JPS6141320A - Polyester fiber - Google Patents

Polyester fiber

Info

Publication number
JPS6141320A
JPS6141320A JP16162384A JP16162384A JPS6141320A JP S6141320 A JPS6141320 A JP S6141320A JP 16162384 A JP16162384 A JP 16162384A JP 16162384 A JP16162384 A JP 16162384A JP S6141320 A JPS6141320 A JP S6141320A
Authority
JP
Japan
Prior art keywords
polyester
intrinsic viscosity
ethylene terephthalate
dispersion
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16162384A
Other languages
Japanese (ja)
Inventor
Shiro Nokawa
能川 四郎
Kazuyuki Yamamoto
和幸 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP16162384A priority Critical patent/JPS6141320A/en
Priority to US06/751,796 priority patent/US4690866A/en
Priority to EP85108266A priority patent/EP0169415B1/en
Priority to DE8585108266T priority patent/DE3565698D1/en
Publication of JPS6141320A publication Critical patent/JPS6141320A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To provide the titled fiber consisting of a polyester containing ethylene terephthalate as the recurring unit and having specific physical properties, high strength, low shrinkage, and excellent fatigue resistance and drawability, and suitable as an industrial material. CONSTITUTION:For example, a polyester containing ethylene terephthalate as the recurring unit and having an intrinsic viscosity of 0.95-1.5 is spun under melting, quenched, solidified by cooling, coated with a lubricant, taken up at a high speed, and drawn to obtain the objective fiber having a half-value width of the principal component in the temperautre dispersion of mechanical loss modulus of <=45 deg.C, the peak temperature of the principal dispersion of <=125 deg.C, the crystal size of >=80Angstrom , and a dry heat shrinkage of 2.5-4% at 210 deg.C, and consisting of a polyester containing ethylene terephthalate as the recurring unit and having an intrinsic viscosity of >=0.9.

Description

【発明の詳細な説明】 a 産業上の利用分野 本発明は産室用として高強度で低収縮で、耐疲労性が良
好で且つ延伸性が良好なポリエステル繊維に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION a. Field of Industrial Application The present invention relates to a polyester fiber for use in the delivery room that has high strength, low shrinkage, good fatigue resistance, and good stretchability.

b 従来技術 ポリエステル繊維は種々の優れた特性を有するため、衣
料用のみならず工業用として広く利用されている、特に
高強度で且つ寸法安定性に優れたポリエステル繊維は、
工業用途において有用であり、タイヤ用途のみならず性
質用途にも益々使用されてきているが、最近共々高度の
性能が要求され℃いる。例えばコンベアベルト、ゴムホ
ース用途においては成型時の寸法安定性から益々の低収
縮性化、過酷な使用条件での耐久性、耐疲労性が要求さ
れている。
b. Prior Art Polyester fibers have various excellent properties, and are widely used not only for clothing but also for industrial purposes. Polyester fibers have particularly high strength and excellent dimensional stability.
They are useful in industrial applications and are increasingly being used not only in tire applications but also in property applications, but recently high performance has been required for both. For example, in conveyor belt and rubber hose applications, dimensional stability during molding, lower shrinkage, durability under harsh usage conditions, and fatigue resistance are required.

現在この分野では、歴史の古いレーヨン繊維、ビニロン
繊維が汎用的に使用されておシ、ポリエステル繊維も使
用され始めている。しかしながら、ポリエステル繊維は
高強度でありながらも低収縮性、耐久性、耐疲労性が不
充分である。力′・かる観点からこれら特性を改良され
れば、コスト/パーフォマンの優れたポリエステル繊維
が性質用素材としての位置付けが益々高くなる。
Currently, in this field, rayon fibers and vinylon fibers, which have a long history, are commonly used, and polyester fibers are also beginning to be used. However, although polyester fibers have high strength, they are insufficient in low shrinkage, durability, and fatigue resistance. If these properties can be improved from the viewpoint of strength and strength, polyester fibers with excellent cost and performance will become increasingly popular as materials for properties.

産資用繊維に要求される高強度を発現させるためには、
例えは特公昭41−7892号公報。
In order to achieve the high strength required for industrial fibers,
An example is Japanese Patent Publication No. 41-7892.

特公昭53−1367号公報に開示されているような高
重合度ポリエステルを使用し紡糸段階で分子配向を抑制
し、延伸段階で出来るだけ延伸倍率を増大させる方法が
知られている。
A method is known in which a high degree of polymerization polyester is used as disclosed in Japanese Patent Publication No. 53-1367, molecular orientation is suppressed in the spinning stage, and the stretching ratio is increased as much as possible in the stretching stage.

しかしながら、この方法に依れば、非晶分子鎖の配向度
が高いために高強度のものが得られる反面、収縮率も増
大する。一方、収縮率を低下するためには、例えば特開
昭53−58028号公報に開示されているような低重
合度ポリエステルを使用する方法が知られている。しか
しながら、この方法では強度、タフネスの高いものが得
難い。更に、収縮率を低下するためには、特公昭58−
51524号公報に開示されているように、多段延伸後
、高温で低張カニ熱処理する方法が知られている。
However, according to this method, since the degree of orientation of the amorphous molecular chains is high, high strength can be obtained, but on the other hand, the shrinkage rate also increases. On the other hand, in order to reduce the shrinkage rate, a method is known in which a low degree of polymerization polyester is used, for example as disclosed in JP-A-53-58028. However, with this method, it is difficult to obtain products with high strength and toughness. Furthermore, in order to reduce the shrinkage rate,
As disclosed in Japanese Patent No. 51524, a method is known in which, after multi-stage stretching, low tension crab heat treatment is performed at high temperature.

しかしながら、この方法も上記2つの方法と同様に耐疲
労性の低いものしか得られない。
However, like the above two methods, this method also provides only a product with low fatigue resistance.

低収縮性で且つ耐疲労性を同上せしめるには、例えば特
開昭53−58031号公報、同53−58032号公
報には、延伸糸の分子配向度を低下し且つ仕事損失を小
さくして耐疲労性を改善することを目的としたポリニス
デル俄維及びその製造方法が提案されている。この方法
では、紡糸口金下で10〜60℃のガス雰囲気で急冷す
ることを%徴とするが、高強度にするのに糸の切断寸前
まで延伸を行うため伸度が極めて小さく、また延伸時の
糸切れが多発して安定した製造が困稚であるという欠点
を有している。
In order to achieve low shrinkage and fatigue resistance, for example, Japanese Patent Application Laid-open Nos. 53-58031 and 53-58032 disclose that the degree of molecular orientation of the drawn yarn is lowered and the work loss is reduced to improve resistance. Polynisdel fibers and methods for producing the same have been proposed for the purpose of improving fatigue properties. This method involves rapid cooling under a spinneret in a gas atmosphere of 10 to 60°C, but the degree of elongation is extremely small because the yarn is stretched to the point of cutting to achieve high strength. The disadvantage is that thread breakage occurs frequently, making stable production difficult.

問題を解決するための手段 本発明者は、産資用ポリエステル繊維として、高強度で
低収縮、耐疲労性の緒特性を同時に兼ね備え、且つ延伸
性良好なポリエステル繊維を提供せんとして鋭意検討の
結果、特定の重合度を有し、非晶部分と結晶部分が特定
の状態にあるときのみ、高強度で低収縮。
Means for Solving the Problem The present inventor has conducted intensive studies to provide a polyester fiber for industrial use that has high strength, low shrinkage, and fatigue resistance, and has good drawability. , high strength and low shrinkage only when it has a certain degree of polymerization and the amorphous part and crystal part are in a certain state.

耐疲労性が良好で延伸性も良好であることな見い出し、
本発明に到達したのである。
A heading that has good fatigue resistance and good stretchability,
The present invention has been achieved.

即ち本発明はエチレン、テレフタレートを主たる繰返単
位とし極限粘度が0.9以上のポリエステルよりなり、
力学的損失弾性率の温度分散に現われる主成分の半価巾
が45℃以下。
That is, the present invention is made of polyester whose main repeating units are ethylene and terephthalate and whose intrinsic viscosity is 0.9 or more.
The half value width of the main component that appears in the temperature dispersion of the mechanical loss modulus is 45°C or less.

該主分散のピーク温度が125℃以下で、結晶サイズが
80A以上でろって且つ210℃における乾熱収縮率が
2.5 a!bより高く4%以下であるポリエステル繊
維に係るものである。
The peak temperature of the main dispersion is 125°C or less, the crystal size is 80A or more, and the dry heat shrinkage rate at 210°C is 2.5 a! This relates to polyester fibers that are higher than b and 4% or less.

本発明のポリエステル繊維を構成するポリ−q−1tt
、分子、鎖中にエチレンテレフタレート繰返し単位を9
0モルチ以上、好ましくは95モル係以上含むポリエス
テルである。かかるポリニスデルとしてはポリエチレン
テレフタレートが好適であるが、10モルチ未満、好ま
しくは5モルチ未満の割合で他の共重合成分を含んでも
差しつかえない。このような共重合成分としては例えば
イソフタル酸、ナフタレンジカルボン酸、アジピン酸、
オキシ安息香酸、ジエチレングリコール、グロピレング
リコール、トリメリット酸、ペンタエリスリトール等が
あげられる。又これらのポリニスデルには安定剤1着色
剤等の添加剤を含んでも差しつかえない。
Poly-q-1tt constituting the polyester fiber of the present invention
, molecule, with 9 ethylene terephthalate repeating units in the chain
It is a polyester containing 0 mole or more, preferably 95 or more mole. Polyethylene terephthalate is suitable as such polynisdel, but it may contain other copolymer components in a proportion of less than 10 molti, preferably less than 5 molti. Examples of such copolymerization components include isophthalic acid, naphthalene dicarboxylic acid, adipic acid,
Examples include oxybenzoic acid, diethylene glycol, glopylene glycol, trimellitic acid, and pentaerythritol. These polynisdels may also contain additives such as stabilizers 1 and colorants.

本発明のポリニスデル繊維は、25CO−りPOフェノ
ール溶液から求めた極限粘度が0.90以上であること
が必要である。極限粘度が0.90未満では低収縮、耐
疲労性を維持しながら高強度なポリエステル繊維が得ら
れない。極限粘度としては、(1,9〜1.3カ好マし
い。
The polynisder fiber of the present invention needs to have an intrinsic viscosity of 0.90 or more as determined from a 25CO-PO phenol solution. If the intrinsic viscosity is less than 0.90, a polyester fiber with high strength while maintaining low shrinkage and fatigue resistance cannot be obtained. The intrinsic viscosity is preferably from 1.9 to 1.3.

本発明のポリエステル繊維は、その非晶部分が、力学的
損失弾性率の温度分散挙動から以下の■〜■を同時忙満
足することが必要である。
In the polyester fiber of the present invention, it is necessary that the amorphous portion simultaneously satisfies the following conditions 1 to 2 from the temperature dispersion behavior of the mechanical loss modulus.

■ 力学的損失弾性率の温度分散に現われる主成分の半
価巾が45℃以下、 ■ 該主分散のピーク温度が125℃以下、ここで、力
学的損失弾性率は、若木製作所製スペクトロメーターY
ES−F型を用いて長さ3cmのサンプルに0.251
1 /da靜荷重荷重けて、0.17%の振幅で周波数
10H2,昇温速度1.6℃/分の条件で測定したもの
である。
■ The half value width of the main component appearing in the temperature dispersion of the mechanical loss modulus is 45°C or less, ■ The peak temperature of the main dispersion is 125°C or less, where the mechanical loss modulus is measured using a spectrometer Y manufactured by Wakagi Seisakusho.
0.251 on a 3 cm long sample using the ES-F model.
Measurements were made under the conditions of a 1/da quiet load, an amplitude of 0.17%, a frequency of 10H2, and a temperature increase rate of 1.6° C./min.

主成分の半価巾とは主成分のピーク値の1/2を示すピ
ークの温度中である。この半価巾は非晶領域における非
晶配向度の分布を示すものであり、半価巾が小さい根分
布が小さいといえる。半価巾が45℃を越えると、繊維
に応力が働いた時には、非晶領域における特定の分子鎖
に応力集中が起き、分子鎖が切断され易くなるため、耐
疲労性が劣り不適である。
The half-width of the main component is the temperature at the peak showing 1/2 of the peak value of the main component. This half-width indicates the distribution of the degree of amorphous orientation in the amorphous region, and it can be said that the root distribution with a small half-width is small. If the half width exceeds 45°C, stress concentration occurs on specific molecular chains in the amorphous region when stress is applied to the fibers, making the molecular chains easy to break, resulting in poor fatigue resistance and is therefore unsuitable.

また、主分数のピーク温度は、非晶領域の分子配向度を
示すものであり、ピーク温度が低い程配向度が低いとい
える。ピーク温度が125℃を越えると配向度が高く、
高強度にはなるが低収縮、耐疲労性を同時に満足するも
のにはならない。
Furthermore, the peak temperature of the main fraction indicates the degree of molecular orientation in the amorphous region, and it can be said that the lower the peak temperature, the lower the degree of orientation. When the peak temperature exceeds 125°C, the degree of orientation is high;
Although it has high strength, it does not simultaneously satisfy low shrinkage and fatigue resistance.

本発明のポリエステル繊維は、非晶配向度はそれ程高く
なくても極限粘度で表わされる分子鎖長が長く、非晶配
向度の分布が低く、且つ後述する結晶部分との兼ね合い
によシ所望の強度と優れた収縮性、耐疲労性を兼ね備え
たものになる。
The polyester fiber of the present invention has a long molecular chain length expressed by the intrinsic viscosity, a low distribution of the amorphous orientation degree, even if the degree of amorphous orientation is not so high, and has a desired balance with the crystalline portion described below. It combines strength, excellent shrinkability, and fatigue resistance.

本発明のポリニスデル繊維では、結晶部分を示す一つと
して結晶サイズが80A以上であることが必要である。
In the polynisder fiber of the present invention, it is necessary that the crystal size is 80A or more, which indicates a crystalline portion.

ここで結晶サイズは、常法のX線広角回折法Kik拠し
て赤道線走査の(010)(100)強度分布曲線の半
価巾よりシェラ−の式を用いて算出した。結晶サイズが
80x未満であると、ポリニスデル繊維を製編織後の後
加工工程で1例えば熱処理を受けた場合、強力劣化が起
υ易く不適当である。
Here, the crystal size was calculated using the Scherrer equation from the half-width of the (010) (100) intensity distribution curve of equatorial line scanning based on the conventional X-ray wide-angle diffraction method Kik. If the crystal size is less than 80x, when the polynisder fiber is subjected to heat treatment in a post-processing step after knitting and weaving, for example, strength deterioration tends to occur, making it unsuitable.

上述の如く本発明のポリエステル繊維は、その非晶構造
と結晶構造が特定の範囲を同時に満足して始めて後加工
工程を含めて高強度。
As mentioned above, the polyester fiber of the present invention can achieve high strength even in post-processing steps only when its amorphous structure and crystalline structure simultaneously satisfy a specific range.

低収縮、耐疲労性の良好なものとなる。It has low shrinkage and good fatigue resistance.

本発明のポリエステル繊維は、強度6.OJi’/do
以上と産資用途には充分な高強度と伸度10チ以上好ま
しくは20%以上と高タフネス、高耐久性を示し、21
0℃の乾熱収縮率が2.5 tlbよシ高く4多以下と
極めて低収縮率を示す。なお、21O℃における乾熱収
縮率はJIS L 1017−1963(5,12) 
K記載の方法に準拠して算出した。
The polyester fiber of the present invention has a strength of 6. OJi'/do
It exhibits high strength and elongation of 10 inches or more, preferably 20% or more, which is sufficient for industrial uses, and shows high toughness and high durability.
The dry heat shrinkage rate at 0°C is higher than 2.5 tlb and is less than 4, which is an extremely low shrinkage rate. In addition, the dry heat shrinkage rate at 210°C is JIS L 1017-1963 (5, 12)
Calculated according to the method described in K.

本発明のポリエステル繊維は例えば以下の方法で得られ
る。
The polyester fiber of the present invention can be obtained, for example, by the following method.

エチレンテレフタレートを主たる繰返単位とする極限粘
度が0.95〜1.5のポリエステル又は極限粘度が0
.7〜0.9のポリエステルに重合度促進剤を反応させ
て常法により溶融輸送し、紡糸口金より、延伸後の繊度
が1〜20de、全デニール500〜2000deにな
る如く糸条に吐出し、吐出後直ちに急冷するか、融点以
下結晶化開始温度までの温度に保温するか、又は、融点
以上の温度の加熱雰囲気中に、ある時間さらし℃遅延冷
却を行う。
Polyester containing ethylene terephthalate as the main repeating unit and having an intrinsic viscosity of 0.95 to 1.5 or an intrinsic viscosity of 0
.. 7 to 0.9 polyester is reacted with a degree of polymerization accelerator, melted and transported by a conventional method, and discharged from a spinneret into yarn so that the fineness after drawing is 1 to 20 de and the total denier is 500 to 2000 de, Immediately after discharge, the material is rapidly cooled, kept at a temperature below the melting point to the temperature at which crystallization begins, or exposed to a heated atmosphere at a temperature above the melting point for a certain period of time for delayed cooling.

その後、糸条な冷却固化させるが、その際以下の条件の
もとで冷却固化させることが有用次いで、上記の如く冷
却固化させた後、油剤を付与後3000m/分以上の速
度で引取る。
Thereafter, it is cooled and solidified in a filamentous manner, and it is useful to cool and solidify it under the following conditions.Then, after being cooled and solidified as described above, the oil agent is applied and then taken off at a speed of 3000 m/min or more.

油剤付与は例えばオイリンクp−ラ一方式。For example, oil application is done by one-way oilin p-ra system.

スプレ一方式など、随意の方式が可能である。Any method is possible, such as a one-way spray method.

また、油剤は、必要忙応じて任意の繊維用油剤を適用す
ることが可能である。この際、繊維の用途としてゴムと
の接着性が重視される分野では、接着性を付与するため
に、表面処理剤を付与することが有用である。
Further, as the oil agent, any textile oil agent can be applied depending on the necessity. At this time, in fields where adhesion with rubber is important as a fiber application, it is useful to apply a surface treatment agent to impart adhesion.

上述の条件を随時に選択することにより、極限粘度が0
.90以上で切断伸度が150%以下の結晶性未延伸繊
維であって、結晶化度XX  と複屈折率△n がXX
=2.4X10”X△n + 4ここでXXはX線広角
回折による結晶化度Δnは複屈折率で0.06以上 の関係を満足し、複屈折率が0.06以上の未延伸繊維
が得られる。
By selecting the above conditions as needed, the intrinsic viscosity becomes 0.
.. A crystalline undrawn fiber having a cutting elongation of 90 or more and a cutting elongation of 150% or less, with crystallinity XX and birefringence △n of XX
= 2.4X10" is obtained.

本発明においては、aooom/分以上の速分子上き取
った上記特性を有する未延伸繊維は、紡糸に続いて連続
して延伸しても、一旦捲き取った後側工程で延伸しても
よい。紡糸に続いて連続して延伸する場合には、先に提
案した特願昭57−88927号の方法に準拠して行う
ことが出来る。また、紡糸後一旦捲申つ℃かも延伸する
場合には、先に提案した特願昭57−189094号の
方法に準拠して行うことが出来る。延伸時の延伸歪みや
熱処理歪みを少くする点では後者の延伸方法が好ましい
。即ち、未延伸繊維をTli+15〜T、9+50℃(
ここでT9は該繊維のガラス転移温度)で少くとも0゜
5秒予熱後全延伸倍率の75%以下の倍率で第1段延伸
して未延伸繊維の複屈折率の1.2〜3.3倍の複屈折
率とする。次いで1段延伸糸条な更に多段延伸熱処理す
る。この際、延伸繊維をコード化せず、そのままで使用
する産資用途においては、多段延伸熱処理の融解温度−
50℃から融解温度−110℃の範囲で0.4〜1.5
秒間保持しながら10〜20%の弛緩熱処理を行なうの
が好ましい。
In the present invention, the undrawn fibers having the above-mentioned characteristics, which are drawn at a molecular speed of more than aoooom/min, may be drawn continuously following spinning, or may be drawn in a subsequent process after being wound once. . When the spinning is followed by continuous drawing, it can be carried out in accordance with the method proposed earlier in Japanese Patent Application No. 88927/1983. Further, in the case where the fiber is once rolled up and then stretched at 0.degree. C. after spinning, it can be carried out in accordance with the method disclosed in Japanese Patent Application No. 57-189094 previously proposed. The latter stretching method is preferred in terms of reducing stretching strain during stretching and heat treatment strain. That is, the undrawn fibers were heated at Tli+15 to T, 9+50°C (
Here, T9 is the glass transition temperature of the fiber), and after preheating for at least 0°5 seconds, the first stage drawing is performed at a ratio of 75% or less of the total drawing ratio, and the birefringence is 1.2 to 3. The birefringence is 3 times higher. Next, the single-stage drawn yarn is further subjected to multi-stage drawing heat treatment. At this time, in industrial applications where the drawn fibers are used as they are without being coded, the melting temperature of the multi-stage drawing heat treatment -
0.4 to 1.5 in the range of 50℃ to melting temperature -110℃
It is preferable to carry out a relaxation heat treatment of 10 to 20% while holding for seconds.

このよう托して得たポリエステル繊維は、そのま〜で製
編織した後そのまま又は熱処理されて産資用に使用され
る。この際、その優れた繊維特性はそのまま発現し、極
めて有効である。また、常法忙従ってコードとなし、接
着剤を付与し、熱処理してゴム構造物に適用することも
できる。なお、ゴム構造物とは、例エバホース、■−ベ
ルト、コンベアベルトの如き天然ゴム、合成ゴムよりな
る構造物音てを指す。
The polyester fibers obtained in this manner are used for industrial purposes either after being knitted or woven as they are or after being heat-treated. At this time, the excellent fiber properties are expressed as they are and are extremely effective. It can also be applied to rubber structures by conventional methods, such as forming cords, applying adhesive, and heat treating. Note that the term "rubber structure" refers to a structure made of natural rubber or synthetic rubber, such as an EVA hose, a belt, or a conveyor belt.

d 実施例 以下実施例をあげて本発明を更に詳述する。d Example The present invention will be explained in more detail below with reference to Examples.

なお、実施例中の部は全て重量部を示す。Note that all parts in the examples indicate parts by weight.

実施例 ジメチルテレフタレートの7部、エチレングリコール6
9部、酢酸カルシウムl水塩0.034部及び二酸化ア
ンチモン0.025部をオートクレーブに仕込み、窒素
をゆるやかに通じながら180〜230℃でエステル交
換の結果生成するメタノールを除去したのち、)(、P
O4の50係水溶液を0.05部加えて加熱温度を28
0℃まで上昇させると共に徐々に減圧に移行し、約1時
間を要して反応系の圧力を0.2囮耶にして1時間50
分重合反応を続けて固有粘度0.80、末端カルボキシ
ル基量28当量/10’ダラムボリマーの重合体を得た
Example 7 parts of dimethyl terephthalate, 6 parts of ethylene glycol
After charging 9 parts of calcium acetate, 0.034 parts of calcium acetate hydrate, and 0.025 parts of antimony dioxide into an autoclave, and removing methanol produced as a result of transesterification at 180 to 230°C while slowly passing nitrogen, P
Add 0.05 part of a 50% aqueous solution of O4 and raise the heating temperature to 28
While raising the temperature to 0°C, the pressure was gradually reduced, and it took about 1 hour to reduce the pressure of the reaction system to 0.2°C.
The partial polymerization reaction was continued to obtain a polymer having an intrinsic viscosity of 0.80 and a terminal carboxyl group weight of 28 equivalents/10' Durham polymer.

この重合体チップ100部に2,2′−ビス(2−オキ
サゾリン)CEを第1表に示す量トライブレンドした後
、約300’Cで溶融輸送し、孔径0.6m++孔数2
50個を有する紡糸口金よシ吐出後、吐出糸条を第1表
記載の冷却条件に保持し、その後25℃の冷却風を30
0mに亘って4.0 Nm”/分吹きつけながら冷却固
化せしめた後オイリングローラ−で油剤を付与後、第1
表記載の引取速度で捲取った。得られた未延伸繊維の特
性を第1表に示した。
100 parts of this polymer chip was triblended with 2,2'-bis(2-oxazoline) CE in the amount shown in Table 1, and then melted and transported at about 300'C, with a pore diameter of 0.6 m++ and a pore number of 2.
After the yarn is discharged from a spinneret having 50 spinnerets, the discharged yarn is maintained under the cooling conditions listed in Table 1, and then 25°C cooling air is applied to the yarn for 30 minutes.
After cooling and solidifying while spraying 4.0 Nm"/min over a distance of 0 m, the oil was applied with an oiling roller, and then the first
It was rolled up at the take-up speed listed in the table. The properties of the obtained undrawn fibers are shown in Table 1.

この未延伸繊維を85℃に加熱されたロールに供給し、
引取ロールとの間で第1表記載の倍率(DR□)で第1
段延伸後325℃に加熱された気体浴を介して表記載の
倍率(DR,)で第2段延伸した。その後130℃の加
熱p−ラ、330℃の気体浴を使用して表記載の倍率O
Rmで弛緩熱処理した。得られた延伸糸の性能を第1表
に併記した。
This undrawn fiber is supplied to a roll heated to 85°C,
1st at the magnification (DR□) listed in Table 1 between the take-up roll
After stage stretching, a second stage stretching was carried out at the magnification (DR,) shown in the table through a gas bath heated to 325°C. Then, using a heating p-ra at 130°C and a gas bath at 330°C, the magnification is O as specified in the table.
Relaxation heat treatment was performed at Rm. The performance of the obtained drawn yarn is also listed in Table 1.

なお、表中のチューブ寿命は耐疲労性な示すものであり
、次の如くコードを作成し測定した。
Note that the tube life in the table indicates fatigue resistance, and was measured using a code prepared as follows.

延伸糸に490回/mの2撚を与えた後これを2本合わ
せて490回/mのS撚を与えて1000deX2本の
生コードとした。この生コードを接着剤(RFL液)に
浸漬し、245℃で2分間緊張熱処理した。この処理コ
ードをゴム中に埋込み加硫してチューブ寿命を測定した
The drawn yarn was given two twists of 490 turns/m, and then the two were combined and given an S twist of 490 turns/m to form two 1000 deX raw cords. This raw cord was immersed in an adhesive (RFL liquid) and subjected to tension heat treatment at 245° C. for 2 minutes. This treated cord was embedded in rubber and vulcanized to measure the life of the tube.

測定は、JIS L1017−1963.1.3.2.
IA 法忙準拠した。但し曲げ角度を90″とした。
The measurement was performed in accordance with JIS L1017-1963.1.3.2.
IA legal compliance. However, the bending angle was 90''.

手続補正口 昭和59年9月か日Procedure correction port September 1981

Claims (2)

【特許請求の範囲】[Claims] (1)エチレンテレフタレートを主たる繰返単位とし極
限粘度が0.9以上のポリエステルよりなり、力学的損
失弾性率の温度分散に現われる主成分の半価巾が45℃
以下、該主分散のピーク温度が125℃以下で結晶サイ
ズが 80Å以上であって且つ210℃における乾熱収縮率が
2.5%より高く4%以下であるポリエステル繊維。
(1) Made of polyester whose main repeating unit is ethylene terephthalate and whose intrinsic viscosity is 0.9 or more, and whose half value width of the main component, which appears in the temperature dispersion of mechanical loss modulus, is 45°C.
Hereinafter, the polyester fiber has a peak temperature of the main dispersion of 125°C or less, a crystal size of 80 Å or more, and a dry heat shrinkage rate at 210°C of more than 2.5% and 4% or less.
(2)切断強度が6.0g/de以上である特許請求の
範囲第(1)項記載のポリエステル繊維。
(2) The polyester fiber according to claim (1), which has a cutting strength of 6.0 g/de or more.
JP16162384A 1984-07-09 1984-08-02 Polyester fiber Pending JPS6141320A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16162384A JPS6141320A (en) 1984-08-02 1984-08-02 Polyester fiber
US06/751,796 US4690866A (en) 1984-07-09 1985-07-03 Polyester fiber
EP85108266A EP0169415B1 (en) 1984-07-09 1985-07-04 Polyester fiber
DE8585108266T DE3565698D1 (en) 1984-07-09 1985-07-04 Polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16162384A JPS6141320A (en) 1984-08-02 1984-08-02 Polyester fiber

Publications (1)

Publication Number Publication Date
JPS6141320A true JPS6141320A (en) 1986-02-27

Family

ID=15738699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16162384A Pending JPS6141320A (en) 1984-07-09 1984-08-02 Polyester fiber

Country Status (1)

Country Link
JP (1) JPS6141320A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289115A (en) * 1985-06-10 1986-12-19 Teijin Ltd Polyester fiber
EP0251313A2 (en) * 1986-07-02 1988-01-07 Toyo Boseki Kabushiki Kaisha Polyethylene terephthalate fibers having high strength and high modulus and process for producing the same
JPS63181213A (en) * 1987-01-23 1988-07-26 信越ポリマ−株式会社 Manufacture of cover member for rubber switch
JPH04501441A (en) * 1988-10-28 1992-03-12 アライド―シグナル・インコーポレーテッド Dimensionally stable polyester yarn for high dimensional stability treated cords
US5547627A (en) * 1990-04-06 1996-08-20 Asahi Kasei Kogyo Kabushiki Kaisha Method of making polyester fiber
EP0753536A1 (en) 1995-07-13 1997-01-15 Teijin Limited Thermoplastic resin composition having laser marking ability
US6028134A (en) * 1995-07-12 2000-02-22 Teijin Limited Thermoplastic resin composition having laser marking ability
JP2005068635A (en) * 2000-07-28 2005-03-17 Toyobo Co Ltd Polyester fiber for rubber reinforcement and dipped cord
WO2006077965A1 (en) 2005-01-21 2006-07-27 Olympus Corporation Endoscope, medical appliance for endoscope, and method for display thereof
KR20170009401A (en) 2015-07-17 2017-01-25 한국엔지니어링플라스틱 주식회사 Polyoxymethylene composition using laser making
KR20220056412A (en) 2020-10-28 2022-05-06 코오롱플라스틱 주식회사 Polyoxymethylene Resin Composition for Laser Marking

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115117A (en) * 1981-12-25 1983-07-08 Asahi Chem Ind Co Ltd Polyester yarn and its preparation
JPS58186607A (en) * 1982-04-20 1983-10-31 Asahi Chem Ind Co Ltd Preparation of polyester filamentary yarn having high tenacity
JPS58203108A (en) * 1982-05-17 1983-11-26 Teijin Ltd Polyester fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115117A (en) * 1981-12-25 1983-07-08 Asahi Chem Ind Co Ltd Polyester yarn and its preparation
JPS58186607A (en) * 1982-04-20 1983-10-31 Asahi Chem Ind Co Ltd Preparation of polyester filamentary yarn having high tenacity
JPS58203108A (en) * 1982-05-17 1983-11-26 Teijin Ltd Polyester fiber

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289115A (en) * 1985-06-10 1986-12-19 Teijin Ltd Polyester fiber
JPH0423008B2 (en) * 1985-06-10 1992-04-21 Teijin Ltd
EP0251313A2 (en) * 1986-07-02 1988-01-07 Toyo Boseki Kabushiki Kaisha Polyethylene terephthalate fibers having high strength and high modulus and process for producing the same
JPS63181213A (en) * 1987-01-23 1988-07-26 信越ポリマ−株式会社 Manufacture of cover member for rubber switch
JPH0532850B2 (en) * 1987-01-23 1993-05-18 Shinetsu Polymer Co
JPH04501441A (en) * 1988-10-28 1992-03-12 アライド―シグナル・インコーポレーテッド Dimensionally stable polyester yarn for high dimensional stability treated cords
US5547627A (en) * 1990-04-06 1996-08-20 Asahi Kasei Kogyo Kabushiki Kaisha Method of making polyester fiber
US5558935A (en) * 1990-04-06 1996-09-24 Asahi Kasei Kogyo Kabushiki Kaisha Polyester fiber and method of manufacturing the same
US6028134A (en) * 1995-07-12 2000-02-22 Teijin Limited Thermoplastic resin composition having laser marking ability
EP0753536A1 (en) 1995-07-13 1997-01-15 Teijin Limited Thermoplastic resin composition having laser marking ability
JP2005068635A (en) * 2000-07-28 2005-03-17 Toyobo Co Ltd Polyester fiber for rubber reinforcement and dipped cord
WO2006077965A1 (en) 2005-01-21 2006-07-27 Olympus Corporation Endoscope, medical appliance for endoscope, and method for display thereof
KR20170009401A (en) 2015-07-17 2017-01-25 한국엔지니어링플라스틱 주식회사 Polyoxymethylene composition using laser making
KR20220056412A (en) 2020-10-28 2022-05-06 코오롱플라스틱 주식회사 Polyoxymethylene Resin Composition for Laser Marking

Similar Documents

Publication Publication Date Title
EP0169415B1 (en) Polyester fiber
JP2914385B2 (en) Dimensionally stable polyester yarn for high tenacity treatment cord
JP2907912B2 (en) Dimensionally stable polyester yarn for high dimensional stability treated cord
PL184254B1 (en) Yarn made of continuous polyester monofilaments, polyester tyre reinforcement cord and method of making them
JP2014524992A (en) Polyethylene terephthalate drawn yarn manufacturing method, polyethylene terephthalate drawn yarn and tire cord
JPS6141320A (en) Polyester fiber
JPS6119812A (en) Polyester fiber
JPS6269819A (en) Polyester fiber
JPH06136614A (en) Polyester fiber having improved dimensional stability and its production
JPS62156312A (en) Polyester fiber
JPH0261109A (en) Polyester fiber
JPH0450407B2 (en)
JPH0323644B2 (en)
JPS61289115A (en) Polyester fiber
JP2839817B2 (en) Manufacturing method of polyester fiber with excellent thermal dimensional stability
JPS63315608A (en) Polyester fiber
JPS62162016A (en) Production of polyester fiber
JP2776003B2 (en) Method for producing polyester fiber
JPH0144810B2 (en)
JPS61132616A (en) Polyester fiber
KR910004458B1 (en) High-tenacity conjugated fiber and process for preparation thereof
JPS593578B2 (en) Manufacturing method of high toughness polyester cord
JPS5813718A (en) Polyester fiber
JPH064704B2 (en) Polyester fiber for rubber hose reinforcement
JP3183483B2 (en) Polyvinyl alcohol fiber having good fatigue resistance and method for producing the same