JPS6142411B2 - - Google Patents

Info

Publication number
JPS6142411B2
JPS6142411B2 JP51042128A JP4212876A JPS6142411B2 JP S6142411 B2 JPS6142411 B2 JP S6142411B2 JP 51042128 A JP51042128 A JP 51042128A JP 4212876 A JP4212876 A JP 4212876A JP S6142411 B2 JPS6142411 B2 JP S6142411B2
Authority
JP
Japan
Prior art keywords
oxide film
substrate
photoresist
photoresist film
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51042128A
Other languages
Japanese (ja)
Other versions
JPS52125276A (en
Inventor
Sokichi Yamagishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4212876A priority Critical patent/JPS52125276A/en
Publication of JPS52125276A publication Critical patent/JPS52125276A/en
Publication of JPS6142411B2 publication Critical patent/JPS6142411B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Weting (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 本発明は半導体集積回路装置の製造方法、特に
不純物拡散工程を繰返し行なう不純物領域群の形
成法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor integrated circuit device, and more particularly to a method for forming a group of impurity regions in which an impurity diffusion process is repeated.

従来、半導体集積回路装置における同一半導体
基板中の不純物領域群は不純物の拡散法にかかわ
らず、最初半導体基板表面に形成された酸化膜に
選択的に窓を開け、その窓から不純物を拡散して
不純物領域を形成した後、再び半導体基板表面を
酸化して不純物領域上に酸化膜を形成し、その後
は順次このような工程を繰り返し行なうことによ
り、形成されていた。その際、最初に形成された
不純物領域上の酸化膜の膜厚とそれ以外の酸化膜
の膜厚との違いによつてできる段差が、続いて不
純物領域を形成するためのフオト・マスクの目合
せに利用される。不純物領域群をイオン注入法に
より形成する場合にも、不純物添加のマスクとし
てはフオト・レジスト膜で充分であることが知ら
れているにもかかわらず酸化膜が用いられている
のは、フオト・レジストを用いると最初に形成し
た不純物領域と、それ以外の領域との境界でフオ
ト・レジスト膜に段差ができないため、続いて不
純物領域を形成する際のフオト・マスクの目合せ
が不可能となるからである。しかしながら、酸化
膜形成のための熱処理を施すと、半導体基板中に
酸化膜と半導体基板表面のストレスを原因とする
積層不整等の結晶欠陥が生じたり、酸化装置から
出る銅或いは鉄等の重金属類が添加してp―n接
合耐圧等の電気的特性が悪化し、しかもその度合
が熱処理回数に依存するため、如何にして酸化膜
を形成する回数を少なくするかが望まれてきてい
る。
Conventionally, a group of impurity regions in the same semiconductor substrate in a semiconductor integrated circuit device is created by first selectively opening a window in an oxide film formed on the surface of the semiconductor substrate and diffusing impurities through the window, regardless of the impurity diffusion method. After forming the impurity region, the surface of the semiconductor substrate is oxidized again to form an oxide film on the impurity region, and thereafter, such steps are sequentially repeated. At that time, the step created by the difference in the thickness of the oxide film on the impurity region formed first and the thickness of the other oxide film becomes the eye of the photo mask for subsequently forming the impurity region. Used in combination. Even when forming impurity regions by ion implantation, it is known that a photoresist film is sufficient as a mask for adding impurities, but the reason why an oxide film is used is because of the photoresist film. When a resist is used, there is no step difference in the photoresist film at the boundary between the first formed impurity region and other regions, making it impossible to align the photomask when subsequently forming the impurity region. It is from. However, when heat treatment is performed to form an oxide film, crystal defects such as stacking irregularities may occur in the semiconductor substrate due to stress between the oxide film and the surface of the semiconductor substrate, and heavy metals such as copper or iron released from the oxidation equipment may occur. Since the addition of oxide deteriorates electrical characteristics such as pn junction breakdown voltage, and the degree of deterioration depends on the number of heat treatments, it has been desired to find a way to reduce the number of times an oxide film is formed.

本発明の目的は、最初に不純物を添加しようと
する半導体基板表面を食刻することにより、上記
のフオト・レジストをマスクとするイオン注入法
の実施を可能にして、酸化膜形成の回数を減らす
ことのできる半導体集積回路装置の製造方法を提
供することである。
An object of the present invention is to reduce the number of oxide film formations by first etching the surface of the semiconductor substrate to which impurities are to be added, thereby making it possible to carry out the ion implantation method using the photoresist as a mask. It is an object of the present invention to provide a method for manufacturing a semiconductor integrated circuit device that can be used.

本発明は、最初半導体基板上にフオト・レジス
トを塗布焼成した後、、最初に不純物を添加する
半導体基板表面上のフオト・レジストを選択的に
除去し、次いでエツチングにより半導体基板表面
を食刻した後、不純物を添加し、最後にフオト・
レジストを除去して、半導体基板上全面に酸化膜
を形成するものである。
The present invention first coats and bakes a photoresist on a semiconductor substrate, then selectively removes the photoresist on the surface of the semiconductor substrate to which impurities are added, and then etches the surface of the semiconductor substrate. After that, impurities are added and finally photo
The resist is removed and an oxide film is formed over the entire surface of the semiconductor substrate.

本発明によれば、半導体基板中に最初に形成さ
れる不純物領域の表面は他の表面よりも低くなつ
ているので、酸化膜を形成すると不純物領域の表
面と他の基板表面との間で酸化膜に段差が生じ
る。従つて、この段差は後に不純物領域を形成す
る際のフオト・マスクの目合せを可能にするた
め、従来と比して、酸化膜形成の回数が一回減
り、それだけ電気的特性は改善される。
According to the present invention, since the surface of the impurity region that is first formed in the semiconductor substrate is lower than other surfaces, when an oxide film is formed, oxidation occurs between the surface of the impurity region and the other substrate surface. A step appears on the membrane. Therefore, since this step makes it possible to align the photo mask when forming impurity regions later, the number of oxide film formations is reduced by one step compared to the conventional method, and the electrical characteristics are improved accordingly. .

次に図面を参照して説明する。 Next, a description will be given with reference to the drawings.

図a〜fは本発明をpチヤネルMOS型半導体
集積回路装置に実施した場合の一実施例を示す図
である。
FIGS. a to f are diagrams showing an embodiment in which the present invention is implemented in a p-channel MOS type semiconductor integrated circuit device.

最初、n型シリコン基板1上にフオト・レジス
トを塗布・焼成した後(図a)、最初に形成する
不純物領域で、将来チヤネルストツパーとなる領
域4,4′上のフオト・レジスト2を選択的に除
去し、拡散窓3,3′を開孔する(図b)。次い
で、チヤネルストツパーとなる領域4,4′をエ
ツチングにより食刻する(図c)。その際、食刻
の深さは、後にフオト・レジストを除去して、シ
リコン基板1上に酸化膜を形成すると、チヤネ
ル・ストツパー領域4,4′のところで酸化膜に
段差が明確に生じる程度すなわち500〜1000Åに
し、エツチングはプラズマ・エツチング法によ
り、CF4+O2ガスを使用して、真空度0.2〜
0.3Torr、出力を100〜200Wで1〜5分間行な
う。
First, after coating and baking a photoresist on the n-type silicon substrate 1 (Figure a), select the photoresist 2 on the regions 4 and 4' that will be the channel stopper in the future as the first impurity region to be formed. and then open the diffusion windows 3, 3' (Figure b). Then, the regions 4, 4' which will become the channel stoppers are etched (FIG. c). At this time, the etching depth is such that when the photoresist is removed later and an oxide film is formed on the silicon substrate 1, a clear step is formed in the oxide film at the channel stopper regions 4, 4'. 500 to 1000 Å, and etching is done by plasma etching using CF 4 + O 2 gas at a vacuum degree of 0.2 to 100 Å.
Run at 0.3 Torr and 100 to 200 W for 1 to 5 minutes.

次に、イオン注入法により、燐イオン5,5′
が50〜100KeVの加速電圧で1012/cm2程度打込れ
るが、フオト・レジスト下の半導体基板中にはリ
ン・イオンは到達しない(図d)。次に、フオ
ト・レジスト2をプラズマ剥離法或いはフエノー
ル系の剥離剤で剥離した後、1000〜1200℃の乾燥
酸素或いはスチーム等の酸化性雰囲気中で拡散−
酸化工程を施すと、燐イオンは拡散してチヤンネ
ル・ストツパー6,6′となり、n型シリコン基
板1の表面には段差のある酸化膜7が形成される
(図e)。
Next, phosphorus ions 5,5'
is implanted at an acceleration voltage of 50 to 100 KeV at a density of about 10 12 /cm 2 , but the phosphorus ions do not reach the semiconductor substrate under the photoresist (Figure d). Next, the photoresist 2 is removed using a plasma removal method or a phenol-based remover, and then diffused in an oxidizing atmosphere such as dry oxygen or steam at 1000 to 1200°C.
When the oxidation process is performed, phosphorus ions are diffused to form channel stoppers 6, 6', and an oxide film 7 with steps is formed on the surface of the n-type silicon substrate 1 (FIG. e).

最後に、シリコン酸化膜7の段差を目合せに利
用する通常のマスキング工程を経て、n型シリコ
ン基板1中にボロンを添加してソース及びドレイ
ン領域8,9を形成した後、各金属配線10,1
1,12を形成すると完成する(図f)。
Finally, after going through a normal masking process using the steps of the silicon oxide film 7 for alignment, boron is added into the n-type silicon substrate 1 to form source and drain regions 8 and 9, each metal wiring 10 ,1
1 and 12 to complete the process (Figure f).

このように、本発明によれば、最初に形成され
る不純物領域への不純物添加だけはフオト・レジ
ストをマスクとしているので、従来方法に比べ酸
化膜形成の回数が1回減り、それだけシリコン基
板中に結晶欠陥が生じたり、酸化装置からの重金
属類が添加されることが少なくなり、電気的特性
は改善される。なお、以上は本発明をPチヤネル
MOS型半導体集積回路装置に実施した場合を一
実施例について説明したが、同様に複数回の不純
物拡散を行つて不純物領域群を形成するバイポー
ラ型半導体集積回路装置にも本発明が実施され得
べきことは勿論である。
As described above, according to the present invention, since the photoresist is used as a mask only when adding impurities to the impurity region that is formed first, the number of times of oxide film formation is reduced by one compared to the conventional method, and the number of times of oxide film formation is reduced by one, and the number of times of oxide film formation is reduced by one compared to the conventional method. The occurrence of crystal defects and the addition of heavy metals from the oxidizer are reduced, and the electrical characteristics are improved. Note that the above describes the present invention as a P channel.
Although one embodiment has been described in which the present invention is applied to a MOS type semiconductor integrated circuit device, it is also possible to apply the present invention to a bipolar type semiconductor integrated circuit device in which impurity regions are formed by performing impurity diffusion multiple times. Of course.

【図面の簡単な説明】[Brief explanation of the drawing]

図a〜fは、本発明をPチヤンネルMOS型半
導体集積回路装置に実施した場合の一実施例を示
す図である。 1……n型シリコン基板、2……フオト・レジ
スト膜、3,3′……拡散窓、4,4′……チヤネ
ルストツパーとなる領域、5,5′……燐イオ
ン、6,6′……チヤネルストツパー、7……酸
化膜、8……ソース領域、9……ドレイン領域、
10,11,12……金属配線。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. a to f are diagrams showing one embodiment of the present invention in a P-channel MOS type semiconductor integrated circuit device. 1... N-type silicon substrate, 2... Photoresist film, 3, 3'... Diffusion window, 4, 4'... Region to be channel stopper, 5, 5'... Phosphorus ion, 6, 6 '... Channel stopper, 7... Oxide film, 8... Source region, 9... Drain region,
10, 11, 12...metal wiring.

Claims (1)

【特許請求の範囲】[Claims] 1 不純物が導入されていない平坦な主表面を有
する半導体基板表面全体にこれと接して直接フオ
トレジスト膜のみを形成する工程と、該フオトレ
ジスト膜をパターニングする工程と、これにより
形成されたフオトレジスト膜パターンをマスクに
して前記基板表面を選択的にエツチング除去して
段差を設ける工程と、前記フオトレジスト膜パタ
ーンをマスクにして前記基板内に不純物を導入す
る工程と、その後前記フオトレジスト膜パターン
を除去する工程と、必要な高温処理を行つて前記
基板表面に段差のある酸化膜を形成する工程を含
み、前記酸化膜の表面段差を後の工程においてフ
オトマスクの目合せに用いることを特徴とする半
導体集積回路装置の製造方法。
1. A step of forming only a photoresist film directly on the entire surface of a semiconductor substrate having a flat main surface into which no impurities have been introduced, in direct contact therewith, a step of patterning the photoresist film, and a step of patterning the photoresist film formed thereby. a step of selectively etching away the surface of the substrate using the film pattern as a mask to form a step; a step of introducing impurities into the substrate using the photoresist film pattern as a mask; and a step of forming an oxide film with steps on the surface of the substrate by performing necessary high-temperature treatment, and the step is characterized in that the step on the surface of the oxide film is used for alignment of a photomask in a later step. A method for manufacturing a semiconductor integrated circuit device.
JP4212876A 1976-04-14 1976-04-14 Preparation of semiconductor integrated circuit device Granted JPS52125276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4212876A JPS52125276A (en) 1976-04-14 1976-04-14 Preparation of semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4212876A JPS52125276A (en) 1976-04-14 1976-04-14 Preparation of semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS52125276A JPS52125276A (en) 1977-10-20
JPS6142411B2 true JPS6142411B2 (en) 1986-09-20

Family

ID=12627292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4212876A Granted JPS52125276A (en) 1976-04-14 1976-04-14 Preparation of semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS52125276A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574124A (en) * 1980-06-10 1982-01-09 Fujitsu Ltd Manufacture of germanium semiconductor device

Also Published As

Publication number Publication date
JPS52125276A (en) 1977-10-20

Similar Documents

Publication Publication Date Title
JPH05102427A (en) Manufacture of semiconductor memory element
JPH0322053B2 (en)
JPS5922380B2 (en) Handout Taisoshino Seizouhouhou
JPS5843912B2 (en) Method for manufacturing semiconductor integrated circuit device
US4662986A (en) Planarization method and technique for isolating semiconductor islands
JPS6142411B2 (en)
US6107173A (en) Method of manufacturing semiconductor device
JPS5817655A (en) Manufacture of semiconductor device
JPS5923476B2 (en) Manufacturing method of semiconductor device
KR100275111B1 (en) Method forming gateoxide in semiconductor device
JPH088262A (en) Manufacture of semiconductor device
JPH04267336A (en) Manufacture of semiconductor device
JPH027558A (en) Semiconductor device and manufacture thereof
JPS62131538A (en) Manufacture of semiconductor device
JPH0917779A (en) Formation method of oxide film for element isolation of semiconductor device
JP2000340644A (en) Manufacture of semiconductor device
JPH04100243A (en) Semiconductor device and manufacture thereof
JPS59103357A (en) Manufacture of semiconductor device
JPH11312806A (en) Manufacture of semiconductor device
JPH06188259A (en) Manufacture of semiconductor device
JPS6248028A (en) Forming method for field oxide film
JPS62145821A (en) Manufacture of semiconductor device
JPH0529240A (en) Manufacture of semiconductor device
JPH05136123A (en) Element isolation method
JPH0312768B2 (en)