反応に寄与しないので吸着
能率が小さく、ガス圧を適当に選べば吸着は生じない。
The ALE method can be divided into two types in principle. One method uses chemical reactions and is applied to the growth of binary compound semiconductors. For example, in the case of ZnS growth, ZnCj! Gas is introduced, and only one layer of ZnCf gas is adsorbed onto the substrate surface heated to an appropriate temperature by controlling the gas pressure and adsorption time, and the remaining ZnCf gas is exhausted, and then H2
When S gas is introduced, a chemical reaction occurs and one molecular layer of ZnS is formed. The remaining H2S gas is immediately exhausted. At this time, since the surface layer becomes S atoms, if the gas pressure is appropriately selected, the excess gas pressure will not contribute to the chemical reaction, so the adsorption efficiency will be small, and if the gas pressure is appropriately selected, no adsorption will occur.

従って、以下ZnCjlガスの導入以降の過程を繰り返
せば、同様に一層ずつZnSを成長させることができる
Therefore, by repeating the process after introducing ZnCjl gas, ZnS can be grown layer by layer in the same way.

また、このような化学反応を利用するALE法において
は、結晶中の欠陥の低減を目的として、基板表面に光を
照射してエピタキシャル成長温度を低くする試みがなさ
れている。
Furthermore, in the ALE method that utilizes such a chemical reaction, attempts have been made to lower the epitaxial growth temperature by irradiating the substrate surface with light for the purpose of reducing defects in the crystal.

もう1つのALE法は、MBE法と同様の装置を用いて
蒸着銃からの分子線を基板表面に蒸着させる場合に、元
素ごとに分子線のタイミングをずらす方法である。この
方法は、これまで2元化合物および3元化合物半導体の
成長について試みられている。CdTaを例にとると、
真空チェンバ内において、基板に先ず、Cdの分子線を
蒸着し、Cdの蒸着の停止11eTez分子線を蒸着す
るというサイクルの繰り返しによって成長が行われてい
る。この時、基板に到達するCdおよびToの量は、そ
れぞれ1原子層の形成に必要な量の2倍程度であるが、
1元素の原子で1原子層分だけ異種原子層上に形成され
てしまうと余剰原子は吸着能率が小さくなり蒸着されな
いことを利用している。
Another ALE method is a method in which when molecular beams from a deposition gun are deposited on a substrate surface using an apparatus similar to the MBE method, the timing of the molecular beams is shifted for each element. This method has been tried in the past for the growth of binary and ternary compound semiconductors. Taking CdTa as an example,
Growth is performed in a vacuum chamber by repeating a cycle in which a Cd molecular beam is first deposited on the substrate, and then a Cd molecular beam is deposited to stop the Cd deposition. At this time, the amount of Cd and To that reaches the substrate is about twice the amount required to form one atomic layer, respectively.
This method takes advantage of the fact that if one atomic layer of atoms of one element is formed on a layer of different atoms, the adsorption efficiency of the excess atoms becomes low and they are not deposited.

このことから、またこの方法は原子層蒸着法とも呼ばれ
る。
For this reason, this method is also called atomic layer deposition.

上述した、2つのALE法においては、超高真空系に反
応性ガスを導入する必要のない後者の方が、装置構成も
簡単で信頼性高いと考えられる。
Of the two ALE methods described above, the latter method, which does not require introducing a reactive gas into the ultra-high vacuum system, is considered to have a simpler device configuration and higher reliability.

しかし後者のALE法においても、各元素の原子線また
は分子線の発生のために蒸着銃の温度を常時高温にして
おき、元素の蒸着は各凛着銃の前に設けられた機械的な
シャッターの頻繁な開閉で制御するという点で、まだ十
分な信頼性が得られていない。
However, even in the latter ALE method, the temperature of the vapor deposition gun is kept high at all times in order to generate atomic or molecular beams of each element, and the vapor deposition of the elements is performed using a mechanical shutter installed in front of each deposition gun. In terms of control by frequent opening and closing, sufficient reliability has not yet been achieved.

また、先に述べた化学反応を利用するALE法で光照射
を行った方法においても、光のエネルギーは、主に供給
する化合物分子の光化学分解に使われており、分解後の
基板表面原子自身への光照射効果の選択的誘起に有効利
用されていない。
In addition, even in the method of light irradiation using the ALE method that utilizes the chemical reaction mentioned above, the energy of light is mainly used for photochemical decomposition of the supplied compound molecules, and the atoms on the substrate surface after decomposition are It has not been effectively used to selectively induce the effect of light irradiation on.

以上に述べたALE法に関して、前者の化学反応を利用
し、さらに光の照射を行ってcaAsを成長させた例が
、西沢と国分により第16−回固体素子コンファレンス
(16th 1984 InternationalC
onference on 5olid 5tate 
Devices and Materialg )で報
告され、その要約がテクニカル・ダイジェストの1頁か
ら4頁にわたって掲載された。
Regarding the ALE method described above, an example of using the former chemical reaction and further irradiating light to grow caAs was presented at the 16th Solid State Elements Conference (16th 1984 International Conference) by Nishizawa and Kokubu.
onference on 5olid 5tate
Devices and Materials), and a summary was published on pages 1 to 4 of the Technical Digest.

また、MBE法の場合と同様の装置を用いてCdToの
ALE成長を行った例は、ペッサ(Pessa)、フッ
タネン(Huttrnen)およびバーマン(Herm
an)により、ジャーナル・オブ・アプライド・フィジ
クス(Journal of Applied Phy
sics)誌の1983年、第54巻、10号の604
7頁から6050頁にわたって掲載された論文の中に記
述されている。
Examples of ALE growth of CdTo using the same equipment as in the case of the MBE method include Pessa, Huttrnen and Herman.
Journal of Applied Phys.
sics) magazine, 1983, Volume 54, No. 10, 604
It is described in a paper published on pages 7 to 6,050.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、超高真空中で蒸着中に光照射を行う
ことにより、従来のALE法の特徴を活かした上で、さ
らに、低温でエピタキシャル成長が可能であるという特
徴を備えた薄膜形成方法とこの方法を実施するための薄
膜形成装置を提供することにある。
The purpose of the present invention is to utilize the features of the conventional ALE method by performing light irradiation during vapor deposition in an ultra-high vacuum, and also to provide a method for forming a thin film with the feature that epitaxial growth is possible at low temperatures. Another object of the present invention is to provide a thin film forming apparatus for carrying out this method.

〔発明の構成〕[Structure of the invention]

本発明は、真空チェンバ内に設置された試料基板に、1
種類以上の元素を蒸着させて1原子層分だけ薄膜を形成
し、しかる後に直前に蒸着したものと異なる1種類以上
の元素を蒸着させて再度1原子層分だけ薄膜を形成する
という過程を複数回続ける原子層蒸着法において、元素
の蒸着中に前記試料基板の表面に、表面層原子の再配列
に有効な波長の光を照射することを特徴としている。
The present invention provides a sample substrate installed in a vacuum chamber with a
Multiple processes are performed in which more than one type of element is evaporated to form a thin film for one atomic layer, and then one or more elements different from the one deposited immediately before are evaporated to form a thin film for one atomic layer again. The atomic layer deposition method is characterized in that the surface of the sample substrate is irradiated with light of a wavelength effective for rearranging the atoms in the surface layer during the vapor deposition of the elements.

また、他の本発明は、真空チェンバと、該真空チェンバ
内を高真空にするための真空排気系と、該真空チェンバ
内に試料基板を保持する機構と、複数の蒸着材料を前記
試料基板に蒸着するための手段とを備えた薄膜形成装置
において、前記試料基板の表面に表面層原子の再配列に
有効な波長の光を照射するための光源を備えたことを特
徴としている。
Another aspect of the present invention provides a vacuum chamber, a vacuum evacuation system for creating a high vacuum in the vacuum chamber, a mechanism for holding a sample substrate in the vacuum chamber, and a plurality of evaporation materials on the sample substrate. The thin film forming apparatus is characterized by comprising a light source for irradiating the surface of the sample substrate with light of a wavelength effective for rearranging surface layer atoms.

〔作用〕[Effect]

本発明を用いれば、分子線の蒸着を利用するALE法に
よる薄膜成長プロセス中に、試料基板表面に適当な波長
の光を照射することによって、通常のエピタキシ一温度
よりも低温において良好なエピタキシーを実現すること
ができる。これまでの、供給化合物分子の光化学反応を
利用する方式では、光のエネルギーは主に光化学反応に
消費されてしまう。一方、本発明における光照射では、
供給化合物分子の光化学反応のために光エネルギーが消
費されることがないので、半導体それ自身に直接光量子
を有効に作用させて表面における原子の運動を活発化す
ることができる。即ち、光励起によって、通常のエピタ
キシャル成長温度よりも低温で、きれいな結晶格子が形
成されるように表面原子を配列させることができる。A
LE法ではすでにきれいに原子配列した結晶の表面に吸
着した原子を化学的に安定な格子位置に配列していく過
程を繰り返す。従って、ALE法においては、表面の原
子の配列のみに影響を与゛えれば良いので、数原子層分
にわたってエピタキシャル成長が同時に進行する気相エ
ピタキシャル成長法や通常のMBE法等に比べて、特に
顕著な光照射の効果が期待できる。光照射によってエピ
タキシャル成長の低温化がなされればヘテロ界面におけ
る原子の相互拡散を防止することができるので超格子等
の作成には極めて有効である。
By using the present invention, good epitaxy can be achieved at a temperature lower than the normal epitaxy temperature by irradiating the sample substrate surface with light of an appropriate wavelength during the thin film growth process using the ALE method that uses molecular beam evaporation. It can be realized. In conventional methods that utilize photochemical reactions of supplied compound molecules, the energy of light is mainly consumed in the photochemical reactions. On the other hand, in the light irradiation in the present invention,
Since light energy is not consumed for the photochemical reaction of the supplied compound molecules, it is possible to effectively apply photons directly to the semiconductor itself to activate the movement of atoms on the surface. That is, by optical excitation, surface atoms can be arranged to form a clean crystal lattice at a temperature lower than the normal epitaxial growth temperature. A
In the LE method, the process of arranging atoms adsorbed on the surface of a crystal, which already has neatly arranged atoms, into chemically stable lattice positions is repeated. Therefore, in the ALE method, it is only necessary to affect the arrangement of atoms on the surface, so compared to the vapor phase epitaxial growth method or the normal MBE method, etc., in which epitaxial growth proceeds simultaneously over several atomic layers, it is particularly noticeable. The effect of light irradiation can be expected. If the epitaxial growth temperature is lowered by light irradiation, interdiffusion of atoms at the hetero interface can be prevented, which is extremely effective for creating superlattices and the like.

〔実施例〕〔Example〕

次に、本発明の実施例について図を参照しながら詳細な
説明を行う。
Next, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の薄膜形成方法の一実施例を説明する
ために、この薄膜形成方法に用いる装置の一実施例を模
式的に示す図である。本実施例においては、超高真空中
における蒸着の制御のために、信頼性を高めるため機械
的シャッタを用いず、蒸着材料にレーザ光を照射して蒸
気を発生させる方法を用いた。
FIG. 1 is a diagram schematically showing an example of an apparatus used in the thin film forming method of the present invention, in order to explain an example of the thin film forming method of the present invention. In this example, in order to control vapor deposition in an ultra-high vacuum, a method of generating vapor by irradiating the vapor deposition material with laser light was used instead of using a mechanical shutter in order to improve reliability.

レーザ発振器11より発射されたレーザ光はサーボモー
タ13に連結された可動ミラー14で反射され、真空チ
ェンバ31の第1の窓21を通して第1の蒸着材料51
に照射される。真空チェンバ31の内部は、荒引ポンプ
41と主排気ポンプ42によって10 ”Torr以下
の圧力の超高真空状態に保たれる。また、真空チェンバ
31の内壁は液体窒素32によって冷却され、吸着分子
の再蒸発を防止する構成となっている。この状態で、レ
ーザ光の照射により局部的に加熱された第1の蒸着材料
51の分子線が発生して試料基板81に蒸着される。試
料基板81はヒータ付マウント33に取り付けられ、蒸
着が面全体で均一になるように蒸着中は低速モータ34
により回転させられるようになっている。また、試料基
板81は一連の蒸着プロセス中ヒータ付マウント33に
電流を通電して適温に加熱されるとともに、第2の窓2
2を通して基板照射光源61からの光が照射されている
。1原子層分だけ蒸着するために必要な量の蒸気が発生
した後、レーザ光の照射を停止することによりただちに
蒸気発生が停止し従って蒸着も停止する。
The laser beam emitted from the laser oscillator 11 is reflected by a movable mirror 14 connected to a servo motor 13 and passes through the first window 21 of the vacuum chamber 31 to the first vapor deposition material 51.
is irradiated. The inside of the vacuum chamber 31 is maintained in an ultra-high vacuum state with a pressure of 10" Torr or less by a roughing pump 41 and a main exhaust pump 42. Also, the inner wall of the vacuum chamber 31 is cooled by liquid nitrogen 32, and the adsorbed molecules are In this state, molecular beams of the first vapor deposition material 51, which is locally heated by the laser beam irradiation, are generated and vapor deposited onto the sample substrate 81.The sample substrate 81 is attached to a mount 33 with a heater, and a low-speed motor 34 is operated during deposition to ensure uniform deposition over the entire surface.
It can be rotated by Further, during a series of vapor deposition processes, the sample substrate 81 is heated to an appropriate temperature by passing current through the heater mount 33, and the second window 2
Light from a substrate irradiation light source 61 is irradiated through the substrate 2 . After the amount of vapor required to deposit one atomic layer has been generated, the laser beam irradiation is stopped to immediately stop the vapor generation and therefore the vapor deposition.

次に、サーボモータコントローラ12によりサーボモー
タ13を回転させ、可動ミラー14で反射されるレーザ
光が第2の蒸着材料52に照射されるように光路を設定
する。この状態で再びレーザ光の照射を行うことにより
第2の蒸着材料52の分子線が発生し、試料基板81上
の、第1の蒸着材料51からの蒸着によって形成された
原子層の上に第2の蒸着材料52の層が形成される。第
2の蒸着材料52の蒸着が1原子層分だけ行われたら、
レーザ光の照射を停止する。以下、これまでと同様の方
法で第1の蒸着材料51と第2の蒸着材料52の蒸着を
交互に1原子層ずつ繰り返すことで所望の厚みまで膜を
成長させる。また、ここでは第1の蒸着材料51の代わ
りに第3の蒸着材料53を蒸着することも可能なように
している。
Next, the servo motor 13 is rotated by the servo motor controller 12, and an optical path is set so that the second vapor deposition material 52 is irradiated with the laser light reflected by the movable mirror 14. By irradiating the laser beam again in this state, a molecular beam of the second vapor deposition material 52 is generated, and a molecular beam of the second vapor deposition material 52 is generated on the atomic layer formed by vapor deposition from the first vapor deposition material 51 on the sample substrate 81. Two layers of vapor deposited material 52 are formed. When the second evaporation material 52 is deposited for one atomic layer,
Stop the laser beam irradiation. Thereafter, the film is grown to a desired thickness by repeating the deposition of the first vapor deposition material 51 and the second vapor deposition material 52 alternately one atomic layer at a time in the same manner as before. Further, here, it is also possible to deposit a third vapor deposition material 53 instead of the first vapor deposition material 51.

なお、真空チェンバ31には分子線強度をモニタする質
量分析計73と、成長膜の結晶性を評価するための反射
型高速電子線回折(RHEHD )用の電子銃71とス
クリーン72を取付けた。
The vacuum chamber 31 was equipped with a mass spectrometer 73 for monitoring the molecular beam intensity, and an electron gun 71 and screen 72 for reflection high-speed electron diffraction (RHEHD) for evaluating the crystallinity of the grown film.

本実施例においては、G a A s / A I! 
A sの超格子を形成する目的で、試料基板81は1イ
ンチ径、500μm厚のGaAs結晶とし、第1の蒸着
材料51にはQa、第2の蒸着材料52にはAS、また
第3の蒸着材料53にはAAを用いた。
In this example, G a As / A I!
In order to form a superlattice of As, the sample substrate 81 is a GaAs crystal with a diameter of 1 inch and a thickness of 500 μm. AA was used as the vapor deposition material 53.

また、これらの蒸着材料と試料基板81との距離は約3
0cmに設定した。レーザ発振器11には、発振波長3
08nmのXeCnエキシマレーザを用いて、ル−ザパ
ルスあたりのエネルギーが1mJ、パルス幅が10nS
となるようにして蒸着時にはIKHzで動作させた。蒸
着材料上でのレーザ光の照射強度は約5MW/cm2と
なるようにした。
Further, the distance between these vapor deposition materials and the sample substrate 81 is approximately 3
It was set to 0 cm. The laser oscillator 11 has an oscillation wavelength of 3.
Using a 0.8 nm XeCn excimer laser, the energy per laser pulse is 1 mJ and the pulse width is 10 nS.
During vapor deposition, the operation was performed at IKHz. The irradiation intensity of the laser beam on the vapor deposition material was set to about 5 MW/cm2.

また、基板照射光源61にはXeアークランプを選び、
フィルタを用いて波長が約0.7μm以下の光だけを照
射するようにした。このような光照射では、紫外域の光
が直接表面原子を励起する効果の他に、照射した全部の
波長域の光がGaAs基板およびその上に成長する薄膜
に吸収されて励起状態の電子が生成され、そのエネルギ
ーの表面原子への移行によって効率的に表面泳動が起こ
る。
In addition, a Xe arc lamp is selected as the substrate irradiation light source 61,
A filter was used to irradiate only light with a wavelength of about 0.7 μm or less. In this kind of light irradiation, in addition to the effect that the ultraviolet light directly excites surface atoms, the irradiated light in all wavelength ranges is absorbed by the GaAs substrate and the thin film grown on it, and excited electrons are generated. The energy is transferred to the surface atoms, resulting in efficient surface migration.

Xeアークランプの光は試料基板81上で約109mW
/cm2の強度となるように設定した。この光強度では
基板表面の温度上昇は10℃以下となる。
The light of the Xe arc lamp is approximately 109 mW on the sample substrate 81.
The intensity was set to be /cm2. At this light intensity, the temperature rise on the substrate surface is 10° C. or less.

以上の構成でG a A s / A I A sのA
LE法を行うためには、質量分析計73による分子線発
生量のモニタからレーザ光の照射時間をGa、As。
With the above configuration, A of G a A s / A I A s
In order to perform the LE method, the irradiation time of the laser beam is determined by monitoring the amount of molecular beam generated by the mass spectrometer 73.

およびA1に対して、それぞれ5秒、3秒、および10
秒程度とすれば良いことが分かった。もちろん、ALE
法では先に述べた原理により分子線ビームの発生量を厳
密に制御する必要がないので、ここではレーザ光の照射
時間の厳密な決定も必要ない。
and A1 for 5 seconds, 3 seconds, and 10 seconds, respectively.
I found that it is sufficient to set it to about seconds. Of course, ALE
In this method, there is no need to strictly control the amount of molecular beam generated based on the principle described above, so there is no need to strictly determine the laser beam irradiation time here.

本実施例では、GaAs基板81の温度を380℃とし
、基板の(100)面上にまずGaとASの交互の蒸着
を200回繰り返した後、AAとAsの交互の蒸着を2
回およびGaとAsの交互の蒸着を2回という8つのス
テップからなるプロセスを100回繰り返した。膜の成
長中におけるRHII!II!Dによるモニタから成長
膜は良好な結晶性を有することが認められた。さらに、
成長後の試料に対してラマン散乱による評価を行ったと
ころ、散乱光は入力光から200cm’だけ周波数シフ
トした位置で鋭いピークを有することが分り、理論的モ
デルとの対応からGaAsとAlAsが設計通り2分子
層ずつ形成されていることが分かった。
In this example, the temperature of the GaAs substrate 81 is set to 380° C., and after first repeating the alternate deposition of Ga and AS 200 times on the (100) plane of the substrate, the alternate deposition of AA and As is repeated 200 times.
The process consisted of eight steps, two times and two alternating depositions of Ga and As, was repeated 100 times. RHII during film growth! II! It was confirmed by monitoring using D that the grown film had good crystallinity. moreover,
When the sample after growth was evaluated by Raman scattering, it was found that the scattered light had a sharp peak at a position with a frequency shift of 200 cm' from the input light, and from the correspondence with the theoretical model, it was found that GaAs and AlAs were designed. It was found that two molecular layers were formed.

また、同じ基板温度で、Xeアークランプ光の照射を行
わないで同様の成長を試みたところ、RHEED 、 
ラマン散乱による評価から良好な結晶成長が生じていな
いことが分かった。Xeアークランプ光の照射がない場
合では、GaAs基板の温度が470℃から500℃の
間で結晶性の良い膜が成長することが分かったが、ラマ
ン散乱の測定では散乱光の周波数幅が非常に広<GaA
S、AffiAsの層構造に乱れが生じていることが認
められた。
In addition, when similar growth was attempted at the same substrate temperature without irradiation with Xe arc lamp light, RHEED,
Evaluation by Raman scattering revealed that good crystal growth did not occur. In the absence of Xe arc lamp light irradiation, it was found that a film with good crystallinity grows when the temperature of the GaAs substrate is between 470°C and 500°C, but Raman scattering measurements show that the frequency width of the scattered light is very large. wide<GaA
It was observed that the layer structure of S and AffiAs was disordered.

以上の実施例では、GaAsとAj!Asの2層ずつの
超格子製作を行ったが、GaAsとAIA   ・Sの
層数は勿論任意に選ぶことができる。
In the above embodiments, GaAs and Aj! Although a superlattice with two layers of As was fabricated, the number of layers of GaAs and AIA.S can of course be arbitrarily selected.

また、成長中不純物のドーピングを行うためには、ドー
パントだけを別に蒸着材料として準備し、蒸着の際にレ
ーザ光を適当な強度で他の蒸着材料へと同時に照射する
ようにしてもよい。
Furthermore, in order to perform impurity doping during growth, only the dopant may be separately prepared as a vapor deposition material, and the other vapor deposition materials may be simultaneously irradiated with laser light at an appropriate intensity during vapor deposition.

また、上記実施例においては、GaASとAlAsの超
格子の製作を行ったが、■族であるGaまたはAAを独
立に1原子層作るのではなく、レーザ光の照射を適当に
切り換えてGaとAlを混合して1原子層だけ成長させ
るようにすることもできる。Ga、AlとAsの組み合
わせだけでなく、■族にIn、V族にPを用いる場合で
も本発明を適用することができる。さらに、■−■族だ
けでなく、同様にしてpbTe、5nTe等の■−■族
およびCdTe、HgTe等のII−Vl族の半導体の
成長を行うことも可能である。
In addition, in the above example, a superlattice of GaAS and AlAs was fabricated, but instead of independently making one atomic layer of Ga or AA, which is a group II group, the laser beam irradiation was appropriately switched to create a superlattice of Ga and AlAs. It is also possible to grow only one atomic layer by mixing Al. The present invention can be applied not only to the combination of Ga, Al and As, but also to the case where In is used as the group ① and P is used as the group V. Furthermore, it is also possible to grow not only semiconductors of the ■-■ group but also semiconductors of the ■-■ group such as pbTe and 5nTe, and II-Vl group semiconductors such as CdTe and HgTe.

上記実施例では成長中の基板照射光源にXeアークラン
プを用いたが、これはもちろん他のアークランプやグロ
ー放電ランプで置き換えることができる。さらに、これ
らのランプの代わりに、エピタキシーの低温化に有効な
波長を有するレーザ光源を用いても良い。
In the above embodiment, a Xe arc lamp was used as a light source for irradiating the substrate during growth, but this can of course be replaced with other arc lamps or glow discharge lamps. Furthermore, instead of these lamps, a laser light source having a wavelength effective for lowering the temperature of epitaxy may be used.

また、上記実施例では、分子線の発生のためにパルスレ
ーザ光を用いたが、この方式では分子線の発生量をlレ
ーザパルスのエネルギーおよびパルス数で容易に制御で
きるという利点がある。しかし、分子線発生のためには
、もちろん通常のMBE法で用いられるクヌーセン、セ
ルや電子ビームスバッタ等を用いても良い。
Further, in the above embodiment, a pulsed laser beam was used to generate the molecular beam, but this method has the advantage that the amount of generated molecular beam can be easily controlled by the energy and number of laser pulses. However, for molecular beam generation, it is of course possible to use a Knudsen cell, an electron beam scatterer, etc. used in the ordinary MBE method.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、超高真空中で分子線蒸
着を利用したALE成長の際に、試料基板の表面に光を
照射することにより、従来のエピタキシャル成長方法に
比べて低温でエピタキシャル成長を行うことが可能にな
る。
As described above, according to the present invention, during ALE growth using molecular beam evaporation in an ultra-high vacuum, by irradiating the surface of a sample substrate with light, epitaxial growth can be achieved at a lower temperature than in conventional epitaxial growth methods. It becomes possible to do this.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のi膜形成方法の一実施例に用いられ
る薄膜形成装置の模式的構成を示す図である。 11・・・・レーザ発振器 12・・・・サーボモータコントローラ13・・・・サ
ーボモータ 14・・・・可動ミラー 21・・・・第1の窓 22・・・・第2の窓 31・・・・真空チェンバ 32・・・・液体窒素 33・・・・ヒータ付マウント 34・・・・低速モータ 41・・・・荒引ポンプ 42・・・・主排気ポンプ 51・・・・第1の蒸着材料 52・・・・第2の蒸着材料 53・・・・第3の蒸着材料 61・・・・基板照射光源 71・・・・電子銃 72・・・・スクリーン 73・・・・質量分析計 81・・・・試料基板
FIG. 1 is a diagram showing a schematic configuration of a thin film forming apparatus used in an embodiment of the i-film forming method of the present invention. 11... Laser oscillator 12... Servo motor controller 13... Servo motor 14... Movable mirror 21... First window 22... Second window 31... ... Vacuum chamber 32 ... Liquid nitrogen 33 ... Mount with heater 34 ... Low speed motor 41 ... Roughing pump 42 ... Main exhaust pump 51 ... First Vapor deposition material 52...Second vapor deposition material 53...Third vapor deposition material 61...Substrate irradiation light source 71...Electron gun 72...Screen 73...Mass spectrometry Total 81...sample substrates

Claims (2)

【特許請求の範囲】[Claims] (1)真空チェンバ内に設置された試料基板に、1種類
以上の元素を蒸着させて1原子層分だけ薄膜を形成し、
しかる後に直前に蒸着したものと異なる1種類以上の元
素を蒸着させて再度1原子層分だけ薄膜を形成するとい
う過程を複数回続ける原子層蒸着法において、元素の蒸
着中に前記試料基板の表面に、表面層原子の再配列に有
効な波長の光を照射することを特徴とする薄膜形成方法
(1) One or more elements are deposited on a sample substrate placed in a vacuum chamber to form a thin film of one atomic layer,
In the atomic layer deposition method, in which the process of depositing one or more elements different from those deposited immediately before and forming a thin film again by one atomic layer is repeated multiple times, the surface of the sample substrate is A thin film forming method characterized by irradiating light with a wavelength effective for rearranging atoms in the surface layer.
(2)真空チェンバと、該真空チェンバ内を高真空にす
るための真空排気系と、該真空チェンバ内に試料基板を
保持する機構と、複数の蒸着材料を前記試料基板に蒸着
するための手段とを備えた薄膜形成装置において、前記
試料基板の表面に表面層原子の再配列に有効な波長の光
を照射するための光源を備えたことを特徴とする薄膜形
成装置。
(2) A vacuum chamber, a vacuum evacuation system for creating a high vacuum in the vacuum chamber, a mechanism for holding a sample substrate in the vacuum chamber, and means for vapor depositing a plurality of vapor deposition materials onto the sample substrate. A thin film forming apparatus comprising: a light source for irradiating the surface of the sample substrate with light having a wavelength effective for rearranging atoms in the surface layer.
JP5464885A 1985-03-20 1985-03-20 Method for forming thin film and apparatus therefor Pending JPS61215287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5464885A JPS61215287A (en) 1985-03-20 1985-03-20 Method for forming thin film and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5464885A JPS61215287A (en) 1985-03-20 1985-03-20 Method for forming thin film and apparatus therefor

Publications (1)

Publication Number Publication Date
JPS61215287A true JPS61215287A (en) 1986-09-25

Family

ID=12976598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5464885A Pending JPS61215287A (en) 1985-03-20 1985-03-20 Method for forming thin film and apparatus therefor

Country Status (1)

Country Link
JP (1) JPS61215287A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243592A (en) * 1989-03-15 1990-09-27 Sharp Corp Epitaxial growth of compound semiconductor
JP2008305967A (en) * 2007-06-07 2008-12-18 Showa Denko Kk Device and method for manufacturing group iii nitride semiconductor layer, manufacturing method for group iii nitride semiconductor light-emitting element and group iii nitride semiconductor light-emitting element and lamp
JP2008311421A (en) * 2007-06-14 2008-12-25 Showa Denko Kk Manufacturing method of group iii nitride compound semiconductor light emitting element, group iii nitride compound semiconductor light emitting element, and lamp

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243592A (en) * 1989-03-15 1990-09-27 Sharp Corp Epitaxial growth of compound semiconductor
JP2008305967A (en) * 2007-06-07 2008-12-18 Showa Denko Kk Device and method for manufacturing group iii nitride semiconductor layer, manufacturing method for group iii nitride semiconductor light-emitting element and group iii nitride semiconductor light-emitting element and lamp
JP2008311421A (en) * 2007-06-14 2008-12-25 Showa Denko Kk Manufacturing method of group iii nitride compound semiconductor light emitting element, group iii nitride compound semiconductor light emitting element, and lamp

Similar Documents

Publication Publication Date Title
US4986214A (en) Thin film forming apparatus
US4843029A (en) Method of manufacturing a heteroepitaxial compound semiconductor device using photo smoothing between layer growth
US6489587B2 (en) Fabrication method of erbium-doped silicon nano-size dots
JPH0360171B2 (en)
JP2002289918A (en) METHOD OF MANUFACTURING p-TYPE SEMICONDUCTOR CRYSTAL
Greene et al. A review of the present understanding of the role of ion/surface interactions and photo-induced reactions during vapor-phase crystal growth
US5192393A (en) Method for growing thin film by beam deposition and apparatus for practicing the same
JPH05234899A (en) Atomic layer epitaxy apparatus
JPS61215287A (en) Method for forming thin film and apparatus therefor
WO2007029743A1 (en) Method for formation of film of molecular substance and apparatus for said method
JP3351679B2 (en) Method for manufacturing polycrystalline silicon thin film laminate and silicon thin film solar cell
JPS6184379A (en) Production of high-hardness boron nitride film
JP3503787B2 (en) Thin film formation method
US6414975B1 (en) Semiconductor light emitting device with II-VI group semiconductor contact layer containing alkali metal impurity, method of producing same, and optical device including same
JPS62150708A (en) Formation of surface optically pumped thin film
JP2001059162A (en) FORMATION OF Si THIN FILM BY LASER VAPOR DEPOSITION METHOD AND PHOTOELECTRIC TRANSDUCER CONTAINING THE THIN FILM AS COMPONENT
JPH04182317A (en) Formation of oxide superconducting thin film
JP2004263245A (en) Reaction method, and reaction device
JP3499262B2 (en) Electronic components
JPH06248439A (en) Laser abrasion device and formation of semiconductor by using the device
JPH0628256B2 (en) Semiconductor fine processing method and semiconductor fine embedded structure forming method
JPH07517B2 (en) Semiconductor crystal thin film manufacturing equipment
JPS61222219A (en) Manufacture of multilayer thin film structure
JP2922058B2 (en) Thin film making method and thin film making equipment
JPS63319289A (en) Fast particle beam crystal growth method