JPS59208744A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59208744A
JPS59208744A JP8264183A JP8264183A JPS59208744A JP S59208744 A JPS59208744 A JP S59208744A JP 8264183 A JP8264183 A JP 8264183A JP 8264183 A JP8264183 A JP 8264183A JP S59208744 A JPS59208744 A JP S59208744A
Authority
JP
Japan
Prior art keywords
substrate
groove
resist
coated glass
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8264183A
Other languages
Japanese (ja)
Inventor
Yasuo Wada
恭雄 和田
Akira Sato
朗 佐藤
Kazuhiro Oga
大賀 一弘
Touhachi Makino
牧野 藤八
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Original Assignee
Hitachi Ltd
Hitachi Microcomputer Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Microcomputer Engineering Ltd filed Critical Hitachi Ltd
Priority to JP8264183A priority Critical patent/JPS59208744A/en
Publication of JPS59208744A publication Critical patent/JPS59208744A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To realize high accuracy of element isolation structure and prevent reduction of active region by forming element isolation oxide film in such a structure that it is projected from an Si substrate. CONSTITUTION:A thermal oxide film 12 is caused to grow on the P type Si substrate 11 forming an MOSIC, moreover a silicon nitride layer 13 is deposited by a low pressure chemical vapor deposition method and the specified pattern is formed by rotatingly applying the resist 14 thereon. The film 12 and layer 13 of the region other than the pattern by the resist 14 are etched by gas and thereby a groove is formed. Moreover, a groove is formed in the specified depth on the substrate 11 and coating glass is applied to the groove and resist 14. The resist 14 is removed by the specified method and the coated glass layer 15 applied to the groove is projected from the surface of substrate 11. Thereby, high precision element isolation structure can be realized and reduction of the active region of MOSIC is prevented.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置に関し、詳しくは新規な分離(14
造をイjする半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor device, and specifically relates to a novel separation method (14
The present invention relates to a semiconductor device with a new structure.

〔発明の背景〕[Background of the invention]

従来の半導体集積回路(IC)における素子分離方法は
、いわゆるLOCO3(f、ocal Qxidati
□n□f 5i1icon ニジ−T−、エーアベルズ
ラ、フィリップス リサーチ レポート25巻118頁
The conventional element isolation method in semiconductor integrated circuits (ICs) is the so-called LOCO3(f,ocal Qxidati
□n□f 5i1icon Niji-T-, Air Berzula, Phillips Research Report Vol. 25, p. 118.

1970年; J、 A、 Appels et al
 、 Ph1lips Res几ept  25 、 
II8 Dc+7o)L!:呼バレル、窒化/リフン膜
を耐酸化性マスクとして用いて酸化膜を形成する方法が
一般的に使用されて来た。しかしながら、この方法には
下記二つの大きな問題のある事が、素子寸法の縮小と共
に明らかになってきた。
1970; J. A. Appels et al.
, Ph1lips Resept 25,
II8 Dc+7o)L! : A method of forming an oxide film using a nitride/rifon film as an oxidation-resistant mask has been commonly used. However, the following two major problems with this method have become apparent as the device dimensions are reduced.

(1)いわゆるバード ビーク(bi rd s’ b
eak )と呼ばれる、素子間分離用酸化膜の、素子を
形成すべき領域への侵入による、素子領域の減少。通常
素子間分離用酸化膜厚の1/2程度の幅となる。例えば
酸化膜厚1μmでは、0.5μm程度。
(1) So-called bird beak
Reduction of device area due to intrusion of the oxide film for device isolation into the region where the device is to be formed, called eak). Usually, the width is about 1/2 of the thickness of the oxide film for isolation between elements. For example, when the oxide film thickness is 1 μm, it is about 0.5 μm.

(2)素子間にチャネルが生ずるのを防ぎ、完全な電気
的分離のために該酸化膜の下部にドープする不純物、例
えばP型基板の場合はボロンが、該酸化膜を成長させる
ために行なう熱酸化工程で横方向に拡散し、高濃匿ボロ
ン拡散層を形成するため、実効的な素子領域の減少が起
こる。これは、MO8型ICの場合狭チャネル効果と呼
はれている。
(2) Impurities doped under the oxide film, such as boron in the case of a P-type substrate, are used to grow the oxide film to prevent the formation of channels between devices and for complete electrical isolation. In the thermal oxidation process, it diffuses laterally to form a highly enriched boron diffusion layer, resulting in a reduction in the effective device area. This is called a narrow channel effect in the case of MO8 type ICs.

これらの二つの問題点のため、特に素子寸法が1μm以
下の微細なパターンから成るICでは、LOCO8法を
用いて素子分離を行なう事は実用的でない。
Because of these two problems, it is impractical to perform device isolation using the LOCO8 method, especially in ICs consisting of fine patterns with device dimensions of 1 μm or less.

たとえば、素子分離領域1.0μmのICを作ることは
、バード・ピークが015μm、狭チャネル効果が約1
μmであるから、不可能という事になる。逆に、最初1
μmの幅の領域は、最終的に2.5μmの幅の素子分離
領域になってしまう。
For example, making an IC with a device isolation region of 1.0 μm will result in a bird peak of 0.15 μm and a narrow channel effect of approximately 1.0 μm.
Since it is μm, it is impossible. On the contrary, first 1
A region with a width of .mu.m ultimately becomes an element isolation region with a width of 2.5 .mu.m.

このような■、ocos法の問題点を解決するために、
塗布ガラス法を用いる事ができる。これは、第1図(a
)に示したように、P型(100)面、10Ω・+17
11のSi基板1上に、反応性スパッタエッチ法によっ
て溝を形成し、さらに塗布ガラス、たとえば0CD59
310 (商品名;東京応化製)を回転数5000rp
mで回転塗布すると、該溝は、厚い塗布ガラス膜2で、
まだ平坦部は、薄い塗布ガラス膜3でおのおの覆われる
。実際に素子を形成するためには、薄い塗布ガラス膜3
を除去し、81基板1を露出させる必要があるが、この
時、厚い塗布ガラス膜もエッチされ、第1図(b)に示
した如く、Si基板1よりもオーバーエッチの分だけ低
くなってし甘う。さらにその後のプロセスでシリコン酸
化膜のエッチが行なわれる度に、厚い塗布ガラス膜3が
エッチされる結果、その段差は0.2μm以上にも達し
、素子製作上問題があるばか役でなく、後に述べるよう
に、素子特性にも悪影響を与えるため、素子分離領域の
高さが、基板よQも低くなる事は防がねばならない。こ
のような段差は、単純に塗布ガラスを塗布する方法では
避ける事はできない。
In order to solve these problems of the ocos method,
A coated glass method can be used. This is shown in Figure 1 (a
), P type (100) plane, 10Ω・+17
A groove is formed on the Si substrate 1 of No. 11 by a reactive sputter etching method, and a coated glass such as 0CD59 is further formed.
310 (product name; manufactured by Tokyo Ohka) with a rotation speed of 5000 rpm
When spin coating is carried out at m, the groove is covered with a thick coated glass film 2,
The still flat portions are each covered with a thin coated glass film 3. In order to actually form an element, a thin coated glass film 3
It is necessary to remove the Si substrate 1 and expose the 81 substrate 1, but at this time, the thick coated glass film is also etched, and as shown in FIG. 1(b), it is lower than the Si substrate 1 by the amount of overetching. I'm spoiled. Furthermore, each time the silicon oxide film is etched in the subsequent process, the thick coated glass film 3 is etched, resulting in a step difference of 0.2 μm or more. As described above, it is necessary to prevent the height of the element isolation region from becoming lower than that of the substrate, since this will have a negative effect on the element characteristics. Such level differences cannot be avoided by simply applying coated glass.

〔発明の目的〕[Purpose of the invention]

本発明は、従来技術のこのような問題点を解決するため
に為されたもので、素子分離用酸化膜を81基板よシ突
出させた構造とする事にょシ、素子分離構造の高精度化
を可能とするものである。
The present invention has been made to solve these problems of the prior art, and it is possible to improve the precision of the element isolation structure by creating a structure in which the element isolation oxide film protrudes from the 81 substrate. This makes it possible to

〔発明の概要〕[Summary of the invention]

本発明を第2図(a)に示した概念図によりMOS 、
1.Cに適用した場合を用いてまず説明する。P型(1
00)面10Ω・mのSi基板4に深さ1μmの溝を形
成し、塗布ガラスを回転塗布して、厚い塗布ガラス層5
を、Si基板よシも突出させて形成し、さらに、ゲート
6、ゲート酸化膜7、ヒ素拡散層8金形成しノζ状態を
示す。このような構造とする事により、素子分離幅、チ
ャネル幅も共に設計値通9にする事ができる。仮に従来
のように、厚い塗布ガラス層5′が81基板4よシも低
くなると、第2図(b)にチャネル幅方向の断面図で示
したように、Si基板4の側面9がチャネル領域となる
ため、しきい電圧(VTR)の制御が困難となる等、副
次的な問題点も生ずる。この理由は、(1) V T 
Rの制御に用いられるイオン打込み法では、側面9にイ
オン打込みする墨が不可能である、(2)Si0面によ
って昇口準位密度Qssが異なる、という二点にある。
The present invention is illustrated in the conceptual diagram shown in FIG.
1. First, the case where it is applied to C will be explained. P type (1
00) A groove with a depth of 1 μm is formed in a Si substrate 4 with a surface of 10 Ω·m, and coated glass is applied by rotation to form a thick coated glass layer 5.
A gate 6, a gate oxide film 7, and an arsenic diffusion layer 8 are formed to protrude from the Si substrate, and a gold layer 8 is formed. By adopting such a structure, both the element isolation width and the channel width can be made equal to the designed value. If the thick coated glass layer 5' were to be lower than the 81 substrate 4 as in the conventional case, the side surface 9 of the Si substrate 4 would become a channel area, as shown in the cross-sectional view in the channel width direction in FIG. 2(b). Therefore, secondary problems arise, such as difficulty in controlling the threshold voltage (VTR). The reason for this is (1) V T
The ion implantation method used to control R has two problems: (2) it is impossible to implant black ions into the side surface 9; and (2) the ascending level density Qss differs depending on the Si0 surface.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づき詳細に説明する。 The present invention will be described in detail below based on examples.

実施例1 第3図(→は、P型(100)面10Ω・ffiのSi
基板11を、1000tl?乾燥酸素中で酸化し、厚さ
5Qnmの熱酸化膜12を成長し、さらに低圧化学蒸着
法(Low pressure  (:hemical
Vapor Deposition法;以下LPCVD
法と略)により厚さ200nmのシリコンナイトライド
(以下813N4と略)層13を堆積させ、レジストと
してAZ1350J(商品名;シップレイ社製)を厚さ
1μmに回転塗布し、通常のホ) IJソゲラフイエ程
によって素子を形成すべき領域にパターン14を形成し
た状態を示す。
Example 1 Figure 3 (→ indicates P-type (100) surface 10Ω・ffi Si
The board 11 is 1000 tl? Oxidation is carried out in dry oxygen to grow a thermal oxide film 12 with a thickness of 5 Qnm, and then low pressure chemical vapor deposition (:chemical
Vapor Deposition method; hereinafter LPCVD
A silicon nitride (hereinafter referred to as 813N4) layer 13 with a thickness of 200 nm was deposited by a method (abbreviated as 813N4), and AZ1350J (trade name; manufactured by Shipley Co., Ltd.) was spin coated as a resist to a thickness of 1 μm. A pattern 14 is shown formed in a region where an element is to be formed according to the process.

第3図(b)は、パターン14以外の領域の該SI3N
4層13、熱酸化膜12をCF490チ、H210チの
混合ガスを用いた反応性スパッタエッチにニジエッチし
、さらにSi基板11をSFgガスを用いた反応性スパ
ッタエッチによpエッチし、深さ1.5μmの溝を形成
し、さらに弗酸と硝酸を1:50の体積比で混合したエ
ッチ液で30秒間エッチした状態を示す。この弗酸と硝
酸の混合液によるエッチは、反応性スパッタエッチによ
る損傷を除去するために行なう。
FIG. 3(b) shows the SI3N in the area other than the pattern 14.
The fourth layer 13 and the thermal oxide film 12 are etched by reactive sputter etching using a mixed gas of CF490 and H210, and the Si substrate 11 is further etched by reactive sputter etching using SFg gas to a depth. This shows a state in which a groove of 1.5 μm was formed and further etched for 30 seconds with an etchant containing a mixture of hydrofluoric acid and nitric acid at a volume ratio of 1:50. This etching using a mixed solution of hydrofluoric acid and nitric acid is performed to remove damage caused by reactive sputter etching.

第3図(C)は、塗布ガラス15を塗布し、該81基板
中に形成した溝を埋めた状態を示す。塗布ガラスの塗布
条件は、回転数500Orpm、アニールは200Cで
20分間である。複数回塗布する事により、厚さ1μm
のレジスト層の上端1で塗布Jjガラス完全に埋める事
ができる。
FIG. 3(C) shows a state in which the coated glass 15 is applied and the grooves formed in the substrate 81 are filled. The coating conditions for the coated glass were a rotational speed of 500 rpm and annealing at 200 C for 20 minutes. By applying multiple times, the thickness becomes 1 μm.
It is possible to completely fill the coated JJ glass with the top edge 1 of the resist layer.

第3図(d)は、レジスト層14を除去し、該溝を、8
1基板の表面より突出した塗布ガラス15で埋めた状態
を示す。
FIG. 3(d) shows that the resist layer 14 is removed and the groove is
1 shows a state filled with coated glass 15 protruding from the surface of one substrate.

本実施例に示した如く、半導体基板表面よりも突出した
塗布ガラス層を形成するためには、レジスト等の材料を
、該盆布カラス層を形成する領域以外の領域に厚く堆積
し、しかる後に塗布ガラスを塗布して平坦にすれば良い
As shown in this example, in order to form a coated glass layer that protrudes from the surface of the semiconductor substrate, a material such as a resist is deposited thickly in an area other than the area where the tray glass layer is to be formed, and then All you have to do is apply coated glass to make it flat.

実施例2 第4図(a)は、P型(100)面10Ω・cmL7)
81基板21を、10001:乾燥酸素中で酸化し、厚
さ2Q n mの酸化膜22を成長させた後、L P 
CV D法で厚さ120 n m(7) 81s N4
膜23、CVD法で厚さ400nmの8102膜24を
おのおの堆積し、ホトレジストとしてAZ1350Jを
用いてパターン25を形成し、素子分離領域の該810
2膜24、S r 3N 4膜23、熱酸化膜22を、
CI−i F aガスを用いた反応性スパッタエッチに
よりおのおのエッチした状態を示す。
Example 2 Figure 4(a) shows P-type (100) surface 10Ω cm L7)
After oxidizing the 81 substrate 21 in 10001 dry oxygen and growing an oxide film 22 with a thickness of 2Q nm, L P
Thickness 120 nm (7) 81s N4 by CVD method
A film 23 and an 8102 film 24 with a thickness of 400 nm are deposited by the CVD method, and a pattern 25 is formed using AZ1350J as a photoresist.
2 film 24, S r 3N 4 film 23, thermal oxide film 22,
It shows the state where each was etched by reactive sputter etching using CI-i Fa gas.

第4図(b)は、該レジストパターン除去後、CF 4
ガスを用いた反応性スパッタエッチによム該3i基板2
1に深さ1μmの溝紫形成し、弗酸。
FIG. 4(b) shows that after removing the resist pattern, CF 4
The 3i substrate 2 is etched by reactive sputter etching using gas.
A purple groove with a depth of 1 μm was formed in 1, and hydrofluoric acid was added.

硝酸=■:50の体積比で混合した液中に30秒間浸し
、81面を0.05μmエッチし、さらに該8j02膜
24を弗酸中に浸して除去した後、1000C乾燥酸素
中で20分間酸化し、厚さ2011 mの熱酸化膜26
を成長した状態を示す。
The 8j02 film 24 was immersed in a solution mixed at a volume ratio of nitric acid =■:50 for 30 seconds to etch 0.05 μm on the 81 side.The 8j02 film 24 was further immersed in hydrofluoric acid to be removed, and then immersed in dry oxygen at 1000C for 20 minutes. Oxidized thermal oxide film 26 with a thickness of 2011 m
Shows the grown state.

第4図(C)は、塗布ガラスとして、ボロンをO,00
1モル%含むOCD 59310を回転数300Orp
mで回転壁布し、塗布刀ラス)−27を形成し、しかる
後、900Cウエツト雰囲気中で30分間加熱した状態
を示す。
Figure 4 (C) shows boron as the coated glass.
Rotation speed 300 Orp containing OCD 59310 containing 1 mol%
This figure shows the state in which the sample was coated on a rotating wall at m to form a coating lath (27), and then heated in a 900C wet atmosphere for 30 minutes.

第4図(d)は、該5j3N4膜23上の塗布ガラスr
e 27を弗酸と弗化アンモニウムを体積比に20で混
合したバッファエッチ液によりエッチし、さらに該Si
3N4層23全熱リン酸でまた8102層22をバッフ
ァエッチ液でおのおの除去しり状態を示す。このような
構造により、該塗布ガラス層27を、該Si基板よpも
約0.1μm突出した構造全実現する事ができる。
FIG. 4(d) shows the coated glass r on the 5j3N4 film 23.
e 27 was etched with a buffer etchant containing a mixture of hydrofluoric acid and ammonium fluoride at a volume ratio of 20, and then the Si
The 3N4 layer 23 was removed using fully heated phosphoric acid, and the 8102 layer 22 was removed using a buffer etchant. With this structure, it is possible to realize a structure in which the coated glass layer 27 protrudes from the Si substrate by about 0.1 μm.

第4図(e)は、ゲート酸化膜28、ケート導電体29
、ソース・ドレーン領域30を形成し、MO8L” E
 Tを完成した状態を示す。この時該塗布ガラス層27
からボロンが81基板21内に拡散され、チャネルスト
ッパが形成されるため、リーク電流等の起こる心配はな
い。完成素子のゲート幅方向の断面略図を第4図(りに
示す。第2図(b)に示した従来技術と比較し、側壁に
チャネルが生じないため、完全な1” E T動作が期
待できる。また素子分離領域での段差7il−01μm
以下にできるため、段差部での配線の不良発生を完全に
避ける事が可能である。
FIG. 4(e) shows the gate oxide film 28 and the gate conductor 29.
, form the source/drain region 30, and MO8L”E
This shows the completed state of T. At this time, the coated glass layer 27
Since boron is diffused into the 81 substrate 21 to form a channel stopper, there is no fear of leakage current or the like. A schematic cross-sectional view of the completed device in the gate width direction is shown in Figure 4.Compared to the conventional technology shown in Figure 2(b), perfect 1''ET operation is expected because no channel is formed on the sidewalls. Also, the step difference in the element isolation region is 7il-01μm.
Since it is possible to do the following, it is possible to completely avoid the occurrence of wiring defects at the stepped portion.

実施例3 第5図(a)は、Pa(100)面10に’・z(7)
Si基板31を100OCドライ酸素雰囲気で熱酸化し
、厚さ5Qnmの酸化膜32を成長後、LPCVD法で
多結晶シリコン(以下polysiと略)ノ曽を厚さ0
.5μmに堆積し、きらに通常のホトリングラフィ法で
、素子を形成すべき領域にバター/を形成し、該pOA
ysi層を−CF 4ガスを用いた反応性スパッタエッ
チでエッチしてパターン33を残し、さらに該Si基板
を深さ0.7μm迄掘シ、溝を形成した後、レジストを
除去してから再び1000Cでドライ酸化し、酸化膜3
4を成長させた状態である。
Example 3 FIG. 5(a) shows 'z(7) on the Pa(100) plane 10.
After thermally oxidizing the Si substrate 31 in a 100OC dry oxygen atmosphere and growing an oxide film 32 with a thickness of 5 Qnm, polycrystalline silicon (hereinafter abbreviated as polysi) was deposited to a thickness of 0 using the LPCVD method.
.. The pOA is deposited to a thickness of 5 μm, and the pOA is deposited on the area where the device is to be formed using a conventional photolithography method.
The ysi layer is etched by reactive sputter etching using -CF4 gas to leave a pattern 33, and the Si substrate is further excavated to a depth of 0.7 μm to form a groove, the resist is removed, and then etched again. Dry oxidize at 1000C to form oxide film 3
4 has grown.

第5図(b)は、塗布ガラスとしてボロンをO,OO0
1モル襲含む0CD59510を回転塗布して、塗布ガ
ラス層35を形成し、1oooic、窒素中で30分間
アニールした後、pOtyS1層33上の塗布ガラス層
を除去し、さらにCF4ガスを用いた反応性スパッタエ
ッチによシ該potySi層33を除去した状態を示す
。熱酸化膜32を除去後、81基板上にデバイスを作成
する。
Figure 5(b) shows boron as the coated glass.
A coated glass layer 35 is formed by spin coating 0CD59510 containing 1 mol of 0CD59510, and after annealing in nitrogen for 30 minutes, the coated glass layer on the pOtyS1 layer 33 is removed, and a reactive layer 35 is formed using CF4 gas. The potySi layer 33 is shown removed by sputter etching. After removing the thermal oxide film 32, a device is created on the substrate 81.

〔発明の効果〕〔Effect of the invention〕

以上実施例で示した如く、81基板より突出した塗布ガ
ラス層を形成し素子間分離に用いる事によシ、従来のL
OCO8法の欠点、並びに従来の塗布ガラス法の問題点
を除き、優れた素子特性を持つデバイスを実現できる。
As shown in the examples above, by forming a coated glass layer that protrudes from the 81 substrate and using it for isolation between elements, it is possible to improve the conventional L
By eliminating the drawbacks of the OCO8 method and the problems of the conventional coated glass method, a device with excellent device characteristics can be realized.

すなわち、 (1)ハード・ピーク、狭チャネル効果といったLOC
O8法による活性領域の減少を防止でき、設計寸法通シ
の素子を実現可能である。
That is, (1) LOC such as hard peaks and narrow channel effects;
It is possible to prevent the active region from decreasing due to the O8 method, and it is possible to realize a device with the same design dimensions.

(2)素子分離領域の段差を小さくでき、側壁チャネル
、配線不良を除く事ができる。
(2) The level difference in the element isolation region can be reduced, and sidewall channels and wiring defects can be eliminated.

したがって、本発明によれは、1μm以下の幅の素子分
離技術を実現できるため、素子の一層の高密度化が可能
になる。なお、本技術をC−MOSに適用する場合には
、ウェルの深さ以上の深さを持つ溝を形成し、これを塗
布ガラスで埋めれば良い。
Therefore, according to the present invention, it is possible to realize an element isolation technique with a width of 1 μm or less, thereby making it possible to further increase the density of elements. In addition, when applying this technique to C-MOS, it is sufficient to form a groove having a depth equal to or greater than the depth of the well, and fill this groove with coated glass.

【図面の簡単な説明】 第1図は従来技術を説明するだめの図、第2図〜第5図
は本発明の異なる実施例を説明するための工程図である
。 1.4,11,21.31・・・81基板、2,3゜5
.5’ 、15,27.35・・・塗布ガラス層、6゜
29・・・ゲート、8.30・・・ソース・ドレーン領
域、7.28・・・ゲート酸化膜、9・・・側壁、12
,22゜26.32.34・・・熱酸化膜、13.23
・・・シリコン・ナイトライド、14・・・レジスト、
33・・・多芽 1 図((1) % 1 図(b) 第 2 図(良) 第 2 図(b) 第 3 図(C) 開3 図(d) 第4図((1) パ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram for explaining the prior art, and FIGS. 2 to 5 are process diagrams for explaining different embodiments of the present invention. 1.4, 11, 21.31...81 board, 2,3゜5
.. 5', 15, 27.35... Coated glass layer, 6°29... Gate, 8.30... Source/drain region, 7.28... Gate oxide film, 9... Side wall, 12
,22゜26.32.34...thermal oxide film, 13.23
...Silicon nitride, 14...Resist,
33... Multiple buds 1 Figure ((1) % 1 Figure (b) Figure 2 (Good) Figure 2 (b) Figure 3 (C) Open 3 Figure (d) Figure 4 ((1)

Claims (1)

【特許請求の範囲】[Claims] 半導体基板に設けられた溝と、該溝に充填された・T布
ガラスの硬化物をそなえ、上記塗布ガラスの硬化物の上
面は上記半導体基板の辰面よシ上にあることを特徴とす
る半導体装置。
The semiconductor substrate has a groove provided therein, and the groove is filled with a cured product of T cloth glass, and the upper surface of the cured coated glass is above the edge surface of the semiconductor substrate. Semiconductor equipment.
JP8264183A 1983-05-13 1983-05-13 Semiconductor device Pending JPS59208744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8264183A JPS59208744A (en) 1983-05-13 1983-05-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8264183A JPS59208744A (en) 1983-05-13 1983-05-13 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS59208744A true JPS59208744A (en) 1984-11-27

Family

ID=13780050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8264183A Pending JPS59208744A (en) 1983-05-13 1983-05-13 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS59208744A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245249A (en) * 1984-05-21 1985-12-05 Nec Corp Formation of element isolating region
JPH0445558A (en) * 1990-06-12 1992-02-14 Mitsubishi Electric Corp Element isolation structure and its formation method
WO1993008596A1 (en) * 1991-10-14 1993-04-29 Nippondenso Co., Ltd. Method for fabrication of semiconductor device
US5518950A (en) * 1994-09-02 1996-05-21 Advanced Micro Devices, Inc. Spin-on-glass filled trench isolation method for semiconductor circuits

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245249A (en) * 1984-05-21 1985-12-05 Nec Corp Formation of element isolating region
JPH0451058B2 (en) * 1984-05-21 1992-08-18 Nippon Electric Co
JPH0445558A (en) * 1990-06-12 1992-02-14 Mitsubishi Electric Corp Element isolation structure and its formation method
WO1993008596A1 (en) * 1991-10-14 1993-04-29 Nippondenso Co., Ltd. Method for fabrication of semiconductor device
US5480832A (en) * 1991-10-14 1996-01-02 Nippondenso Co., Ltd. Method for fabrication of semiconductor device
US5518950A (en) * 1994-09-02 1996-05-21 Advanced Micro Devices, Inc. Spin-on-glass filled trench isolation method for semiconductor circuits

Similar Documents

Publication Publication Date Title
US4508757A (en) Method of manufacturing a minimum bird's beak recessed oxide isolation structure
US5151381A (en) Method for local oxidation of silicon employing two oxidation steps
JPS6340337A (en) Method of isolating integrated circuit
US5369052A (en) Method of forming dual field oxide isolation
JPS63107119A (en) Manufacture of integrated circuit with stepped insulating layer
US4497108A (en) Method for manufacturing semiconductor device by controlling thickness of insulating film at peripheral portion of element formation region
DE69017140T2 (en) Isolation for integrated circuit arrangement.
JPH0628282B2 (en) Method for manufacturing semiconductor device
JPS59208744A (en) Semiconductor device
JP3178416B2 (en) Method for manufacturing semiconductor device
EP0120614B1 (en) Method of manufacturing a semiconductor device having isolation regions
JP2000022153A (en) Semiconductor device and manufacture thereof
EP0336515B1 (en) Method of manufacturing a semiconductor device having a silicon substrate with fully or partly sunken field oxide regions
JPS62232143A (en) Manufacture of semiconductor device
JPH079930B2 (en) Method for manufacturing semiconductor device
JPH0210729A (en) Formation of field insulating film
JPH0467648A (en) Manufacture of semiconductor device
KR940005720B1 (en) Manufacturing method for elements segregation of semiconductor device
KR940009578B1 (en) Semiconductor device and manufacturing method thereof
JPS6322065B2 (en)
KR960009096B1 (en) Manufacturing method of semiconductor device field oxide
JPS59103357A (en) Manufacture of semiconductor device
JPS6135533A (en) Manufacture of semiconductor device
JPS6214942B2 (en)
JPS5963741A (en) Manufacture of semiconductor device