JPS59103357A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59103357A
JPS59103357A JP21355382A JP21355382A JPS59103357A JP S59103357 A JPS59103357 A JP S59103357A JP 21355382 A JP21355382 A JP 21355382A JP 21355382 A JP21355382 A JP 21355382A JP S59103357 A JPS59103357 A JP S59103357A
Authority
JP
Japan
Prior art keywords
silicon
film
silicon dioxide
semiconductor device
dioxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21355382A
Other languages
Japanese (ja)
Inventor
Mototaka Kamoshita
鴨志田 元孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP21355382A priority Critical patent/JPS59103357A/en
Publication of JPS59103357A publication Critical patent/JPS59103357A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To obtain an element forming region without lattice defects by making the surface of SiO2 include N2 or subjected to gas plasma including N2 or N to form an oxidation-proof mask by which an Si substrate is selectively oxidized. CONSTITUTION:An SiO2 film 202 is formed on a P type Si substrate 201 and an SiO2 layer 203 including N is formed by implanting N ion in said SiO2 film 202. After patterning a P<+> layer 204 is formed by implanting B ion in an exposed part of the substrate 201. A field oxidized film 205 is formed by wet oxidation and a channel stopper 206 is formed out of the layer 204. The film 202 is removed and a gate oxidized film 207 and a polysilicon gate electrode 208 are formed after which As ion is implanted to form a source 209 and a drain 210 and electrodes 211 and 212 and a protective film 213 are formed. In this constitution, a field insulating film is selectively formed so that undesired lattice defects are not produced in the Si under a mask, thereby a semiconductor device of good quality can be obtained.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法、特にプレーナ方式で形
成される半導体装置のフィールド絶縁膜の形成方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of forming a field insulating film of a semiconductor device formed by a planar method.

従来、硅素半導体を用いるプレーナ現半導体装置のフィ
ールド絶縁膜としては、厚い二酸化硅素を用いる方法が
よく知られている。その二酸化硅素を形成する製造方法
としては、熱酸化法が通常良く用いられており、その時
の選択酸化を行うための耐酸化マスクとしては、例えば
窒化硅素を用いる方法が公知である。
Conventionally, a method using thick silicon dioxide as a field insulating film for a planar semiconductor device using a silicon semiconductor is well known. A thermal oxidation method is commonly used as a manufacturing method for forming silicon dioxide, and a method using, for example, silicon nitride as an oxidation-resistant mask for selective oxidation is well known.

然し乍ら、この窒化硅素膜は熱酸化に対しては優れた耐
酸化マスクとしての性質を持つ反面、硅素面に直接付着
して例えば1000℃前後の高温にすると、硅素と窒化
硅素との熱膨張係数が異なるため、その応力による歪で
マスク部の硅素単結晶基板ウェハに格子欠陥を誘起する
。例えば、約200OAの膜更の窒化硅素膜を用いて、
それにパターンを形成し、選択エツチングを施して耐酸
化マスクとし、1000℃の飽和水蒸気中で熱酸化し、
非マスク部に約1μの厚さの二酸化硅素を形成する工程
で、直径5インチの硅素ウェハは約数μの桁で反ってし
まう。そのような力が応力としてマスク部の硅素−窒化
硅素間に掛がっておフ、そのためマスク部の硅素半導体
中に格子欠陥を生ずる。この格子欠陥は例えば大容箪ラ
ンダムアクセスメモリ装置にてリーク電流の原因となり
、記憶保持時間が著しく短くなってしまうという事故と
か、又、高速度集積回路、高周波集積回路、あるいは音
響用集積回路での雑音特性を劣化せしめる原因となって
いた。又、C0D(電荷移送デバイス)によるi 像’
f用デバイスとしてもこのような欠陥はいわゆ・る画面
の白傷として画質全落丁原因にもなっている。
However, while this silicon nitride film has properties as an excellent oxidation-resistant mask against thermal oxidation, if it is directly attached to a silicon surface and heated to a high temperature of, for example, around 1000°C, the thermal expansion coefficient of silicon and silicon nitride will change. Since the stress is different, the strain caused by the stress induces lattice defects in the silicon single crystal substrate wafer in the mask portion. For example, using a silicon nitride film with a thickness of about 200 OA,
A pattern is formed on it, selectively etched to form an oxidation-resistant mask, and thermally oxidized in saturated steam at 1000°C.
In the process of forming silicon dioxide with a thickness of about 1 micron in the non-masked area, a silicon wafer with a diameter of 5 inches will warp by an order of magnitude of several microns. Such a force is applied as stress between the silicon and silicon nitride in the mask portion, resulting in lattice defects in the silicon semiconductor in the mask portion. These lattice defects can cause leakage current in large-capacity random access memory devices, resulting in a significantly shortened memory retention time, and can also cause problems in high-speed integrated circuits, high-frequency integrated circuits, and acoustic integrated circuits. This was a cause of deterioration of the noise characteristics of the device. Also, i image' by C0D (charge transfer device)
For f-type devices, such defects also cause a total drop in image quality as so-called white scratches on the screen.

本発明の目的はこのような釣魚を無くシ、素子部に不必
要な格子欠陥の無い良質の半導体素子全構成する技術を
提供することにある。
An object of the present invention is to eliminate such problems and to provide a technique for constructing a high-quality semiconductor device without unnecessary lattice defects in the device portion.

本発明はプレーナ方式による硅素半導体装置の製造方法
に於て、硅素半導体上に二酸化硼素膜全形成する工程と
、該二酸化硅素膜の表面近傍に窒素を含ませる工程と、
該窒素を含ませた二酸化硅素膜を耐酸化マスクとし該線
素半導体全選択酸化する工程とを具備することを特徴と
する半導体装置の製造方法である。
The present invention provides a method for manufacturing a silicon semiconductor device using a planar method, which includes a step of forming a boron dioxide film entirely on a silicon semiconductor, a step of including nitrogen near the surface of the silicon dioxide film,
This method of manufacturing a semiconductor device is characterized by comprising the step of selectively oxidizing all of the line semiconductors using the nitrogen-containing silicon dioxide film as an oxidation-resistant mask.

又、本発明はプレーナ方式による硅素半導体装置の製造
方法に於いて、硅素半導体上に二酸化硅素膜を形成する
工程と、該二酸化硅素膜の上面を高温のアンモニアガス
、又はアンモニアガスプラズマ中にさらす工程と、該ア
ンモニア処理された二酸化硅素を耐酸化マスクとして該
硅素半導体を選択酸化する工程とを具備することを特徴
とする半導体装置の製造方法である。
The present invention also provides a method for manufacturing a silicon semiconductor device using a planar method, which includes a step of forming a silicon dioxide film on a silicon semiconductor, and exposing the upper surface of the silicon dioxide film to high-temperature ammonia gas or ammonia gas plasma. This is a method for manufacturing a semiconductor device, comprising a step of selectively oxidizing the silicon semiconductor using the ammonia-treated silicon dioxide as an oxidation-resistant mask.

更に又、本発明はプレーナ方式による硅素半導体装置の
製造方法に於いて硅素半導体上に二酸化硼素膜全形成す
る工程と、該二酸化硅素膜に窒素イオン全注入する工程
と、該窒素イオン全注入した二酸化硼素膜全耐酸化マス
クとして該硅素半導体を選択酸化する工程と全具備する
ことを特徴とする半導体装置の製造方法である。又、本
発明はプレーナ方式による硅素半導体装置の製造方法に
於いて、硅素半導体上に二酸化硅素膜を形成する工程と
、該二酸化硅素膜の表面を窒素、又は窒素を含むガスの
プラズマ中にさらす工程と、該窒素処理を施した該二酸
化硅素膜を耐酸化マスクとして該硅素半導体を選択酸化
する工程と全具備することを特徴とする半導体装置の製
造方法である。
Furthermore, the present invention provides a method for manufacturing a silicon semiconductor device using a planar method, including a step of completely forming a boron dioxide film on a silicon semiconductor, a step of completely implanting nitrogen ions into the silicon dioxide film, and a step of completely implanting the nitrogen ions into the silicon dioxide film. This method of manufacturing a semiconductor device is characterized in that it includes a step of selectively oxidizing the silicon semiconductor using a boron dioxide film as a total oxidation-resistant mask. The present invention also provides a method for manufacturing a silicon semiconductor device using a planar method, which includes a step of forming a silicon dioxide film on a silicon semiconductor, and exposing the surface of the silicon dioxide film to plasma of nitrogen or a gas containing nitrogen. This method of manufacturing a semiconductor device is characterized by comprising a step of selectively oxidizing the silicon semiconductor using the nitrogen-treated silicon dioxide film as an oxidation-resistant mask.

本発明の原理は二酸化硅素表面に窒素を含ませるか、又
は窒素又は窒素を含むガスプラズマ中にさらすと、耐酸
化マスクになり、かつその耐酸化マスクで選択的に硅素
上に作製した二酸化硅素膜を構成要素として半導体デバ
イスが製造できるという新規な発見に基づく。
The principle of the present invention is that by impregnating the surface of silicon dioxide with nitrogen or exposing it to nitrogen or gas plasma containing nitrogen, it becomes an oxidation-resistant mask, and silicon dioxide that is selectively formed on silicon with the oxidation-resistant mask It is based on the novel discovery that semiconductor devices can be manufactured using films as constituent elements.

又ζ本発明はこのように半導体とそれに接触するマスク
材の熱膨張係数とを略一致させることによV%ママス部
の半導体に形成した素子のリーク電流特性、雑音特性が
著しく良いという発見に基づくものである。
Furthermore, the present invention has been made based on the discovery that by substantially matching the thermal expansion coefficients of the semiconductor and the mask material in contact with it, the leakage current characteristics and noise characteristics of the element formed in the semiconductor in the V% mass region are significantly improved. It is based on

本発明により、選択的に硅素中に二限化硅素を埋置した
フィールド絶縁膜を形成するも、マスク部であった部分
の硅素中にその後形成する半導体素子の特性はリークが
少なく、雑音特性が良いので、高密度ランダムアクセス
メモリの記憶保持時間を長くすることができる。
According to the present invention, although a field insulating film is formed in which dilimited silicon is selectively buried in silicon, the characteristics of the semiconductor element that is subsequently formed in the silicon in the mask portion are low leakage and noise characteristics. Since this is good, the storage retention time of the high-density random access memory can be extended.

本発明により、選択的に半導体に絶縁被膜を形成するも
、マスク部の半導体部に、その後形成する素子の電気的
特性全良質にすることができる。
According to the present invention, even though an insulating film is selectively formed on a semiconductor, it is possible to improve the electrical characteristics of an element subsequently formed on the semiconductor portion of the mask portion.

次に不発明の実施例全図面を参照して説明する。Next, a non-inventive embodiment will be described with reference to all the drawings.

先ず比較のため従来の製造方法を第1図を用いて説明す
る。第1図は各工程のウニ/1断面図金示すものであり
、先ず第1図Nのように例えば50Ω・cmのP型硅素
ウェハ101金用意する。次いで第1図Bのようにこの
50Ω・cmのP型硅素つエノ1101上に窒化硅素膜
102yk例えば約700°0にてシランとアンモニア
の化学反応により約200OAの厚さに形成する。その
後その窒化硅素膜102′ik第1図Cのように選択的
に除去し、更に非マスク部に59keyに加速したボロ
ンイオン11B”e約5X10137Cm2の濃度で注
入しP+層103を形成する。然る後にそのP型硅素ウ
ェハ101 k1100℃の飽和水蒸気中に入れて約8
00(lの厚さの二酸化硅素膜104を形成する。この
時、窒化硅素膜102の表面も酸化されるが、その酸化
速度は硅素に比し著しく遅いので、窒化硅素膜102は
充分、耐酸化のマスクとなる。この状態が第1図りであ
る。尚この時P+層103は熱拡散により第1図Cより
深くなる。この二酸化硅素層104の形成には通常この
ようl’?:1000℃以上の高温でしかも3時間程度
を要するので、その間硅素ウェハ101と窒化硅素膜1
02との間では熱膨張係数の差による応力が掛かり、結
晶格子に歪金加え、将来、半導体素子を構成する最も肝
心な所に結晶欠陥を多数形成することになる。次いで第
1図Eのよ′うにこの窒化硅素膜102を除去し、再度
、所望の閾値電圧が得られる↓うな膜厚の二酸化硅素層
105全形成しその上に多結晶硅素106を、例えば7
00°Cでのシランの熱分解全利用し、約200OAの
膜厚に形成し、選択除去してゲート電極全形成する。然
る後にソー・スとドレイン領域107,108を形成し
、それぞれソース電極配線、ドレイン電極配線109,
11(l取り付け、保護被膜111全形成した状態が第
1図Fである。
First, for comparison, a conventional manufacturing method will be explained with reference to FIG. FIG. 1 shows cross-sectional views of each process. First, as shown in FIG. 1N, a P-type silicon wafer 101 of, for example, 50 Ω·cm is prepared. Next, as shown in FIG. 1B, a silicon nitride film 102yk having a thickness of about 200 OA is formed on this 50 Ω·cm P-type silicon film 1101 by a chemical reaction of silane and ammonia at about 700°. Thereafter, the silicon nitride film 102' is selectively removed as shown in FIG. After that, the P-type silicon wafer 101 was placed in saturated steam at 1100℃ for about 8 hours.
A silicon dioxide film 104 with a thickness of 0.00 l is formed. At this time, the surface of the silicon nitride film 102 is also oxidized, but the oxidation rate is significantly slower than that of silicon, so the silicon nitride film 102 is sufficiently oxidized. This state is shown in Figure 1.At this time, the P+ layer 103 becomes deeper than C in Figure 1 due to thermal diffusion.This silicon dioxide layer 104 is usually formed as shown in Figure 1. Since it takes about 3 hours at a high temperature of ℃ or higher, the silicon wafer 101 and the silicon nitride film 1 are
02, stress is applied due to the difference in coefficient of thermal expansion, which adds strain to the crystal lattice, leading to the formation of many crystal defects in the most important parts of semiconductor devices in the future. The silicon nitride film 102 is then removed as shown in FIG.
A film is formed to a thickness of about 200 OA by fully utilizing thermal decomposition of silane at 00° C., and then selectively removed to form the entire gate electrode. Thereafter, source and drain regions 107 and 108 are formed, and source and drain electrode wirings 109 and 108 are formed, respectively.
Figure 1F shows the state in which the protective coating 111 has been completely formed.

第2図は、上述のような硅素ウエノ−と窒化硅素膜との
間の応力の問題全解決する本発明の工程を順次説明する
断面図である。即ち第2図Nのように50Ω・cmのP
型硅素ウェハ201を用意し、第2図Bの如く表面に通
常の方法で約500OAの二酸化硅素膜202を形成す
る。
FIG. 2 is a cross-sectional view sequentially illustrating the steps of the present invention which completely solves the stress problem between the silicon wafer and the silicon nitride film as described above. That is, as shown in Fig. 2 N, P of 50Ω・cm
A silicon wafer 201 is prepared, and a silicon dioxide film 202 of about 500 OA is formed on the surface by a conventional method as shown in FIG. 2B.

次いで、第2図Bにおいてこの二酸化硅素膜202に、
5Qkevに加速したN+イオンを1015〜1018
/cm2注入し、窒素を含む二酸化硅素層203全形成
する。その後そのうえ通常のフォトレジスト法で該二酸
化硅素層203.202’!に除去する。
Next, in FIG. 2B, this silicon dioxide film 202 is coated with
1015-1018 N+ ions accelerated to 5Qkev
/cm2 to completely form a silicon dioxide layer 203 containing nitrogen. Thereafter, the silicon dioxide layer 203, 202'! to be removed.

その後P型硅素ウェハ201の非マスク部に、5Qke
vに加速したIIB+イオンklo12/cm2注入し
、チャンネルストッパ206となる層のプレデポジショ
ンを行い、P+層204全形成する(第2図C)そのウ
ェノ・ヲ例えば1000℃の飽和水蒸気中で酸化すると
窒素を含む二酸化硅素膜203は耐酸化マスクとなり、
約1μmの厚さのフィールド酸化膜205が形成できる
(第2図IJ)。この酸化工程でP+層204は拡赦し
、深く入シ、チャネルストッパ206となる。その後第
2図Eのようにマスクとして用いた二酸化硅素層202
を除去し、再度、設計値の閾値電圧が得られるような膜
厚の二酸化硅素膜20’l、例えば酸素雰囲気中、90
0℃にて形成し、然る後に多結晶硅素208をシランの
700℃での熱分解反応?用いて形成せしめ、選択的に
多結晶硅素全除去してゲート電極とする。その後第2図
Fの如く例えば砒素イオンAs”t” 150kevに
加速して5 x 1 o 15 /Crn 2 の濃度
になるようイオン注入し、ソース領域209とドレイン
領域210全形成する。更に、このソース領域209と
ドレイン領域210If(、それぞれソース電極配線2
11とドレイン電極配線212を取り付け、保護被膜2
13としての二酸化硅素膜を付着した断面図が第2図F
となる。
After that, 5Qke was applied to the non-masked part of the P-type silicon wafer 201.
IIB+ ions klo12/cm2 accelerated to V are injected, a layer that will become the channel stopper 206 is pre-deposited, and the P+ layer 204 is completely formed (Fig. 2C). The silicon dioxide film 203 containing nitrogen serves as an oxidation-resistant mask,
A field oxide film 205 with a thickness of about 1 μm can be formed (FIG. 2 IJ). In this oxidation process, the P+ layer 204 is expanded and penetrated deeply to become a channel stopper 206. Thereafter, as shown in FIG. 2E, a silicon dioxide layer 202 was used as a mask.
is removed, and the silicon dioxide film 20'l is again coated with a thickness such that the threshold voltage of the designed value can be obtained, for example, 90% in an oxygen atmosphere.
After forming polycrystalline silicon 208 at 0°C, thermal decomposition reaction of silane at 700°C? The polycrystalline silicon is selectively completely removed to form a gate electrode. Thereafter, as shown in FIG. 2F, for example, arsenic ions As"t" are accelerated to 150 keV and implanted to a concentration of 5 x 1 o 15 /Crn 2 to form the entire source region 209 and drain region 210. Further, the source region 209 and the drain region 210If (, respectively, the source electrode wiring 2
11 and the drain electrode wiring 212 are attached, and the protective coating 2 is attached.
A cross-sectional view of the silicon dioxide film attached as No. 13 is shown in Figure 2F.
becomes.

第2図Bの工程は単に窒素イオン全注入するだけでなく
、他の方法でもよい。
In the step shown in FIG. 2B, other methods may be used instead of simply fully implanting nitrogen ions.

例えば、第2の実施例として、匹温のアンモニアガスに
さらす方法でもよい。即ち、Ito等は1980年に発
行された米国の電気化学学会誌ジャーナルオプエレクト
にケミカル ソサイエティの2248頁からの論文(T
、Ito、etal、J、Electroc−hem、
soc、127.2248(1980))[て二酸化硅
素全高温アンモニア雰囲気中で熱処理すると表面が量化
されると述べている。例えば第2図Bの二ば化硅素膜2
02e1000℃2時間アンモニアガス中にさらすと、
窒素を含む層203が形成できる。
For example, as the second embodiment, a method of exposing to normal temperature ammonia gas may be used. That is, Ito et al. published an article from page 2248 of the Chemical Society (T
,Ito,etal,J,Electroc-hem,
Soc, 127.2248 (1980)) [states that the surface is quantified when silicon dioxide is heat-treated in a high-temperature ammonia atmosphere. For example, the silicon dioxide film 2 in FIG. 2B
02e When exposed to ammonia gas at 1000℃ for 2 hours,
A layer 203 containing nitrogen can be formed.

この場合は第1の実施例のような通常のフォトレジスト
法でウェットエツチングではこの窒素を含む二酸化硅素
層203の選択エツチングが困難となっているので、弗
化カーボン系のドライエツチング法が適している。
In this case, it is difficult to selectively etch the nitrogen-containing silicon dioxide layer 203 using wet etching using a normal photoresist method as in the first embodiment, so a carbon fluoride dry etching method is suitable. There is.

又、第3の実施例として、この第2図Bの工程の時、窒
素ガスプラズマ中にさらす方法でもよい。
Further, as a third embodiment, a method may be adopted in which the step shown in FIG. 2B is performed by exposing the device to nitrogen gas plasma.

例えば基板ウエノ1の温度を700°Cにし減圧下で窒
素ガスプラズマ+S生させ、約1時間処理すると二酸化
硅素202上に窒素を含む層203が形成される。
For example, when the temperature of the substrate wafer 1 is set to 700° C., nitrogen gas plasma +S is generated under reduced pressure, and the treatment is performed for about 1 hour, a layer 203 containing nitrogen is formed on the silicon dioxide 202.

本発明の方法によると、硅素ウエノ・201には窒化硅
素膜102が付くことなく、ソース領域209゜ドレイ
ン領域210、ゲート電極となる多結晶硅素208とそ
の下のゲート絶縁膜となる二酸化砂膜207の付近の硅
素ウェハ201の部分には、第1図のような歪や格子欠
陥の入子量?著しく少なくできる。
According to the method of the present invention, the silicon nitride film 201 is not attached with the silicon nitride film 102, and the source region 209, the drain region 210, the polycrystalline silicon 208 that becomes the gate electrode, and the sand dioxide film that becomes the gate insulating film thereunder. The portion of the silicon wafer 201 near point 207 has distortions and lattice defects as shown in FIG. It can be significantly reduced.

そのため本発明の方法で作製した面密度メモリ素子は欠
陥を伝わるリーク電流が少く記憶保持時間が長いという
特徴がある。又、 本発明の方法で作製した半導体素子は雑音特性が優れて
いる。
Therefore, the areal density memory element manufactured by the method of the present invention is characterized by a small leakage current transmitted through defects and a long memory retention time. Furthermore, the semiconductor device manufactured by the method of the present invention has excellent noise characteristics.

以上の実施例では半導体として硅素を用いた場合の例全
述べたが、本発明はこのような場合にのみ限定されるこ
となく、他の半導体でもよい。
Although all of the above embodiments have been described in which silicon is used as the semiconductor, the present invention is not limited to such a case, and other semiconductors may be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図AからF迄は比較のために示す従来の製造方法の
工程を順次説明するための断面図、第2図へからF迄は
本発明の工程を順次説明するための断面図である。 尚、図において、 101.201・・・・・・P型硅素ウニノー、102
・・・・・・窒化硅素膜、103.204・・・・・・
PH1,104*202.105,207・・・・・・
二酸化硅素膜、106.208・・・・・・多結晶佳素
膜、167.209・・・・・・ソース領域、108.
210・・印・ドレイン領域、109,211・・・・
・・ソース電極配線、110゜212・・・・・・ドレ
イン電極配線、111,213・・・・・・保護被膜、
203・・・・・・窒素を含む二酸化硅素層である。 結1図 第Z図
1A to F are cross-sectional views for sequentially explaining the steps of a conventional manufacturing method shown for comparison, and FIGS. 2 to F are cross-sectional views for sequentially explaining the steps of the present invention. . In addition, in the figure, 101.201...P-type silicon unino, 102
......Silicon nitride film, 103.204...
PH1,104*202.105,207...
Silicon dioxide film, 106.208...Polycrystalline silicon film, 167.209...Source region, 108.
210...mark/drain region, 109,211...
...Source electrode wiring, 110°212...Drain electrode wiring, 111,213...Protective coating,
203... Silicon dioxide layer containing nitrogen. Conclusion Figure 1 Figure Z

Claims (4)

【特許請求の範囲】[Claims] (1)プレーナ方式による硅素半導体装置の製造方法に
於て、硅素半導体上に二酸化硅素膜を形成する工程と、
該二酸化硅素膜の表面近傍[窒素を含ませる工程と、該
窒素を含ませた二酸化硅素膜を耐酸化マスクとし該硅素
半導体を選択酸化する工程とを具備することを特徴とす
る半導体装置の製造方法。
(1) In a method for manufacturing a silicon semiconductor device using a planar method, a step of forming a silicon dioxide film on a silicon semiconductor;
Manufacturing a semiconductor device comprising: a step of impregnating nitrogen near the surface of the silicon dioxide film; and a step of selectively oxidizing the silicon semiconductor using the silicon dioxide film impregnated with nitrogen as an oxidation-resistant mask. Method.
(2)プレーナ方式による硅素半導体装置の製造方法に
於いて、硅素半導体上に二酸化硅素膜を形成する工程と
、該二酸化硅素膜の上面を高温のアンモニアガス、又は
アンモニアガスプラズマ中にさらす工程と、該アンモニ
ア処理された二酸化硅素を耐酸化マスクとして該硅素半
導体全選択酸化する工程とを具備することを特徴とする
半導体装置の製造方法。
(2) A method for manufacturing a silicon semiconductor device using a planar method, which includes a step of forming a silicon dioxide film on a silicon semiconductor, and a step of exposing the upper surface of the silicon dioxide film to high-temperature ammonia gas or ammonia gas plasma. A method for manufacturing a semiconductor device, comprising the steps of: selectively oxidizing the entire silicon semiconductor using the ammonia-treated silicon dioxide as an oxidation-resistant mask.
(3)プレーナ方式による硅素半導体装置の製造方法に
於いて、硅素半導体上に二酸化硅素膜を形成する工程と
、該二酸化硅素膜に窒素イオンを注入する工程と、該窒
素イオンを注入した二酸化硅素膜を耐酸化マスクとして
該硅素半導体を選択酸化する工程とを具備することを特
徴とする半導体装置の製造方法。
(3) In a method for manufacturing a silicon semiconductor device using a planar method, a step of forming a silicon dioxide film on a silicon semiconductor, a step of implanting nitrogen ions into the silicon dioxide film, and a step of implanting the silicon dioxide into which the nitrogen ions are implanted. A method for manufacturing a semiconductor device, comprising the step of selectively oxidizing the silicon semiconductor using a film as an oxidation-resistant mask.
(4)プレーナ方式による硅素半導体装置の製造方法に
於いて、硅素半導体上に二酸化硅素膜全形成する工程と
、該二酸化硅素膜の表面を窒素、又は窒素を含むガスの
プラズマ中にさらす工程と、該窒素処理全施した該二酸
化硅素膜を耐酸化マスクとして該硅素半導体を選択酸化
する工程とを具備すること全特徴とする半導体装置の製
造方法。
(4) A method for manufacturing a silicon semiconductor device using a planar method, which includes a step of completely forming a silicon dioxide film on a silicon semiconductor, and a step of exposing the surface of the silicon dioxide film to plasma of nitrogen or a gas containing nitrogen. A method for manufacturing a semiconductor device, comprising the steps of: selectively oxidizing the silicon semiconductor using the nitrogen-treated silicon dioxide film as an oxidation-resistant mask.
JP21355382A 1982-12-06 1982-12-06 Manufacture of semiconductor device Pending JPS59103357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21355382A JPS59103357A (en) 1982-12-06 1982-12-06 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21355382A JPS59103357A (en) 1982-12-06 1982-12-06 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59103357A true JPS59103357A (en) 1984-06-14

Family

ID=16641105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21355382A Pending JPS59103357A (en) 1982-12-06 1982-12-06 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59103357A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335242A (en) * 1992-06-03 1993-12-17 Handotai Process Kenkyusho:Kk Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335242A (en) * 1992-06-03 1993-12-17 Handotai Process Kenkyusho:Kk Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US8269281B2 (en) Method for forming gate oxide of semiconductor device
JPH11289006A (en) Method for formation of trench isolation in integrated circuit
JPH03171731A (en) Formation of thick oxide region in semiconductor device
JPS59107518A (en) Method of forming structure having size of submicron range
JP3414590B2 (en) Method for manufacturing semiconductor device
US6146972A (en) Method for fabricating semiconductor device
JPS61214446A (en) Manufacture of semiconductor device
JPH0628282B2 (en) Method for manufacturing semiconductor device
US5763316A (en) Substrate isolation process to minimize junction leakage
JPH0897202A (en) Manufacture of semiconductor device
JPS59103357A (en) Manufacture of semiconductor device
KR20010107707A (en) Method for manufacturing semiconductor device having a sti structure
KR100336567B1 (en) Isolation method of semiconductor device
JPH07176742A (en) Manufacture of semiconductor device and semiconductor device
KR0162138B1 (en) Element isolation method of semiconductor apparatus
US6255188B1 (en) Method of removing a polysilicon buffer using an etching selectivity solution
JPH06151834A (en) Manufacture of semiconductor device
JP2707901B2 (en) Method for manufacturing semiconductor device
KR940001813B1 (en) Isolation method and device of semiconductor
JPS59208744A (en) Semiconductor device
KR100262017B1 (en) Method of manufacturing cell
JPH04267336A (en) Manufacture of semiconductor device
KR960009096B1 (en) Manufacturing method of semiconductor device field oxide
KR940009578B1 (en) Semiconductor device and manufacturing method thereof
JP3270187B2 (en) Method for forming element isolation film in semiconductor integrated circuit device