JPS61132616A - Polyester fiber - Google Patents

Polyester fiber

Info

Publication number
JPS61132616A
JPS61132616A JP25055284A JP25055284A JPS61132616A JP S61132616 A JPS61132616 A JP S61132616A JP 25055284 A JP25055284 A JP 25055284A JP 25055284 A JP25055284 A JP 25055284A JP S61132616 A JPS61132616 A JP S61132616A
Authority
JP
Japan
Prior art keywords
fiber
polyester
polyester fiber
cord
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25055284A
Other languages
Japanese (ja)
Inventor
Shiro Kumakawa
熊川 四郎
Kazuyuki Yamamoto
和幸 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP25055284A priority Critical patent/JPS61132616A/en
Priority to US06/751,796 priority patent/US4690866A/en
Priority to EP85108266A priority patent/EP0169415B1/en
Priority to DE8585108266T priority patent/DE3565698D1/en
Publication of JPS61132616A publication Critical patent/JPS61132616A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a polyethylene terephthalate polyester fiber having specific intrinsic viscosity, long-period spacings and crystal melting point, having high modulus, low shrinkage and excellent fatigue resistance, and suitable as a tire cord. CONSTITUTION:The objective polyster fiber is composed mainly of ethylene terephthalate units, and has an intrinsic viscosity of >=0.90, preferably 0.9-1.3, a long-period spacing of >=160Angstrom , and a crystal melting point of >=270 deg.C. Prefer ably, the volume of the crystallite is >=4.5X10<5>Angstrom <3>, the orientation degree of the amorphous region is <0.55, and the breaking strength of the fiber is >=6.0g/de.

Description

【発明の詳細な説明】 a、産業上の利用分野 ポリエステル繊維は、種々の優れた特性を有するため、
衣わ1用のみならず工業用としても広く利用されている
。特に高強度で目つ寸法安定性に優れたポリエステルa
isiは、工業用途に有用で、タイヤ用途のみならず、
産資用途にも使用されているが、最近益々高度の性能が
要求されている。例えばタイヤコード用としてはタイヤ
成型時の歩留り向上のため、更に低収縮化や乗心地向上
のために高モジユラス化、また大型タイヤの適用には耐
疲労性の向上等である。一方V−ベルト用コードとして
はメンテナンスフリーのために高モジユラス化、更に大
型の高負荷ラップトベルト用コードとしては伸度の大き
な高タフネスや耐疲労性が要求されている。
[Detailed Description of the Invention] a. Industrial Application Fields Polyester fibers have various excellent properties;
It is widely used not only for clothing but also for industrial purposes. Polyester a with particularly high strength and excellent dimensional stability
isi is useful for industrial applications, not only for tire applications.
Although it is also used for property applications, recently more and more advanced performance is required. For example, for tire cords, it is necessary to improve the yield during tire molding, to increase the modulus to reduce shrinkage and improve riding comfort, and to improve fatigue resistance for use in large tires. On the other hand, cords for V-belts are required to have high modulus to be maintenance-free, and cords for large, high-load lap belts are required to have high elongation, high toughness, and fatigue resistance.

かかる観点からポリエステル繊維として史に1段と優れ
た低収縮、高モジユラス、耐疲労性を兼ね備えたポリエ
ステルコードが得られるなら、ポリエステル繊維の他素
材とのコスト競争力の優11/性から益々使用される分
野が増大する。特にポリエステルJINは歴史の古いレ
ーヨン繊維、ご二nン繊維に比べてモジュラスや収縮性
が劣り、更に歴史の古い汎用性のポリアミド謀紺に比べ
て耐疲労性が著しく劣っており、この改良が重要である
1゜この点が改良されれば、ポリエステル繊維はレーヨ
ン繊維、ビニロン繊維、ポリアミド繊維等よりコスト/
パーフォ−マンの優れた工業用繊維としての位置付けが
益々高くなる。
From this perspective, if a polyester cord can be obtained that has the lowest shrinkage, high modulus, and fatigue resistance of any polyester fiber in history, it will be used more and more because of its cost competitiveness with other materials. The number of fields covered will increase. In particular, polyester JIN has inferior modulus and shrinkage compared to older rayon fibers and Japanese fibers, and is also significantly inferior in fatigue resistance compared to older general-purpose polyamide fibers. Important 1゜If this point is improved, polyester fibers will be cheaper than rayon fibers, vinylon fibers, polyamide fibers, etc.
Its position as an industrial fiber with excellent performance is increasing.

b 従来技術 最近、ポリエステルtiMは、例えばタイヤコード用途
においては主としてラジアルタイヤのカーカス材として
広く用いられている。特に、例えば特開昭53−580
32号公報で提案されているように、従来に比べ高配向
な未延伸糸から出発し、これを延伸した繊維を用いたタ
イヤコードはハイモデュラス、低収縮、耐疲労性で従来
のポリエステルコードに比べて著しく改善されており、
車の高速走行時の操縦安定性や乗心地性に優れ、またタ
イヤ成型時の凹凸(いわゆるfン1−バルヂ)が少く、
好まれて使用されつつある。しかしながら、それでもま
だ、歴史の古いレーヨン繊維やビニロン繊維に比べてモ
ジュラス、収縮性が不充分である。
b. Prior Art Recently, polyester TiM has been widely used, for example, in tire cord applications, mainly as a carcass material for radial tires. In particular, for example, JP-A-53-580
As proposed in Publication No. 32, a tire cord using undrawn yarn that is highly oriented compared to conventional yarns and drawn fibers has high modulus, low shrinkage, and fatigue resistance, and is superior to conventional polyester cords. It is significantly improved compared to
It has excellent handling stability and ride comfort when driving at high speeds, and has fewer irregularities during tire molding (so-called f-n-1 bulges).
It is becoming popular and used. However, it still has insufficient modulus and shrinkage compared to older rayon fibers and vinylon fibers.

またポリエステル繊維から得られるコードは、ゴ11中
に埋め込み加硫後、冷却する(いわゆるボストキュアイ
ンフレーション)工程が必要である1゜この冷却工程は
設備投資が大きく、コスト合理化のためには、この工程
を省略することが必要である。そのためにもレーヨン繊
維やビニ[)ン繊維から得られるコード並の低収縮化が
必要であり、上記改善案においても不充分である。
In addition, cords obtained from polyester fibers require a process of embedding them in rubber 11 and cooling them after vulcanization (so-called boss cure inflation).1 This cooling process requires a large capital investment, and in order to rationalize costs, this It is necessary to omit the process. For this purpose, it is necessary to have a low shrinkage comparable to cords obtained from rayon fibers or vinyl fibers, and the above improvement proposals are also insufficient.

C1発明が解決しようとする問題点 本発明は工業用途に好適なポリエステルコード、特にタ
イヤコードとしてレーヨンコードに近い高モジュラス、
低収縮で且つレーヨンコードに比べて耐疲労性の良好な
ポリエステルコードを製造し得るポリエステル繊維を提
供するものである。
C1 Problems to be Solved by the Invention The present invention provides a polyester cord suitable for industrial use, particularly a tire cord having a high modulus close to that of rayon cord.
The present invention provides a polyester fiber that can be used to produce a polyester cord that has low shrinkage and better fatigue resistance than rayon cord.

本発明者らは、かかるポリエステル繊維を提供せんとし
て鋭意検討の結果、従来に比べて極めて高い配向性を有
する結晶性の未延伸繊維を出発繊維とし、これを多段延
伸熱処理した特定の繊N構造を有するポリエステル繊維
を使用して始めて、レーヨンコードに近い低収縮性や高
モジ1ラスを有し、レーヨンコードに比して耐疲労性の
良好なポリエステルコードが得られることを見い出し、
本発明に到達したのである。
As a result of intensive studies in an attempt to provide such a polyester fiber, the present inventors have developed a specific fiber N structure in which a crystalline undrawn fiber with extremely high orientation compared to conventional fibers is used as a starting fiber, and this is subjected to multi-stage drawing heat treatment. They discovered that a polyester cord with low shrinkage and high modulus 1 lath close to that of rayon cord and better fatigue resistance than rayon cord could be obtained by using polyester fiber having
The present invention has been achieved.

d 問題点を解決するための手段 本発明は、工業用途として高モジュラス、低収縮C耐疲
労性に嗣れたポリエステルコードを提供し得るポリエス
テルI維に係るものである。即ち、主たる構成単位がエ
チレンテレフタレートであって固有粘度が0,90以上
のポリエステルよりなり、長周期間隔が160Å以上で
且つ結晶融点が270℃以上であるポリエステル繊維に
係るものである。
d. Means for Solving the Problems The present invention relates to a polyester I fiber that can provide a polyester cord with high modulus and low shrinkage C fatigue resistance for industrial use. That is, it relates to a polyester fiber whose main structural unit is ethylene terephthalate, whose intrinsic viscosity is 0.90 or more, whose long period interval is 160 Å or more, and whose crystal melting point is 270° C. or more.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明のポリエステル繊維を構成するポリマーは分子鎖
中にエチレンテレフタレート・繰返し単位を90モル%
以上、好ましくは95モル%以上含むポリエステルであ
る。かかるポリエステルとしては、il;リエヂレンテ
レフタレートが好適であるが、10Eル%未満、好まし
くは5七ル%未満の割合で他の共手合成分を含んでも差
しつかえない。このような共千合成分とじては、例えば
イソフタル酸。
The polymer constituting the polyester fiber of the present invention contains 90 mol% of ethylene terephthalate repeating units in the molecular chain.
As mentioned above, polyester preferably contains 95 mol% or more. As such a polyester, il; redylene terephthalate is suitable, but it may contain other synergistic components in a proportion of less than 10%, preferably less than 57%. An example of such a co-synthetic component is isophthalic acid.

ノフタレンジカルボン酸、アジピン酸、オキシ安息15
酸、ジエチレングリコール、プ[1ピレングリコール、
トリメリット酸、ペンタエリスリトール等があげられる
。また、かかるポリエステルには安定剤1着色剤等の添
加剤を必要に応じて含んでいても差しつかえない。
Nophthalene dicarboxylic acid, adipic acid, oxyben 15
acid, diethylene glycol, pyrene glycol,
Examples include trimellitic acid and pentaerythritol. Further, such polyester may contain additives such as stabilizers 1 and colorants, if necessary.

本発明のポリエステル繊維は、25℃の0−クロロフェ
ノール溶液から求めた極限粘度が0.90以上であるこ
とが必要である。極限粘度が0.90未満では高強度な
ポリエステルコードが得られない。
The polyester fiber of the present invention needs to have an intrinsic viscosity of 0.90 or more as determined from a 0-chlorophenol solution at 25°C. If the intrinsic viscosity is less than 0.90, a high-strength polyester cord cannot be obtained.

特に極限粘度0.9〜1.3のものが好ましい。Particularly preferred is one with an intrinsic viscosity of 0.9 to 1.3.

本発明のポリエステル繊維は、上記特定の極限粘度に加
えて特定の繊維構造、即ち長周期間隔が160Å以上で
、且つ結晶融点が270℃以上であることが必要である
In addition to the above-mentioned specific intrinsic viscosity, the polyester fiber of the present invention needs to have a specific fiber structure, that is, a long period interval of 160 Å or more, and a crystal melting point of 270° C. or more.

ここで長周期間隔及び結晶融点は以Fの方法で測定する
ものである。
Here, the long period interval and crystal melting point are measured by method F below.

長周期間隔は、X線小角散乱測定装置を用い、従来公知
の方法、即ち波長154人のCIIK(xt/2を線源
とし、Jll輪軸直角に照射して得られる子午線干渉の
回折線よりブラッグの式を用いて算出した。
The long-period interval can be determined by Bragg from the meridional interference diffraction line obtained by using a small-angle X-ray scattering measurement device and using a conventionally known method, that is, using CIIK (xt/2 of wavelength 154 as a radiation source and irradiating at right angles to the axis of the Jll wheel). Calculated using the formula.

結晶融点は、パー°1ンエルマー社製0SC−1τ1を
用いて昇温速度20℃/分で測定し、吸熱ピーク舶をも
つ”C結晶融点とした。
The crystal melting point was measured using 0SC-1τ1 manufactured by Pern Elmer Co., Ltd. at a heating rate of 20° C./min, and was defined as the “C crystal melting point” having an endothermic peak.

本発明のポリエステル繊維は、長周期間隔が160Å以
上で、1つ結晶融点が270℃以上を同時に満足するこ
とによってのみ高モジnラス、低収縮のポリエステルコ
ードが可能になるのであって、どららの特性値を欠いて
も本発明の目的を達成することは困難である。
The polyester fiber of the present invention can be made into a polyester cord with high modulus and low shrinkage only by satisfying a long period interval of 160 Å or more and a crystal melting point of 270°C or more. It is difficult to achieve the object of the present invention even if the characteristic value of .

本発明のポリエステル繊維は、更に非晶配向度が055
未満で結晶体積が4.5X 105人3以上であること
が特に好ましい。
The polyester fiber of the present invention further has an amorphous orientation degree of 055
It is particularly preferable that the crystal volume is less than 4.5×10 5 3 or more.

非晶配向度faはロバート・ジエー・サミニル(Rob
erL、J、Samuel )の論文記載の方法(J、
POI−ymer 5cience A2,10,78
1.1972 )により算出した。
The degree of amorphous orientation fa is determined by Robert J. Saminil (Rob
erL, J, Samuel)'s paper writing method (J,
POI-ymer 5science A2,10,78
1.1972).

′即ら Δn=X−rc−Δnc+(1−X) ra−
Δnaここで八〇はフィラメント中の分子の配向度を示
すパラメーターであって浸漬液にブロムナフタリンを用
い、ベレツク]ンペンセータを用いてリフ−1−ジョン
法により求めた(詳細については共立出版U高分子実験
学講座・高分子の物性■1を参照)。
'That is, Δn=X-rc-Δnc+(1-X) ra-
Δna Here, 80 is a parameter that indicates the degree of orientation of molecules in the filament, and was determined by the reflection method using bromonaphthalene as the immersion liquid and a Berek pensator. (Refer to Molecular Experimental Course/Physical Properties of Polymers ■1).

fcは結晶配向度で広角X線回折で測定される平均配向
角θから常法により求めた。
fc is the degree of crystal orientation and was determined by a conventional method from the average orientation angle θ measured by wide-angle X-ray diffraction.

Xは結晶化度で密度より常法により求めた。X is the degree of crystallinity, which was determined from the density using a conventional method.

ΔnC1Δnaは結晶、無定形の固有複屈折でポリエチ
レンテレフタレートでは夫々0.220. 0.275
である。
ΔnC1Δna is the intrinsic birefringence of crystals and amorphous, and is 0.220 for polyethylene terephthalate, respectively. 0.275
It is.

また、后昌体梢は以下により算出した。In addition, the hoochang body shoots were calculated as follows.

結晶体積=a軸方向結晶サすズ×b軸方向結晶サすズ×
長周期間隔×結品化庶 ここで結晶サイズは(010) (100)面の干渉ピ
ークの半価中を求めてしシェラ−の式からq出した。
Crystal volume = a-axis crystal tin x b-axis crystal tin x
Long period interval x crystal formation Here, the crystal size is determined by the half value of the interference peak of the (010) (100) plane, and is calculated by q from the Scherrer equation.

結晶化度1は桜田、部品法によりq出した。Crystallinity 1 was determined by q using the Sakurada and parts method.

本発明のポリエステル繊維は、非晶配向度は(れ程高く
なくても極限粘度で表わされる分子wI長が長く、且つ
非晶配向度の分布が狭く均質であるので、強度6SF/
de以上と工業用途として充分なものである。
The degree of amorphous orientation of the polyester fiber of the present invention is not very high (although the molecular wI length expressed by the intrinsic viscosity is long, and the distribution of the degree of amorphous orientation is narrow and homogeneous, so the strength is 6SF/
de or higher, which is sufficient for industrial use.

本発明のポリニスデルamは例えば以下の方法で得られ
る。エチレンテレフタレートを主成分とする4IIi限
粘度が0.95〜1.5のポリニス−アル重合体を、又
は極限粘度が0.7〜0.9の重合体に重合度促進剤を
反応させながら、常法により溶融輸送し、紡糸口金より
延伸後の繊度が1〜20deになる如く糸条に吐出し、
吐出後直ちに急冷するか、融点以下結晶化開始湯度まで
の温度に保温するか、又は融点以上の温度の加熱雰囲気
中にある時間さらして遅延冷却した後、該糸条を冷却固
化さじる。
The polynis del am of the present invention can be obtained, for example, by the following method. While reacting a polynis-al polymer containing ethylene terephthalate as a main component and having a limiting viscosity of 0.95 to 1.5 or a polymer having a limiting viscosity of 0.7 to 0.9 with a polymerization degree accelerator, It is melted and transported by a conventional method, and discharged from a spinneret into a yarn so that the fineness after drawing is 1 to 20 de,
Immediately after discharge, the yarn is cooled and solidified, either by rapid cooling, by keeping it at a temperature below the melting point or below the temperature at which crystallization begins, or by exposing it to a heated atmosphere at a temperature above the melting point for a certain period of time for delayed cooling, and then cooling and solidifying the yarn.

その際下記の条件で冷却同化さけるのが有用である。In this case, it is useful to avoid cooling and assimilation under the following conditions.

400≦(x−y)/Q≦1900 Xは紡糸口金面から冷IA風の吹出し面までの距離で4
50履以下 ■【よ冷却風の吹出し長さで100〜500mQは冷却
風の吹出し量で2〜68m37分上記の如く冷却固化さ
せた後油剤を付与し、1500771、/分収上の速度
で引取る。油剤付与は常法に従ってオイリングローラ方
式、スプレ一方式等任意の方式が可能である。また、油
剤は常法に従って一般繊維用油剤を適用することが可能
であるが、該4111tの用途としてゴムとの接着性が
重視される分野では、易接着性を付与するための表面処
理剤を付与することが有用である。
400≦(x-y)/Q≦1900 X is the distance from the spinneret surface to the cold IA air blowing surface and is 4
50 feet or less■ [If the length of the cooling air is 100 to 500 mQ, the amount of cooling air that is blown out is 2 to 68 m37 minutes After cooling and solidifying as described above, apply an oil agent and pull at a speed of 1500771,/min. take. The oil can be applied by any conventional method such as an oiling roller method or a spray method. In addition, as for the oil agent, it is possible to apply a general fiber oil agent according to the usual method, but in fields where adhesion with rubber is important for the application of 4111t, a surface treatment agent to provide easy adhesion may be applied. It is useful to grant.

このように上述の条件を随時に選択することにより極限
粘度が0.90以上で、切断伸度が150%以下の結晶
性未延伸繊維であって、結晶化度λXと複屈折率△nが
、 λX = 2.4x102 x△n+4の関係を満足し
、複屈折率が006以上の未延伸繊維が得られる。
By selecting the above-mentioned conditions as needed, crystalline undrawn fibers with an intrinsic viscosity of 0.90 or more and a cutting elongation of 150% or less, crystallinity λX and birefringence Δn can be obtained. , λX = 2.4x102xΔn+4, and an undrawn fiber having a birefringence of 006 or more can be obtained.

本発明にあっては、15007FL/分以上の速度で引
き取った上記特性を有する未延伸繊維を、紡糸に続いて
連続して延伸しても、一旦捲き取った(殺別工程で延伸
してもよい。紡糸に続いて連続して延伸する場合には、
先に提案した特[lnU37−88927gの方法に準
拠して行うことができる。また、紡糸後一旦捲取ってか
ら延伸する場合には、先に提案した特願昭57−189
094号の方法に準拠して行うことができる。延伸時の
延伸歪みや、熱処理歪みを少くする点では後者の延伸方
法が好ましい。即ち、未処1.’I!!l肩tをTg+
15〜■す+50℃(ここでTOは該繊維のガラス転移
温度)の温度で少くとも0.5秒予熱後全延伸倍率の7
5%以下の倍率で第1段延伸して未延伸繊維の複屈折率
の1.2〜゛3,3倍の複屈折率とする。次いで該1段
延伸糸条を更に多段延伸熱処理する。この際、タイヤ補
強用の如くコード化した際に高強度が要求される場合に
は最終の緊張熱処理は、温度としてiutの融解温度−
50℃から融解温度−110℃の範囲で定長又は5.0
%までの緊張度、好ましくは定長又は2,5%までの緊
張度で0.4〜1.5秒間保持するのが好ましい。
In the present invention, the undrawn fibers having the above characteristics taken at a speed of 15,007 FL/min or more can be drawn continuously after spinning or once wound (or drawn in the killing process). Good.If continuous drawing follows spinning,
This can be carried out in accordance with the method of the previously proposed patent [lnU37-88927g. In addition, when the yarn is wound up once after spinning and then stretched, it is possible to
This can be carried out in accordance with the method of No. 094. The latter stretching method is preferred in terms of reducing stretching strain during stretching and heat treatment strain. That is, untreated 1. 'I! ! l Shoulder t to Tg+
After preheating for at least 0.5 seconds at a temperature of 15 to +50°C (where TO is the glass transition temperature of the fiber), the total draw ratio is 7.
The first stage drawing is performed at a magnification of 5% or less to give a birefringence of 1.2 to 3.3 times the birefringence of the undrawn fiber. Next, the single-stage drawn yarn is further subjected to multi-stage drawing heat treatment. At this time, if high strength is required when corded, such as for tire reinforcement, the final tension heat treatment is performed at a temperature of - the melting temperature of iut -
Fixed length or 5.0 in the range of 50℃ to melting temperature -110℃
%, preferably a constant length or a tension of up to 2.5% and holding for 0.4 to 1.5 seconds is preferred.

本発明のポリエステル繊維を、ゴム補強用コードとして
使用する場合、例えば次の如き方法を適用することが好
ましい。即ち、該延伸糸を撚係数に=T−D  (Tは
1Oc11当りの撚数、Dは撚糸コードのデニール)が
900〜2500で合撚糸して撚糸]−ドとなし、該コ
ードを接着剤処理に引き続き235〜250℃で熱処理
する。この際、熱処理時の張力が1.0−2.0g/d
aの範囲で、実質的に延伸が起らない条件で熱処理する
ことが好ましい。
When using the polyester fiber of the present invention as a rubber reinforcing cord, it is preferable to apply the following method, for example. That is, the drawn yarn is twisted with a twist coefficient = T-D (T is the number of twists per 1Oc11, D is the denier of the twisted yarn cord) of 900 to 2500 to form a twisted yarn, and the cord is glued with an adhesive. Following the treatment, heat treatment is performed at 235-250°C. At this time, the tension during heat treatment is 1.0-2.0 g/d.
It is preferable to carry out the heat treatment within the range a, under conditions in which stretching does not substantially occur.

本発明のポリエステルaimから得られるポリエステル
コードは、荷重2.0g/da時の中間伸度Eiと乾熱
収縮率Sとの白露Iが Ei+3≦5.5 と高モジュラスであり且つ極めて低収縮性を示す1、こ
こで乾熱収縮率は、115℃の温度のものであり、JI
S L、1017−1963(5,12)に準拠した。
The polyester cord obtained from the polyester aim of the present invention has a high modulus with an intermediate elongation Ei at a load of 2.0 g/da and a dry heat shrinkage rate S of Ei+3≦5.5, and extremely low shrinkage. 1, where the dry heat shrinkage rate is at a temperature of 115°C, and JI
SL, 1017-1963 (5, 12).

加えて本発明の方法によるポリエステルコードは、強度
5.0g/de以上で伸度12%以上であり、またゴム
構造物中においても発熱温度が従来のゴム補強用ポリエ
ステルコードに比して低発熱で耐疲労性が著しく改善さ
れている。
In addition, the polyester cord produced by the method of the present invention has a strength of 5.0 g/de or more and an elongation of 12% or more, and also has a lower heat generation temperature in rubber structures than conventional polyester cords for reinforcing rubber. The fatigue resistance has been significantly improved.

e、実施例 実施例中の部は重」部を示す。処理コードの特性値は以
下の方法により測定した。
e. Examples The parts in Examples indicate the heavy parts. The characteristic values of the treated cord were measured by the following method.

(1)荷重−荷伸曲線はJIS L 1017 1り6
3 (5,4)に準拠した。
(1) Load-stretching curve is JIS L 1017 1-6
3 (5, 4).

(21乾熱115℃収縮率はJIS L 1017−1
963(5,12)に準拠した。
(21 Dry heat 115℃ shrinkage rate is JIS L 1017-1
963(5,12).

Lll  ′Fユープ寿命はJIS L 1017−1
963. 1.3.2.1八法に準拠した。、l1IL
、曲げ角度を90” とした。
Lll 'F uup life is JIS L 1017-1
963. 1.3.2.1 Comply with eight laws. , l1IL
, the bending angle was 90''.

(4)耐熱強力は生コードをRFLJ!着液に浸漬し、
張力下245℃で2分間熱処理した。この処理コードを
加硫モールド中に埋め込み170℃、圧力50に9/d
で120分間促進加硫した後処理]−ドを取り出し強力
を測定した。
(4) RFLJ raw cord for strong heat resistance! Immerse it in the liquid,
Heat treatment was performed at 245° C. for 2 minutes under tension. Embed this processing cord in a vulcanization mold at 170℃ and pressure 50℃ for 9/d.
After accelerated vulcanization for 120 minutes, the sample was taken out and its tenacity was measured.

実m例1 ジメチルテレフタレートの91部、エチレングリ」−ル
69部、酢酸カルシウム1水塩0.034部及び=酸化
アンf−モン0.025部をオートクレーブに仕込み、
9累をゆるやかに通じながら180〜230℃でエステ
ル交換の結果生成するメタノールを除去したIQ、l1
1r’o、+の50%水溶液を0.05部加えて;8度
を280℃まで1冒させると共に徐々に減圧に移行し、
約1時間を要して反応系の圧力を0.2imHgにし、
更に1時間50分重合反応させて固有溝’il’i 0
.80 、末端カルボキシル基量28当ffi/IOG
グラムポリマーの小合体を得た。この重合体チン110
0部に第1表記載(CFと表示)の缶の2.2′−ビス
(2−オキサゾリン)をトライブレンドした後、約30
0℃で溶融輸送し、孔径0.6JlllI、孔数250
個を有する紡糸口金より吐出し、吐出糸条を第1表記載
の条件で保温し、その後25℃の冷却風を300mに亘
って4.0NII13 /分吹きつけながら冷却固化さ
せ、その後オイリングローラ−で油剤を付与し、第1表
記載の速度で捲取った。この未延伸繊維の特性を第1表
に示した。
Practical Example 1 91 parts of dimethyl terephthalate, 69 parts of ethylene glycol, 0.034 part of calcium acetate monohydrate, and 0.025 part of ammonium oxide were placed in an autoclave.
IQ, l1, which removed methanol produced as a result of transesterification at 180 to 230°C while gently passing through the 9-fold
Add 0.05 part of 50% aqueous solution of 1r'o,+; heat 8 degrees to 280°C and gradually shift to reduced pressure,
It took about 1 hour to bring the pressure of the reaction system to 0.2 imHg,
The polymerization reaction was further performed for 1 hour and 50 minutes to form a unique groove 'il'i 0.
.. 80, terminal carboxyl group amount 28 equivalentffi/IOG
A small conglomerate of gram polymers was obtained. This polymer tin 110
After triblending 0 part with 2,2'-bis(2-oxazoline) from the can listed in Table 1 (indicated as CF), about 30
Melted and transported at 0°C, pore diameter 0.6 JlllI, number of pores 250
The discharged yarn was kept warm under the conditions listed in Table 1, and then cooled and solidified while blowing cooling air at 25°C over 300 m at a rate of 4.0 NII13/min. An oil agent was applied thereto, and the film was rolled up at the speed shown in Table 1. The properties of this undrawn fiber are shown in Table 1.

得られた未延伸繊維を85℃に加熱されたロールに供給
し、引取ロールとの間で第2表記載の倍率(OR+ )
で第1段延伸後325℃に加熱された気体浴を介して表
記載の倍率(DR2)で第2段延伸した。そのv!13
0℃の加熱ローラ、330℃の気体溜を表記載のように
使用して、表2+i、のイ8キ(DR3)で緊張熱処理
した。臂られた延伸糸の性能を第2表に併記した。
The obtained undrawn fibers are fed to a roll heated to 85°C, and the ratio (OR+) shown in Table 2 is applied between the undrawn fibers and the take-up roll.
After the first stage stretching, the film was stretched in the second stage at the magnification (DR2) shown in the table through a gas bath heated to 325°C. That v! 13
Using a heating roller at 0° C. and a gas reservoir at 330° C. as described in the table, tension heat treatment was carried out at I8ki (DR3) in Table 2+i. The performance of the stretched drawn yarn is also listed in Table 2.

・得られた延伸糸について490回/rnの7撚を与え
た後これを2本合わせて490回/mのS撚をLJえて
1000deX 2本の生コードとした。この生コ−ド
を接着剤(RFL)液に浸漬し、245℃で2分間緊張
熱処理した。この処理コードの特性及びゴム中に埋込み
加硫してチューブ疲労性、耐熱強力を測定した。その結
末を第2表に併記した。
- The obtained drawn yarn was subjected to 7 twists of 490 turns/rn, and then two of these were combined and the S twist of 490 turns/m was applied to LJ to obtain two 1000 deX raw cords. This raw cord was immersed in an adhesive (RFL) solution and subjected to tension heat treatment at 245°C for 2 minutes. The characteristics of this treated cord, as well as tube fatigue resistance and heat resistance strength after embedding it in rubber and vulcanizing it, were measured. The results are also listed in Table 2.

実/+I!例2 実施例1において2.2′ −ビス(2−オキサゾリン
)の添加缶を0.15VTt%とし、孔径1.50 n
1lB、[1金下保温筒の長さj00++111保温温
境230℃、6団風の吹出比@ 120mm、引取速度
2500 m1分とする以外は実施例1と同様に行って
下記の未延伸繊維を得た。
Fruit/+I! Example 2 In Example 1, the addition can of 2.2'-bis(2-oxazoline) was set to 0.15 VTt%, and the pore size was 1.50 n.
The following undrawn fibers were prepared in the same manner as in Example 1 except that the temperature was 230°C, the blowing ratio of 6 groups was 120 mm, and the take-up speed was 2500 m/min. Obtained.

極限粘度        0.92 末端力ルボキシル基濃度 8.0  当山/トン複屈折
率        0.0707結晶化度      
  28.4  %次いで該未延伸繊維をDltl =
1.3、DR2=1.50、DR3=1.05とする以
外は実施例1と同様に行って下記の延伸繊組を1qた。
Intrinsic viscosity 0.92 Terminal carboxylic group concentration 8.0 Toyama/ton Birefringence 0.0707 Crystallinity
28.4% then the undrawn fibers were Dltl =
1.3, DR2=1.50, and DR3=1.05, the same procedure as in Example 1 was carried out to prepare 1q of the following drawn fiber sets.

繊度         1005   de強度   
       7.4  g/de沖度       
    10.1  %長周期        165
   人融点         273   ℃結晶体
積         5.3X 10”入3非晶配向度
        0.50 また、得られたディップコードの物性は以下の通りであ
った。
Fineness 1005 de strength
7.4 g/de offshore degree
10.1% long period 165
Human melting point: 273° C. Crystal volume: 5.3×10” 3 Amorphous orientation: 0.50 The physical properties of the obtained dip cord were as follows.

強力          14.0  kga、shg
荷伸        3.5  %切断伸度     
   15.2  %175℃乾収        2
.3  %チューブ寿命     450   分耐熱
強力維持率     61   %手続補正書 昭和60年5月な日
Powerful 14.0 kg, shg
Loading elongation 3.5% cutting elongation
15.2% 175℃ dry yield 2
.. 3% Tube life 450 minutes Heat resistance strength maintenance rate 61% Procedure amendment May 1985

Claims (4)

【特許請求の範囲】[Claims] (1)主たる構成単位がエチレンテレフタレートであっ
て固有粘度が0.90以上のポリエステルよりなり、長
周期間隔が160Å以上で且つ結晶融点が270℃以上
であるポリエステル繊維。
(1) A polyester fiber whose main structural unit is ethylene terephthalate, which has an intrinsic viscosity of 0.90 or more, has a long period interval of 160 Å or more, and has a crystal melting point of 270° C. or more.
(2)結晶体積が4.5×10^5Å^3以上である特
許請求の範囲第(1)項記載のポリエステル繊維。
(2) The polyester fiber according to claim (1), which has a crystal volume of 4.5×10^5 Å^3 or more.
(3)非晶配向度が0.55未満である特許請求の範囲
第(1)項又は第(2)項記載のポリエステル繊維。
(3) The polyester fiber according to claim (1) or (2), which has an amorphous orientation degree of less than 0.55.
(4)切断強度が6.0g/de以上である特許請求の
範囲第(1)項〜第(3)項のいずれか1項記載のポリ
エステル繊維。
(4) The polyester fiber according to any one of claims (1) to (3), which has a cutting strength of 6.0 g/de or more.
JP25055284A 1984-07-09 1984-11-29 Polyester fiber Pending JPS61132616A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP25055284A JPS61132616A (en) 1984-11-29 1984-11-29 Polyester fiber
US06/751,796 US4690866A (en) 1984-07-09 1985-07-03 Polyester fiber
EP85108266A EP0169415B1 (en) 1984-07-09 1985-07-04 Polyester fiber
DE8585108266T DE3565698D1 (en) 1984-07-09 1985-07-04 Polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25055284A JPS61132616A (en) 1984-11-29 1984-11-29 Polyester fiber

Publications (1)

Publication Number Publication Date
JPS61132616A true JPS61132616A (en) 1986-06-20

Family

ID=17209609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25055284A Pending JPS61132616A (en) 1984-07-09 1984-11-29 Polyester fiber

Country Status (1)

Country Link
JP (1) JPS61132616A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289115A (en) * 1985-06-10 1986-12-19 Teijin Ltd Polyester fiber
JPS6312715A (en) * 1986-07-02 1988-01-20 Toyobo Co Ltd Ethylene terephthalate polyester fiber
US5242645A (en) * 1989-11-15 1993-09-07 Toray Industries, Inc. Rubber-reinforcing polyester fiber and process for preparation thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154411A (en) * 1981-03-16 1982-09-24 Toray Ind Inc Polyester fiber
JPS5813718A (en) * 1981-07-16 1983-01-26 Teijin Ltd Polyester fiber
JPS58197310A (en) * 1982-05-13 1983-11-17 Teijin Ltd Polyester fiber
JPS58203108A (en) * 1982-05-17 1983-11-26 Teijin Ltd Polyester fiber
JPS5921714A (en) * 1982-07-23 1984-02-03 Toray Ind Inc Method for drawing polyester fiber
JPS5953736A (en) * 1982-09-22 1984-03-28 東レ株式会社 Polyester tire cord and production thereof
JPS6119812A (en) * 1984-07-09 1986-01-28 Teijin Ltd Polyester fiber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154411A (en) * 1981-03-16 1982-09-24 Toray Ind Inc Polyester fiber
JPS5813718A (en) * 1981-07-16 1983-01-26 Teijin Ltd Polyester fiber
JPS58197310A (en) * 1982-05-13 1983-11-17 Teijin Ltd Polyester fiber
JPS58203108A (en) * 1982-05-17 1983-11-26 Teijin Ltd Polyester fiber
JPS5921714A (en) * 1982-07-23 1984-02-03 Toray Ind Inc Method for drawing polyester fiber
JPS5953736A (en) * 1982-09-22 1984-03-28 東レ株式会社 Polyester tire cord and production thereof
JPS6119812A (en) * 1984-07-09 1986-01-28 Teijin Ltd Polyester fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289115A (en) * 1985-06-10 1986-12-19 Teijin Ltd Polyester fiber
JPH0423008B2 (en) * 1985-06-10 1992-04-21 Teijin Ltd
JPS6312715A (en) * 1986-07-02 1988-01-20 Toyobo Co Ltd Ethylene terephthalate polyester fiber
US5242645A (en) * 1989-11-15 1993-09-07 Toray Industries, Inc. Rubber-reinforcing polyester fiber and process for preparation thereof

Similar Documents

Publication Publication Date Title
US4690866A (en) Polyester fiber
JP3655577B2 (en) Method for producing polyethylene naphthalate fiber
JPH0127164B2 (en)
JP3886360B2 (en) Method for producing polyester multifilament yarn
JP2006500479A (en) High strength polyethylene-2,6-naphthalate fiber
JP3835803B2 (en) High-strength polyethylene-2,6-naphthalate fiber with excellent spinnability
JPS6141320A (en) Polyester fiber
JPH0663128B2 (en) Polyester fiber for reinforcing rubber structure and method for producing the same
JPH0246689B2 (en)
JPS6119812A (en) Polyester fiber
JPS6269819A (en) Polyester fiber
JPH06136614A (en) Polyester fiber having improved dimensional stability and its production
JPS61132616A (en) Polyester fiber
JPS5921714A (en) Method for drawing polyester fiber
JPH0733610B2 (en) Manufacturing method of polyester tire cord
JPS62156312A (en) Polyester fiber
JPH0450407B2 (en)
JPS5860012A (en) Polyhexamethylene adipamide fiber and its preparation
JPH0323644B2 (en)
JP2888888B2 (en) Method for producing polyester fiber and closed vertical spinning cylinder
JP3291812B2 (en) High strength polyhexamethylene adipamide fiber
WO1994019517A1 (en) High-strength polyamide fiber
JPS61289115A (en) Polyester fiber
JPH03124812A (en) Polyester fiber
JPS59168119A (en) Preparation of polyester yarn having improved thermal dimensional stability and high strength