JPS58203108A - Polyester fiber - Google Patents

Polyester fiber

Info

Publication number
JPS58203108A
JPS58203108A JP8166982A JP8166982A JPS58203108A JP S58203108 A JPS58203108 A JP S58203108A JP 8166982 A JP8166982 A JP 8166982A JP 8166982 A JP8166982 A JP 8166982A JP S58203108 A JPS58203108 A JP S58203108A
Authority
JP
Japan
Prior art keywords
polyester
polymer
rubber
intrinsic viscosity
polyester fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8166982A
Other languages
Japanese (ja)
Other versions
JPH0323644B2 (en
Inventor
Shiro Kumakawa
熊川 四郎
Hiroyoshi Hirono
広野 浩由
Shiyouzaburou Hiratsuka
平塚 尚三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP8166982A priority Critical patent/JPS58203108A/en
Publication of JPS58203108A publication Critical patent/JPS58203108A/en
Publication of JPH0323644B2 publication Critical patent/JPH0323644B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material

Abstract

PURPOSE:The titled fiber that is composed of ethylene terephthalate, satisfying specific values in terminal carboxyls, amorphous orientation and long-period spacing and having high strength, elasticity, heat stability and durability in rubber, thus being suitable for use in reinforcement of rubber structure. CONSTITUTION:A polyester that is composed of ethylene terephthalate and has a terminal carboxyls of 10 equivalent/10<6>g polymer or less, and an intrinsic viscosity of more than 0.85 is melted and extruded in a cooling zone into filaments, rapidly solidified by cooling and taken up at a speed of higher than 1,000m/min. The resultant undrawn filaments are subjected to the first-stage drawing so that the optical birefrigence becomes less than 0.16 in the equatorial reflection of the X-ray broad angle diffraction diagram, then to multi-stage drawing and heat setting to produce the objective filaments of 0.55-0.64 amorphous orientation (fa), 130-160Angstrom long-period spacing (L) and 9.0-15% dry heat shrinkage at 175 deg.C and more than 0.8 intrinsic viscosity.

Description

【発明の詳細な説明】 本発明は熱的性質及び力学的性質が同時に改善されたゴ
ム構造物の補強用に好適なポリエステル繊維に関する、 ポリエステル繊維は、その力学的、熱的性質が優れてい
ることから、衣料分野のみならずタイヤコート、コンベ
アベルト、シートベルト。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polyester fiber suitable for reinforcing rubber structures, which has improved thermal properties and mechanical properties at the same time.Polyester fiber has excellent mechanical and thermal properties. Therefore, it is used not only in the clothing field, but also in tire coats, conveyor belts, and seat belts.

V−ベルト、ホース、縫糸等の工業用繊維として屯広く
使用されている。特に昨今は衣料用に比して工業用繊維
としての比重が益々高くなり、これに伴い工業用繊維、
特にゴム構造物補強用繊維としての要求特性も−1−厳
しくなってきている。
It is widely used as an industrial fiber for V-belts, hoses, sewing threads, etc. Especially in recent years, the relative weight of industrial fibers has become higher than that of clothing, and as a result, industrial fibers,
In particular, the required properties for fibers for reinforcing rubber structures are becoming stricter.

従来性われてきたゴム構造物補強用繊維の製造法は、切
断強度の改善を指向した方向であり、このためポリマー
の固有粘度〔η〕を0.7以上に上げ、そのf!−紡糸
においては未延伸糸の複屈折率Δnを極力下げる紡糸条
件を採用し、しかる後、充分に延伸と熱処理する方法で
あった。
Conventional methods for producing fibers for reinforcing rubber structures are directed toward improving cutting strength, and for this purpose, the intrinsic viscosity [η] of the polymer is increased to 0.7 or higher, and its f! - In the spinning process, spinning conditions were adopted that minimized the birefringence Δn of the undrawn yarn, followed by sufficient stretching and heat treatment.

かぐして得られる繊維は、当初の意図通り切rri!1
度の面においては優れているが、これとて特定の用途、
例えば熱収縮が低く、しかも高モデュラスが要求される
ラジアルタイヤ用にdjしていない。
The fibers obtained by smelting can be cut as originally intended! 1
Although it is excellent in terms of strength, it has very specific uses.
For example, it is not designed for radial tires that require low heat shrinkage and high modulus.

即ち、ラジアルタイヤ用に#−1t1切断強度は低くて
も熱収縮率が低く、シかもモジュラスが高いレーヨンが
好ましく使用されているのが現状である。
That is, at present, for radial tires, rayon is preferably used which has a low #-1t1 cutting strength but a low heat shrinkage rate and a high modulus.

しかしレーヨン自体生産量も限られておシ、又価格も高
く、しかも今後の安定供給性という面から問題がある。
However, the production of rayon itself is limited, the price is high, and there are problems in terms of stable supply in the future.

そこでポリニスデル繊維をして、より熱収縮率を下げ、
モジュラスを上ける検討も一部ではなされてきた。その
代表的な例ti延伸工程に続き弛緩熱収縮処理を行なう
ものである。しかしながら、この場合非晶部分が安定化
するため、即ち非晶部分の配向度が低下するため、熱収
縮率を下げるという目的ははソ満足されるが、モジュラ
スはより低くなる欠点がある。
Therefore, we used polynisdel fiber to further reduce the heat shrinkage rate.
Some studies have also been made to increase the modulus. A typical example is one in which a relaxation heat shrinkage treatment is performed following the ti stretching step. However, in this case, since the amorphous portion is stabilized, that is, the degree of orientation of the amorphous portion is reduced, the objective of lowering the thermal shrinkage rate is satisfied, but there is a drawback that the modulus becomes lower.

他の手段としてポリマーの固有粘度〔η〕を下けること
も検討したがこの種の繊維は、合糸し撚糸し、スダレ状
に織抄、レゾルシン−ホルマリン系の接層剤で処理した
後、熱処理するデイソプ工程までは熱収縮、モジュラス
ははソ目的に合致するが、ディノブ後ゴムをのせ加硫し
、タイヤ成形した後の強力やタイヤ走行時の耐久性とい
り点では劣り、実用上の問題が大きい。
We also considered lowering the intrinsic viscosity [η] of the polymer as another means, but this type of fiber is doubled, twisted, woven into a sag, and treated with a resorcinol-formalin-based adhesive. The heat shrinkage and modulus up to the heat treatment process meet the purpose, but after the rubber is applied and vulcanized and the tire is formed, it is inferior in terms of strength and durability during tire running, and is not suitable for practical use. The problem is big.

このゴム中でのコード強力の低下を抑制するために末端
カルボキシル基量を低下する試みもなされているが充分
ではないのが現状である。
Attempts have been made to reduce the amount of terminal carboxyl groups in order to suppress the decrease in cord strength in the rubber, but this is not sufficient at present.

このように従来のゴム構造物補強用繊維の製造に当って
は、種々の要求特性の内の一部を改良できるのみで、こ
れに伴うマイナスの要因も顕現し、二律背反的な性格の
ものであった。
In this way, in the production of conventional fibers for reinforcing rubber structures, it is possible to improve only some of the various required properties, but the negative factors associated with this also appear, and it is a contradictory character. there were.

従って本発明者は、固有粘度〔η〕が高くて、高強力を
維持しつつ高モデエラス、低収縮で、且つゴム中耐久性
に優れたポリニスデル繊維を提供せんと鋭意検討の結果
、繊維微細構造の非晶部分の配向性を低下させ、且つ非
晶部分の密度とタイ分子数を増大し、結晶部分と非晶部
分との結合を緻密にすること及び未湖カルボキシル含量
をある範囲以下にすればよいことを見い出し、本発明に
到達したのである。
Therefore, the inventor of the present invention has conducted intensive studies to provide a polynisdel fiber that has a high intrinsic viscosity [η], maintains high strength, has high model elongation, low shrinkage, and has excellent durability in rubber. It is possible to reduce the orientation of the amorphous part of the amorphous part, increase the density of the amorphous part and the number of tie molecules, make the bond between the crystal part and the amorphous part dense, and keep the unlaked carboxyl content below a certain range. They found a good solution and arrived at the present invention.

即チ本発明は、エチレンテレフタレートを主たる構成単
位とするポリエステル繊維であって、末端カルボキシル
基量が10当量/10・グラムポリマー以下で且つ非晶
配向度fa  が0.55〜0.64及び長□″周期関
隔りが130〜160Aである高強力で熱安定性に優れ
たポリニスデル繊維に係る本のである。
That is, the present invention provides a polyester fiber having ethylene terephthalate as a main constituent unit, having a terminal carboxyl group weight of 10 equivalents/10·g polymer or less, an amorphous orientation fa of 0.55 to 0.64, and a long fiber. □''This is a book related to polynisder fibers with a periodic distance of 130 to 160A, which are highly strong and have excellent thermal stability.

本発明でdうポリエステルとは、プレフタル酸成分とエ
チレングリコール成分とからなるポリエチレンテレフタ
レートを主たる対象とするが、テレフタル酸成分の一部
、通常10毛ルー以下を他のジカルボン酸成分で置換え
たポリエステルであっても、及び/又はエチレングIJ
コール成分の一部、通常lOモル嚢以下を他のジオール
成分で置き換えたポリエステルであってもよい。また、
かかるポリニスデルには必414に応じて例えば改質剤
、安定剤等を任意に使用してもよい。
In the present invention, the polyester mainly refers to polyethylene terephthalate consisting of a prephthalic acid component and an ethylene glycol component, but a polyester in which a part of the terephthalic acid component, usually 10 or less, is replaced with another dicarboxylic acid component. and/or ethylene IJ
It may also be a polyester in which a portion of the coal component, usually less than 10 molar capsules, is replaced with another diol component. Also,
For example, modifiers, stabilizers, etc. may optionally be used in such polynisdels, as required.

かかるポリエステルよりなる本発明の繊維の重合度は、
最終ゴム構造物中において充分な強度を奏するためにr
i%固有帖度で表わして0.8θ以上、特に#′i0.
83〜0.95の範囲が好ましい。
The degree of polymerization of the fiber of the present invention made of such polyester is
In order to provide sufficient strength in the final rubber structure, r
0.8θ or more, especially #'i0.
The range of 83 to 0.95 is preferable.

なお、本例−書でd5固有粘度は35℃のオルソクロロ
フェノール溶液にして求めた。
In this example, the d5 intrinsic viscosity was determined using an orthochlorophenol solution at 35°C.

本発明のポリエステル繊維は、10当量/10・グラム
ポリマー以下の末端カルボキシル基量、0.55〜0.
64の非晶配向度及び130〜160Aの長周期間隔の
いずれをも満足しなければならない。
The polyester fiber of the present invention has a terminal carboxyl group weight of 10 equivalents/10·g polymer or less, 0.55 to 0.
Both the degree of amorphous orientation of 64 A and the long period interval of 130 to 160 A must be satisfied.

即ち、末端カルボキシル基量が10当量/106グラム
ポリマーより多いと、非晶配向度と長周期間隔が蛾適埴
であって本本願の目的即ち高強力、高モジュラス、低収
縮で且つゴム中耐久性の特性音てを満足するポリエステ
ル繊維とはならない。また、非晶配向度が0.55に達
しないものでは上記各特性、特に強力とモジュラスが不
光分であり、0.64より高いと特に収縮率が光分圧低
くならなくなる。長周期間隔が130〜160Aの範囲
外のとき本、他の要件即ち末端カルボキシル基波が充分
に少なく且つ非晶配向度が最適値であっても、上記各特
性全てを満足させることはできない。
That is, when the amount of terminal carboxyl groups is more than 10 equivalents/106 grams of polymer, the degree of amorphous orientation and long period interval are suitable, and the objective of the present invention is to achieve high strength, high modulus, low shrinkage, and medium durability of the rubber. Polyester fibers do not satisfy the physical properties and sound characteristics. Further, if the degree of amorphous orientation does not reach 0.55, the above properties, especially strength and modulus, are non-light components, and if the degree of amorphous orientation is higher than 0.64, the optical partial pressure will not be particularly low in shrinkage ratio. When the long period interval is outside the range of 130 to 160 A, all of the above characteristics cannot be satisfied even if the other requirements are sufficiently small, that is, the number of terminal carboxyl radicals is sufficiently small and the degree of amorphous orientation is at an optimum value.

末端カルボキシル基量、非晶配向度及び長周期間隔の全
てが満足されて、従来得られることのできなかった高強
力、高モジュラス、低収縮で且つゴム中耐久性に優れ、
その上ゴム中での発熱が低く、耐疲労性も著しく優れた
ポリエステル繊維となるう 史に本発明のポリエステル繊維は、前記非晶配向度、及
び長周期間隔及び末端カルボキシル基量に加えて175
℃の乾熱収縮率を9.0〜1slHすると、後続のゴム
補強材用の4次加工の高温処理時において熱セット性が
良好であると同時に力学的特性を犠牲にすることなく容
易に良好な熱安定性が得られるので極めて好ましい。こ
の乾熱収縮率が9%□□上り低いと、後加工時の熱処理
における収縮率の低下が比較的少ない。また、tS憾よ
り高いと後加工時の熱処理によっても光分に低い収縮率
になり難く且つこの熱処理により強力や耐久性が低下し
易くなる。
It satisfies all of the terminal carboxyl group content, amorphous orientation degree, and long period interval, and has high strength, high modulus, low shrinkage, and excellent durability in rubber, which could not be obtained conventionally.
Furthermore, the polyester fiber of the present invention has a history of low heat generation in rubber and extremely excellent fatigue resistance.
When the dry heat shrinkage rate at °C is 9.0 to 1 slH, the heat setting properties are good during the subsequent high-temperature processing of the 4th processing for rubber reinforcing materials, and at the same time, they are easily good without sacrificing mechanical properties. This is extremely preferable since it provides excellent thermal stability. When this dry heat shrinkage rate is as low as 9%□□, the decrease in shrinkage rate during heat treatment during post-processing is relatively small. Moreover, if it is higher than tS, it is difficult to achieve a low shrinkage rate even by heat treatment during post-processing, and the strength and durability are likely to decrease due to this heat treatment.

本発明のポリエステル繊維は以下の如き方法によって得
られる、即ち末端カルボキシル基量力10 当量/ 1
04グラムポリマー以下で固有積置が0.85以上、好
ましくは0.87〜1.10のポリエステルを溶融状態
で冷却域内に紡出して直ちに急冷固化せしめ、引取速度
1O0011L/分以上、好ましくFitsoo 〜s
ooom/分で引取ることによって複屈折率2000〜
7000X10  、好ましくは3000〜7000X
10−5、II!に好ましくは4000〜5000 X
 10−5の未延伸糸を得、この未延伸糸の切断伸度の
80チ以上、好ましくは82−以上延伸するととKよっ
て製造される。この延伸は紡糸に続いて連続して行なっ
ても、紡糸後一旦捲取ってから延伸してもよい。紡糸に
続いて連続して行う場合は、]1゜ 先ずX@広角回折図形に子午線反射(001)の存在す
る複屈折率が0.16以下の1段延伸糸となし、次の多
段延伸熱処理する方法が有用である。
The polyester fiber of the present invention can be obtained by the following method, namely, terminal carboxyl group weight: 10 equivalents/1
A polyester having a specific stacking capacity of 0.04 grams or less and a specific density of 0.85 or more, preferably 0.87 to 1.10 is spun in a molten state into a cooling zone and immediately quenched and solidified, with a take-up rate of 100011 L/min or more, preferably Fitsoo ~ s
Birefringence of 2000 ~ by taking off at ooom/min
7000X10, preferably 3000-7000X
10-5, II! preferably 4000 to 5000
It is produced by obtaining an undrawn yarn of 10-5 and stretching the undrawn yarn at a breaking elongation of 80 or more, preferably 82 or more. This stretching may be carried out continuously following spinning, or it may be carried out once after spinning and then stretched. When carrying out continuous spinning subsequent to spinning, ]1゜First, a single-stage drawn yarn with a birefringence of 0.16 or less with meridian reflection (001) present in the X@ wide-angle diffraction pattern is prepared, and then multi-stage drawing heat treatment is performed. This method is useful.

また、紡糸後一旦催取ってから延伸する場合は、第1段
延伸を全延伸倍率の75参以下にして複屈折率の増分を
4倍以下とした後、多段延伸熱処理する方法が有用であ
る。いずれにしろこれらの延伸に当って(多段延伸する
ときはその第1段延伸の)、その加熱手段として250
〜650℃、好ましくは280〜600℃の加熱水蒸気
を噴出させるスチームジエント方式や80〜120℃の
加熱ローラ方式を採用することが好ましい。また、延伸
後熱処理して得られる繊維の175℃の乾熱収縮率を9
〜15−の範囲にするのが望ましい。この収縮率は延伸
糸を(融点−50℃)〜(融点−110℃)の温度にし
て2.5〜15優の緊張下で0.4〜1.5秒間保持す
ることKよって達成される。
In addition, when drawing after spinning, it is useful to carry out multi-stage stretching heat treatment after the first stage stretching is set to 75 or less of the total stretching ratio so that the increment in birefringence is 4 times or less. . In any case, during these stretching steps (in the first stage of stretching when multistage stretching is performed), 250
It is preferable to employ a steam gradient method in which heated steam of 80 to 120° C. is jetted out, preferably 280 to 600° C., or a heated roller method of 80 to 120° C. In addition, the dry heat shrinkage rate at 175°C of the fiber obtained by heat treatment after stretching was 9
It is desirable to set it in the range of ~15-. This shrinkage rate is achieved by bringing the drawn yarn to a temperature of (melting point -50°C) to (melting point -110°C) and holding it for 0.4 to 1.5 seconds under a tension of 2.5 to 15 degrees. .

末端カルボキシル基量を10当量/106グラムボリマ
ー以下圧するには、種々の方法を採用することがor 
dである。例えば (1)  特公昭44−27911号公報の如く、溶融
状態ノポリエステルにフェニルグリシジルエーテルを反
ふ6させる方法 (2)  %公昭45−41235号公報の如く、溶融
状態のポリエステルに線状ポリエステルカーボネートを
反応させる方法 (3)特公昭47−12891号公報の如く、ポリエス
テルにエチレンオキサイドを反応させる方法 (4)  特公昭48−35953号公報の如くポリエ
ステルにシュウ酸のグリコールエステル又はシュウ酸ポ
リエステルを反応させる方法(5)%公ll54g−4
t7xa号公報の如く、ポリエステルKll状カーボネ
ートを反応させる方法 (6)  %公昭49−5233号公報の如くポリニス
デルにジアリールオキザレート類及び/又はジアリール
マロネート類とジアリールカーボネート類を反応させる
方法 (7)  米国特許第3193522号の如く、ポリエ
ステルにカルボジイミドを反応させる方法+8)  特
@昭55−目4734号公報の如く、ビス環状イミノエ
ーテルを反応させる方法 など所望の固有粘度や末端カルボキシル基量に応じて随
時採用することがOT mである。%に1得られる繊維
の着色を避け、紡糸中での添加剤の分解による発泡がな
く、重合度を低下させることなくて末端カルボキシル基
量を10当量/10−グラムポリマー以下にする方法が
好適である。
Various methods can be employed to reduce the amount of terminal carboxyl groups to 10 equivalents/106 grams of polymer or less.
It is d. For example, (1) a method in which phenyl glycidyl ether is refluxed into a molten polyester as disclosed in Japanese Patent Publication No. 44-27911; (2) a method in which linear polyester carbonate is added to a molten polyester as in Japanese Patent Publication No. 45-41235; (3) A method of reacting polyester with ethylene oxide, as disclosed in Japanese Patent Publication No. 47-12891. (4) A method of reacting polyester with glycol ester of oxalic acid or oxalic acid polyester, as disclosed in Japanese Patent Publication No. 48-35953. Method of making (5)% 54g-4
Method (6) of reacting polyester Kll-like carbonates as in Publication No. t7xa (6) Method of reacting polynisder with diaryl oxalates and/or diarylmalonates and diaryl carbonates as in Publication No. 49-5233 (7) ) Method of reacting carbodiimide with polyester as in U.S. Pat. No. 3,193,522+8) Method of reacting with bis-cyclic imino ether as in Special Publication No. 4734/1983 Depending on the desired intrinsic viscosity and amount of terminal carboxyl groups It is OT m that can be adopted from time to time. A preferred method is to avoid coloring of the resulting fibers, to avoid foaming due to decomposition of additives during spinning, and to reduce the amount of terminal carboxyl groups to 10 equivalents/10-gram polymer or less without reducing the degree of polymerization. It is.

このようにして得られる本発明のポリエステル繊維をゴ
ム構造物の補強用に使用するKは、常法に従ってコード
となし、接着剤を付与し、熱処理し、しかる後ゴム構造
物に適用される。
The polyester fiber of the present invention thus obtained is made into a cord according to a conventional method, coated with an adhesive, heat treated, and then applied to the rubber structure.

この際熱処理は処理前のポリエステル繊維の最大熱収縮
応力の55−以下になるように熱処理温度及び伸長度を
−1することが好ましい。具体的にけコード化後の熱処
−を20−までの伸長下で200〜260℃J !!”
度で光分に通常30〜240秒熱処理することが好まし
い。
In this case, the heat treatment temperature and degree of elongation are preferably set to -1 so that the maximum heat shrinkage stress of the polyester fiber before treatment is 55 or less. Specifically, heat treatment after cording was carried out at 200-260°C under elongation up to 20°C! ! ”
It is preferable to carry out a heat treatment for 30 to 240 seconds at a temperature of 100°C.

このような熱処理を施すことによって以下の実施例によ
って明らかなように、最高の性能を発揮するようになる
。即ち、本発明のポリエステル繊維から得られるゴム補
強用の熱処理コードは、強度6f/dB以上、175℃
の乾熱収縮率が4.5%′以下、4.5 Kf荷重時の
伸度が4.5−以下と高*度、低収縮、且つ高モデュラ
スである。又ゴム中に配設加硫して得られるゴム構造物
中においても発熱温度が従来のゴム補強用ポリエステル
繊維より得られるコードに比して低発熱であり、耐疲労
性が著しく改善されるのみならずゴム構造物中での強力
劣化度合が少く耐久性に優れたものになる。
By performing such heat treatment, the best performance can be exhibited, as will be clear from the following examples. That is, the heat-treated cord for rubber reinforcement obtained from the polyester fiber of the present invention has a strength of 6 f/dB or more and a temperature of 175°C.
The dry heat shrinkage rate is 4.5% or less, and the elongation at 4.5 Kf load is 4.5- or less, which is high degree, low shrinkage, and high modulus. In addition, the heat generation temperature in the rubber structure obtained by disposing and vulcanizing in rubber is lower than that of cords obtained from conventional rubber reinforcing polyester fibers, and fatigue resistance is significantly improved. Therefore, the degree of strength deterioration in the rubber structure is small and the durability is excellent.

本発明で言うゴム構造物とは、例えばタイヤ。The rubber structure referred to in the present invention is, for example, a tire.

V−ベルト、コンベアベルトの如キ天然コム。V-belt, conveyor belt natural comb.

合成ゴム等よりなる構造物全てを指す。Refers to all structures made of synthetic rubber, etc.

以下に実施例をあげて本発明を更に説明する。The present invention will be further explained with reference to Examples below.

尚、実施例中の6槽の測定値は以下の方法による。  
    ′□ (1)  末端カルボキシル基量はニー・コニツクス(
A、coniz)の方法(Makr・)mol、 (!
hem、 2 a 。
Incidentally, the measured values of the six tanks in the examples are based on the following method.
′□ (1) The amount of terminal carboxyl group is determined by Nie-Conics (
A, coniz) method (Makr・)mol, (!
hem, 2 a.

226.1958)によって測定した。226.1958).

(2)  非晶配向度fa  はロパート・ジエー・サ
ミニル(Robert、 J、 8amuel)の論文
記載の方法(J、 Polymer 5cience 
A 2 、10 、781 、1972+により算出し
た。
(2) The degree of amorphous orientation fa is determined by the method described in the paper by Robert J. Saminil (J, Polymer 5science).
Calculated using A 2 , 10 , 781 , 1972+.

即ち Δn −XfcΔnc + (1−X)faΔn
aここでΔnはフィラメント中の分子の配向度を示すパ
ラメーターであって浸漬液にプロムナフタリンヲ用いベ
レンクコンペンセーターを用いてリターデーション法に
より求めた。詳細な説明は共立出版F高分子実験学講座
・高分子の物性U」を参照されたい。
That is, Δn −XfcΔnc + (1−X)faΔn
a Here, Δn is a parameter indicating the degree of orientation of molecules in the filament, and was determined by the retardation method using Promnaphthalene as the immersion liquid and a Berenck compensator. For a detailed explanation, please refer to "Kyoritsu Shuppan F Polymer Experimental Course/Physical Properties of Polymers U".

fc  は結晶配向度で痒角X、@回折で測定される平
均配向角αから常法により求めた。
fc is the degree of crystal orientation and was determined by a conventional method from the pruritus angle X and the average orientation angle α measured by @diffraction.

Xは結晶化度で密度より常法により求めた。X is the degree of crystallinity, which was determined from the density using a conventional method.

ΔnC、Δnaは結晶、無定形の固有複屈折でポリエチ
レンテレフタレートでは各々0.220 、0.275
である。
ΔnC and Δna are crystalline and amorphous intrinsic birefringence, which are 0.220 and 0.275 for polyethylene terephthalate, respectively.
It is.

(3)長周期間隔りは、X線小角散乱測定装置を用い従
来公知の方法、即ち波長1.54 AのCuKa−を線
源とし、繊維軸に直角に照射して得られる子午線回渉の
回折線よりブラッグの式を用いて算出した。
(3) The long-period interval can be determined using a conventionally known method using a small-angle X-ray scattering measurement device, that is, by using CuKa- with a wavelength of 1.54 A as a radiation source and irradiating it at right angles to the fiber axis. It was calculated from the diffraction line using Bragg's formula.

(4)  荷重−荷伸曲線はJISL 1017−19
63(5,4)K準拠した。
(4) Load-stretching curve is JISL 1017-19
63(5,4)K compliant.

(5)  乾熱175℃収縮率はJISL11017−
1963(5,12)に準拠した。
(5) Dry heat 175℃ shrinkage rate is JISL11017-
Based on 1963 (5, 12).

(6)  チューブ発熱温度及びチューブ寿命はJIS
・L1017−1963.1.3.2.IA法 に準拠
した。
(6) Tube heat generation temperature and tube life are JIS
・L1017-1963.1.3.2. Compliant with IA law.

但し、曲げ角度を90°とした。発熱温度は運転開始9
0分後のチューブ表面の温度を赤外非接触温度計(SA
W −E1社製)で測定し、チューブ寿命はチューブ破
断までの時間で示した。
However, the bending angle was 90°. The exothermic temperature is 9 at the start of operation.
After 0 minutes, the temperature of the tube surface was measured using an infrared non-contact thermometer (SA
(manufactured by W-E1), and the tube life was expressed as the time until tube breakage.

(7)  耐熱強力は常法により作成した生コードをR
FL接着液に浸漬し、張力下245℃で3分間熱処理し
た。この処理コードを加硫モールド中に埋め込み170
℃、圧力5oKr/fflで120分間促進加硫した後
処理コードを取り出し強力を測定した。
(7) For heat resistance and strength, R
It was immersed in FL adhesive solution and heat-treated at 245° C. for 3 minutes under tension. Embed this processing code into the vulcanization mold 170
After accelerated vulcanization for 120 minutes at a temperature of 5 degrees Celsius and a pressure of 5 degrees Kr/ffl, the treated cord was taken out and its tenacity was measured.

〔実施例1〕 ジメチルナレフタレート97″部(部は重量部を示し、
以下同様である)、エチレングリコール69部、酢酸カ
ルシュラム1水塩0.034部及ヒ二酸化アンチモン0
.025部をオドクレープに仕込み、窒素をゆるやかに
通じながら180〜230℃テニスチル交換の結果生成
するメタノールを除去したのち、H*POaの50%水
溶液を0.05部加えて、加熱温度を28 QCまで上
昇させてから、更に沃化カリウムを0.025部加えて
徐々に減圧に移行し、約1時間を要して反応系の圧力を
0.2IollIg1c して2時間重合反応を続けた
。その結果固有粘度が0.90で末端カルボキシル基量
が32.2当量/ lo’ダラムポリマーの重合体が得
た。
[Example 1] 97'' parts of dimethylnaphthalate (parts indicate parts by weight,
The same shall apply hereinafter), 69 parts of ethylene glycol, 0.034 parts of calcium acetate monohydrate, and 0 parts of antimony dioxide.
.. After charging 0.025 parts into an odocrape and removing methanol produced as a result of tennis chill exchange at 180-230°C while slowly passing nitrogen, 0.05 parts of a 50% aqueous solution of H*POa was added and the heating temperature was increased to 28 QC. After increasing the temperature, 0.025 part of potassium iodide was added and the pressure was gradually reduced to 0.2 IollIg1c in about 1 hour, and the polymerization reaction was continued for 2 hours. As a result, a polymer having an intrinsic viscosity of 0.90 and a terminal carboxyl group content of 32.2 equivalents/lo' Durham polymer was obtained.

ここで窒素ガスで反応系を′竺圧に4どし、第1表記載
の量の1.2−ジ7工亜ルエチレンオキサイドを添加し
、10分間常圧F反応させたのち、再び反応系の圧力を
0.2.、&1gKして30分間重合反応を続けた。
Here, the reaction system was brought to normal pressure with nitrogen gas, 1,2-di7-functional ethylene oxide was added in the amount listed in Table 1, and the reaction was carried out at normal pressure for 10 minutes, and then the reaction was carried out again. The pressure of the system was set to 0.2. , &1gK, and the polymerization reaction was continued for 30 minutes.

得られた重合体の固有粘度及び末端カルボキシル基量は
添加量に応じて第1表に示す通りであった。
The intrinsic viscosity and the amount of terminal carboxyl groups of the obtained polymers were as shown in Table 1 depending on the amount added.

第1表 次に上記2種のポリエステル重合体*、Bt使用して、
紡糸延伸を行い各種の延伸糸を得た。
Table 1 Next, using the above two types of polyester polymers*, Bt,
Various drawn yarns were obtained by spinning and drawing.

即ち、上記ポリエステル重合体を約290℃で溶融し、
孔径0.551a11孔数25041を有する紡糸口金
より吐出後、吐出糸条に直ちに25℃の冷却風t−3,
ONi1l”/麿 吹きつけながら冷却固化させ、その
後オイリングローラ−で油剤を□ 付与E7、第2表記載の速度で捲取った。この未延伸糸
条の特性を第2表に示した。この未延伸糸条を85℃に
加熱されたロールに供給し、引取ロールとの間で第2表
記載の倍率(DR,)の1段延伸後、325℃に加熱さ
れた気体浴を介して表記載の倍率(DRI)で第2段延
伸した。その後150℃の加熱ローラー、200℃の接
触熱板、300℃の気体浴を表記載のように使用又は1
部使用せず1表記絨の倍率(DRs )で緊張熱処理し
た。重合体橿、得られた延伸糸の物性を第2表に示した
That is, the above polyester polymer is melted at about 290°C,
After being discharged from a spinneret having a hole diameter of 0.551a1 and a number of holes of 25041, the discharged yarn is immediately exposed to cooling air t-3 at 25°C.
ONi1l''/Maro It was cooled and solidified while being sprayed, and then the oil was applied with an oiling roller and rolled up at the speed shown in Table 2. The properties of this undrawn yarn are shown in Table 2. The drawn yarn is supplied to a roll heated to 85°C, and after one-stage drawing with a take-up roll at the ratio (DR,) shown in Table 2, it is passed through a gas bath heated to 325°C 2nd stage stretching was carried out at a magnification (DRI) of
It was subjected to tension heat treatment at a ratio of 1 (DRs) without using any parts. Table 2 shows the physical properties of the polymer string and the obtained drawn yarn.

次にこれら延伸糸に490回/wLの2撚を与えその後
“これを2本合わせて490回/Sの8撚を与えて10
00deX2本の生コードとした、この生コードを接着
液(RFL液)K浸漬し、245℃で3分間緊張熱処理
した。この処理コードの特性及びゴム中Kalめ込み加
硫してチューブ疲労性、耐熱強力を測定した。その結果
を第2表に併記した。
Next, these drawn yarns were given 2 twists of 490 times/wL, and then "total of these two yarns were given 8 twists of 490 times/S, and 10
The raw cords, which were made into two 00deX raw cords, were immersed in adhesive liquid (RFL liquid) K and subjected to tension heat treatment at 245°C for 3 minutes. The characteristics of this treated cord, as well as the tube fatigue resistance and heat resistance strength after vulcanization with Kal injected into the rubber, were measured. The results are also listed in Table 2.

〔実施例2] ジメチルテレフタレート97部、エチレングリコール6
9部、酢酸カルシウム!水塩o、o s a部及び二酸
化アンチモン0.044部を160〜230℃に加熱し
つつ生成するメタノールを系外に留出させた。その後パ
ス温を徐々に275℃にあげて常圧下で30分、鰻に0
.151111吋の減圧下で60分間重縮合反応を続け
た。ここで反応系を窒素ガスを用いて常圧に戻した。得
られた重合体の固有粘度は0.58であった。
[Example 2] 97 parts of dimethyl terephthalate, 6 parts of ethylene glycol
Part 9, calcium acetate! Parts of aqueous salts o, osa and 0.044 parts of antimony dioxide were heated to 160 to 230°C while the generated methanol was distilled out of the system. After that, the pass temperature was gradually raised to 275℃ and the eel was heated under normal pressure for 30 minutes.
.. The polycondensation reaction was continued for 60 minutes under a reduced pressure of 151,111 inches. Here, the reaction system was returned to normal pressure using nitrogen gas. The intrinsic viscosity of the obtained polymer was 0.58.

ここでジフェニルオキザレート1.21部(テレフタル
酸に対して1.0モル慢)及び、ジフェニルカーボネー
ト1.07部(テレフタル酸に対し。
Here, 1.21 parts of diphenyl oxalate (1.0 molar relative to terephthalic acid) and 1.07 parts of diphenyl carbonate (based on terephthalic acid).

て1.0モル慢)を加えて、10分間常圧下で反応させ
た後徐々に減圧圧して再び0.2+wl1g以下の減圧
下で20分間重合反応を続けた。得られたポリエステル
の固有粘度は1.10 、末端カルボキシル基量は2.
7当量/ lO’frポリマーであった。
After the reaction was carried out under normal pressure for 10 minutes, the pressure was gradually reduced and the polymerization reaction was again continued for 20 minutes under reduced pressure of 0.2 + 1 g or less. The obtained polyester had an intrinsic viscosity of 1.10 and a terminal carboxyl group content of 2.
7 equivalents/lO'fr polymer.

このポリニスデル重合体を約300℃で溶融し、孔径0
.55部1m1孔fi 250 +!iを有する紡糸口
金より吐出後、吐出糸条に直ちに2部℃の冷却風を5.
(l Nm”/sj  吹きつけながら冷却副化させ、
その後オイリングローラ−で油剤を付与して2200 
yi/分で回転する引取ローラーに・導き、巻取らずに
直ちに延伸ロールとの閾で2.24部m Gのスチーム
ジェットを糸条に45° の角度で噴射させて1.5倍
に延伸した。
This polynisder polymer was melted at about 300°C and the pore size was 0.
.. 55 parts 1 m 1 hole fi 250 +! Immediately after the yarn is discharged from the spinneret having the temperature i, 2 parts of cooling air at 5° C. is applied to the discharged yarn.
(L Nm”/sj) Cooling is carried out while spraying,
After that, apply oil with an oiling roller to 2200
The yarn is guided to a take-up roller that rotates at a speed of yi/min, and without being wound up, the yarn is immediately drawn at a threshold of 1.5 times by spraying a steam jet of 2.24 parts mG at an angle of 45° onto the yarn. did.

この際引取ローラーに到った糸峨の固有粘度は0.95
 、末端カルボキシル基量け6.2当蓋/106trポ
リマー、複屈折率は4540 X 1 G−5であった
。又1.5倍に1段延伸した糸条はX1li広角回折図
形において明瞭な子午線反射(OOl)強度を示し、複
屈折率はo、t s sであった。次にこの1段延伸糸
を325℃の加熱浴を介して1.53倍に延伸後360
℃の加熱浴を通して1.05の緊張度で熱処理した。得
られた延伸熱処理系の性能は以下の通りであった。
At this time, the intrinsic viscosity of the thread that reached the take-up roller was 0.95.
, a terminal carboxyl group weight of 6.2/106 tr polymer, and a birefringence of 4540 X 1 G-5. Further, the yarn drawn in one step to 1.5 times showed clear meridian reflection (OOl) intensity in the X1li wide-angle diffraction pattern, and the birefringence was o, tss. Next, this one-stage drawn yarn was stretched to 1.53 times through a heating bath at 325°C, and then stretched to 360°C.
Heat treatment was carried out through a heating bath at 1.05 °C. The performance of the obtained stretching heat treatment system was as follows.

繊度:1015de、強[: 9.8 f/de 。Fineness: 1015 de, strong [: 9.8 f/de].

伸度: 8.2 * 、非1配向度: 0.64 。Elongation: 8.2 *, non-uniorientation degree: 0.64.

長周期:152λ、175℃乾収: 12.3%。Long cycle: 152λ, 175℃ Dry yield: 12.3%.

次にこの延伸糸を〔実施例1〕と同様にして処理コード
にした。得られたコード物性は以下の通りである。
Next, this drawn yarn was made into a treated cord in the same manner as in [Example 1]. The physical properties of the obtained cord are as follows.

強カニ 16.14 、4.5 Kf荷坤:3.5%。Strong crab 16.14, 4.5 Kf load: 3.5%.

175℃乾収: 3.44k 、チューブ寿命:503
分、耐熱強力維持率=82憾、 〔実施例3〕 ジメチルテレフタレート97部(部は重量部を示し、以
下同様である)、エチレングリコール69部、酢酸カル
シウム1水塩0.034部及び三酸化アンチモン0.0
25部をオドクレープに仕込み、窒素をゆるやかに通じ
ながら180〜230℃でエステル交換の結果生成する
メタノールを除去したのち、HsPOaの50チ水溶液
をO,OS部加えて、加熱温度を280℃まで上昇させ
ると共に徐々に減圧に移行し、約1時間を要して反応系
の圧力をo、2.、HgKして1時間20分重合反応を
続けて固有粘度0.75、末端カルボキシル基量35当
量/ 1 o”trポリマーの重合体を得た。
175℃ dry yield: 3.44k, tube life: 503
[Example 3] 97 parts of dimethyl terephthalate (parts indicate parts by weight, the same applies hereinafter), 69 parts of ethylene glycol, 0.034 parts of calcium acetate monohydrate, and trioxide. antimony 0.0
After charging 25 parts into an odocrape and removing methanol produced as a result of transesterification at 180 to 230°C while slowly passing nitrogen, add 50 parts of an aqueous solution of HsPOa to 280°C and raise the heating temperature to 280°C. At the same time, the pressure of the reaction system is gradually reduced to 0, 2. , HgK and continued the polymerization reaction for 1 hour and 20 minutes to obtain a polymer having an intrinsic viscosity of 0.75 and a terminal carboxyl group weight of 35 equivalents/1 o"tr polymer.

この重合体チップ100部に2,2′−ビス(2−オキ
サゾリン)をo、o s部、 0.15部、0.22部
トライブレンドした後、約295℃で溶融し、孔径0.
6+111+孔数250@を有する紡糸口金より吐出後
、吐出糸条に直ちに25℃の冷却風を4゜ON11l’
/分吹きつけながら冷却固化させ、その後オイリングロ
ーラ−で油剤、を付与4ik2500WL/分で回転す
る引取ローラーに導き未延伸糸として巻き取った。
100 parts of this polymer chip was triblended with o, os, 0.15, and 0.22 parts of 2,2'-bis(2-oxazoline), and then melted at about 295°C to obtain a pore size of 0.
After being discharged from a spinneret having 6 + 111 + 250 holes, the discharged yarn is immediately blown with 25°C cooling air at 4° ON 11l'
The yarn was cooled and solidified while being sprayed for 2500 WL/min, and then an oil agent was applied using an oiling roller, and the yarn was guided to a take-up roller rotating at 2,500 WL/min and wound up as an undrawn yarn.

次にこの未延伸糸を90℃に加熱されたロールに供給し
、引取ロールとの間で1.5 g 4倍に第1段延伸し
、次いで330Cの気体浴を介して1.421倍に第2
段延伸後、150Cの加熱ロール及び300℃の気体浴
を通して緊張率1.05で熱処理した。
Next, this undrawn yarn was supplied to a roll heated to 90°C, and stretched in the first stage to 1.5 g by 4 times with a take-up roll, and then stretched to 1.421 times through a 330C gas bath. Second
After stage stretching, it was heat-treated at a tension ratio of 1.05 through a 150C heated roll and a 300C gas bath.

次にこの延伸糸を〔実施例1〕と同様圧して処理コード
になし、得られた2、2′−ビス(2−オキサゾリン)
の添加量を変化した場合の未延伸糸、延伸糸、処理コー
ドの特性を第3表に示した。
Next, this drawn yarn was pressed into a treated cord in the same manner as in [Example 1], and the obtained 2,2'-bis(2-oxazoline)
Table 3 shows the properties of the undrawn yarn, drawn yarn, and treated cord when the amount of addition was changed.

第3表 特許出願人 帝人株式会社Table 3 Patent applicant Teijin Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)  エチレンテレフタレートを主たる構成琳位と
するポリエステル繊維であって、末端カルボキシル基量
が10当量710°グラムポリマー以下で且つ非ル配向
[fa  及び長周期間隔りが以下を満足する高強力で
熱安定性に優れたポリエステル*am。 fa −0,551A−0,64 L ÷130〜160A
(1) A polyester fiber mainly composed of ethylene terephthalate, with a terminal carboxyl group weight of 10 equivalents of 710°g polymer or less, and a high-strength polyester fiber with non-le orientation [fa and long-period spacing that satisfies the following: Polyester*am with excellent thermal stability. fa -0,551A-0,64 L ÷130~160A
(2)175℃における乾熱収縮率がe、o〜15チで
ある特1iFFd求の範囲第1項記載のポリエステル繊
維。
(2) The polyester fiber according to item 1, which has a dry heat shrinkage rate of e, o to 15 at 175°C.
(3)  固有粘度が0.80以上である’?1ffl
ll求の範囲第1項又は第2項記載のポリエステル繊維
(3) Is the intrinsic viscosity 0.80 or more? 1ffl
Polyester fiber 1 according to item 1 or item 2 of the desired range
JP8166982A 1982-05-17 1982-05-17 Polyester fiber Granted JPS58203108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8166982A JPS58203108A (en) 1982-05-17 1982-05-17 Polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8166982A JPS58203108A (en) 1982-05-17 1982-05-17 Polyester fiber

Publications (2)

Publication Number Publication Date
JPS58203108A true JPS58203108A (en) 1983-11-26
JPH0323644B2 JPH0323644B2 (en) 1991-03-29

Family

ID=13752743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8166982A Granted JPS58203108A (en) 1982-05-17 1982-05-17 Polyester fiber

Country Status (1)

Country Link
JP (1) JPS58203108A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141320A (en) * 1984-08-02 1986-02-27 Teijin Ltd Polyester fiber
JPS6189322A (en) * 1984-10-09 1986-05-07 Teijin Ltd Polyester yarn and its production
JPS61132616A (en) * 1984-11-29 1986-06-20 Teijin Ltd Polyester fiber
JPS62238819A (en) * 1986-04-02 1987-10-19 Touyoubou Petsutokoode Kk High-strength and high-modulus polyester fiber having improved chemical stability
JPS6461510A (en) * 1987-08-27 1989-03-08 Teijin Ltd Polyester fiber having improved heat resistance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4515919B2 (en) * 2005-01-07 2010-08-04 帝人ファイバー株式会社 Manufacturing method of polyester fiber for rubber reinforcement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52128449A (en) * 1976-04-19 1977-10-27 Teijin Ltd Manufacture of high toughness polyester oord
JPS5358032A (en) * 1976-10-26 1978-05-25 Celanese Corp Manufacture of high strength improved polyester filament having especially stable internal structure
JPS55122015A (en) * 1979-03-12 1980-09-19 Unitika Ltd Polyester fiber for reinforcing rubber
JPS5691009A (en) * 1979-12-25 1981-07-23 Teijin Ltd Polyester fiber for reinforcing rubber composite
JPS5699239A (en) * 1980-01-14 1981-08-10 Teijin Ltd Modification of polyester molded product
JPS5813718A (en) * 1981-07-16 1983-01-26 Teijin Ltd Polyester fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52128449A (en) * 1976-04-19 1977-10-27 Teijin Ltd Manufacture of high toughness polyester oord
JPS5358032A (en) * 1976-10-26 1978-05-25 Celanese Corp Manufacture of high strength improved polyester filament having especially stable internal structure
JPS55122015A (en) * 1979-03-12 1980-09-19 Unitika Ltd Polyester fiber for reinforcing rubber
JPS5691009A (en) * 1979-12-25 1981-07-23 Teijin Ltd Polyester fiber for reinforcing rubber composite
JPS5699239A (en) * 1980-01-14 1981-08-10 Teijin Ltd Modification of polyester molded product
JPS5813718A (en) * 1981-07-16 1983-01-26 Teijin Ltd Polyester fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141320A (en) * 1984-08-02 1986-02-27 Teijin Ltd Polyester fiber
JPS6189322A (en) * 1984-10-09 1986-05-07 Teijin Ltd Polyester yarn and its production
JPS61132616A (en) * 1984-11-29 1986-06-20 Teijin Ltd Polyester fiber
JPS62238819A (en) * 1986-04-02 1987-10-19 Touyoubou Petsutokoode Kk High-strength and high-modulus polyester fiber having improved chemical stability
JPS6461510A (en) * 1987-08-27 1989-03-08 Teijin Ltd Polyester fiber having improved heat resistance

Also Published As

Publication number Publication date
JPH0323644B2 (en) 1991-03-29

Similar Documents

Publication Publication Date Title
JPH0128127B2 (en)
JP3886360B2 (en) Method for producing polyester multifilament yarn
JPH10505640A (en) Polyester filament yarn, polyester tire cord and method for producing the same
KR101838499B1 (en) Process for preparing polyethylene terephthalate filament having excellent high strength and dimensional stability
KR100499220B1 (en) High tenacity polyethylene-2,6-naphthalate fibers having excellent processability, and process for preparing the same
KR101734892B1 (en) Process for preparing polyethylene terephthalate filament having excellent dimensional stability
KR20120069339A (en) Polyester multifilament having an excellent dimensional stability
KR101602385B1 (en) Dimensionally stable polyethyleneterephthalate dipped cord, method of manufacturing the same and tire including the same
JPS58203108A (en) Polyester fiber
JPH0246689B2 (en)
JPH0663128B2 (en) Polyester fiber for reinforcing rubber structure and method for producing the same
KR101602387B1 (en) Method of manufacturing polyethyleneterephthalate tire cord with high modulus and polyethyleneterephthalate tire cord manufactured by the same method
JPS6119812A (en) Polyester fiber
JPH06136614A (en) Polyester fiber having improved dimensional stability and its production
JP2882697B2 (en) Polyester fiber and method for producing the same
JPH0450407B2 (en)
JPH0428806B2 (en)
JPS61132618A (en) Polyester fiber having improved heat-resistance
KR101746029B1 (en) Process for preparing polyethylene terephthalate filament having excellent high strength and dimensional stability
JP5431843B2 (en) Belt-reinforcing fiber material and belt using the same
KR100595607B1 (en) Polyethylene-2,6-naphthalate fibers by using high speed spinning and radial in to out quenching method, and process for preparing the same
JPS5813718A (en) Polyester fiber
JPH0321647B2 (en)
KR20170091968A (en) Manufacturing method of polyethylene terephthalate cord having excellent fatigue resistance
KR100618397B1 (en) Polyethylene-2,6-naphthalate fibers having excellent processability, and process for preparing the same