JPS6189322A - Polyester yarn and its production - Google Patents

Polyester yarn and its production

Info

Publication number
JPS6189322A
JPS6189322A JP21038184A JP21038184A JPS6189322A JP S6189322 A JPS6189322 A JP S6189322A JP 21038184 A JP21038184 A JP 21038184A JP 21038184 A JP21038184 A JP 21038184A JP S6189322 A JPS6189322 A JP S6189322A
Authority
JP
Japan
Prior art keywords
temperature
polyester fiber
yarn
stretching
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21038184A
Other languages
Japanese (ja)
Inventor
Akihiko Nagai
明彦 永井
Toshio Fujiwara
藤原 淑郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP21038184A priority Critical patent/JPS6189322A/en
Publication of JPS6189322A publication Critical patent/JPS6189322A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PURPOSE:Industrially useful polyester yarn having high strength and improved fatigue resistance, comprising ethylene terephthalate as a main constituent unit, and satisfying specific physical conditions. CONSTITUTION:Yarn obtained by melt spinning is wound at >=1,500m/min winding speed to give undrawn yarn having >=20X10<-3> double refractive index, which is drawn to give crystalline highly orientated polyester yarn having >=120X10<-3> double refractive index and >=20% crystallinity. Then, the yarn is drawn and heat-treated while applying constant tension in a range satisfying the equation I (F is tension g/d; T is drawing temperature deg.C at each drawing step) and shown by the formula F<=3.8 or tension which is reduced with rise in the drawing temperature, to the yarn, and raising the drawing temperature stepwise in a drawing temperature range satisfying the equation II (Tg is glass transition temperature of the yarn; Tm is melting point deg.C), to give the aimed yarn satisfying >=9g/d breaking strength, >=127 deg.C peak temperature of main dispersion shown in temperature dispersion of modulus of elasticity of mechanical loss, <=55 deg.C half width, and 130-160Angstrom long period.

Description

【発明の詳細な説明】 (a)  産業上の利用分舒 本発明は高強度で且つ耐疲労性に優れた工業用に有用な
ポリエステル繊維、特にゴム構造物補強用に好適なポリ
エステル繊維に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application The present invention relates to industrially useful polyester fibers having high strength and excellent fatigue resistance, particularly polyester fibers suitable for reinforcing rubber structures.

(b)  従来技術 ポリエステル繊維、特にポリエチレンテレフタレート繊
維はその力学的性質及び熱的性質が優れていることから
、衣料用のみならずタイヤコード、コンベヤーベルト、
v−ベルト、ンートベルト、ホース、ミンン糸等の工業
用用途にも広範に使用されている。特に昨   l今は
衣料用に比して工業用繊維、特にゴム構造物補強用繊g
1の比重が益々高くなり、これに伴いかかる繊維として
の要求特性も一層厳しく要求されるようになってきた。
(b) Prior Art Polyester fibers, especially polyethylene terephthalate fibers, have excellent mechanical and thermal properties and are therefore used not only for clothing, but also for tire cords, conveyor belts, etc.
It is also widely used in industrial applications such as v-belts, belt belts, hoses, and threads. Especially recently, compared to clothing, industrial fibers, especially fibers for reinforcing rubber structures, are becoming more popular.
As the specific gravity of 1 is becoming higher and higher, the required properties of the fibers are also becoming more demanding.

従来、ゴム構造物補強用繊維をはじめとする工業用繊維
の製造法は切断強度の改善を指向した方向であり、例え
ば特公昭41−7892号公報に記載されている如く溶
融状態の高重合度ポリマーを口金から高温7f囲気中に
吐出してから徐冷し、低速下に引き取って得られる低配
向度の未延伸糸を多段延伸した後高温度で熱処理する方
法、又はかかる未延伸糸を多段延伸するに当って、第1
段延伸時に過熱蒸気を高速で吹き付ける所謂スチームジ
ェット方式による方法等が知られている。
Conventionally, manufacturing methods for industrial fibers, including fibers for reinforcing rubber structures, have been directed toward improving cutting strength. A method in which undrawn yarn with a low degree of orientation obtained by discharging the polymer from a nozzle into a high-temperature 7F ambient atmosphere, then slowly cooling it, and then taking it at a low speed is drawn in multiple stages and then heat-treated at high temperature, or such undrawn yarn is heat-treated in multiple stages. In stretching, the first
A so-called steam jet method is known in which superheated steam is sprayed at high speed during stage stretching.

かくして得られる繊維は当初の意図通り切断強度の面に
おいては優れているが、他方耐伎労性の面からは充分と
は言えず、例えばタイヤコード用途の中でも重量車両用
タイヤにば1シΣ用できないといったことからも、未だ
用途が限定されているのが現状で、ある。
The fibers obtained in this way are excellent in terms of cutting strength as originally intended, but on the other hand, they cannot be said to be sufficient in terms of resistance to abrasion. At present, its uses are still limited, partly because it cannot be used.

一方、このような耐疲労性を改善するために、糧々検討
がなされており、その代表的な手段としては特開昭53
−53031号公報又は特開昭53−53032号公報
に記載されている如く、高重合度の溶融ポリマーを吐出
して急冷してから高速下に引き取って得られる高配向の
未延伸糸を、多段延伸・熱処理する方法が知られている
。かかる方法により得られるrJl、維は目的である熱
寸法安定性や耐疲労性の改善は達成されるものの、逆に
強度は前記の低配向糸を延伸する方法によって得られる
繊維のそれよりも劣る欠点を有している。
On the other hand, many studies have been made to improve such fatigue resistance, and a representative method is the Japanese Patent Laid-Open No. 53
As described in JP-A-53031 or JP-A-53-53032, highly oriented undrawn yarn obtained by discharging a molten polymer with a high degree of polymerization, quenching it, and taking it off at high speed is multi-staged. A method of stretching and heat treatment is known. Although the rJl fibers obtained by this method achieve the desired improvements in thermal dimensional stability and fatigue resistance, on the contrary, the strength is inferior to that of the fibers obtained by the method of drawing low-oriented yarns. It has its drawbacks.

このように、従来の製造法による工業用途のポリエステ
ル繊維は高強度、e!れた耐疲労性という2つの要求特
性のうち、何れか一方が改良されているのみで、これに
伴う負の要因も顕現し、高強度と耐疲労性とは二律背反
的な性格のものであった。
Thus, polyester fibers for industrial use manufactured using conventional methods have high strength, e! Out of the two required characteristics of fatigue resistance, only one of them has been improved, and the negative factors associated with this have also emerged, and high strength and fatigue resistance are of an antinomic nature. Ta.

(c)発明の目的 本発明の目的はかかる二律背反的な問題を解決し、高強
度で且つ耐にy対性にも優れた工■用に有用なポリエス
テル(5維をmfJtすることにある。
(c) Purpose of the Invention The purpose of the present invention is to solve the above-mentioned trade-off problems and to produce a polyester (mfJt) having high strength and excellent y-resistance and useful for engineering purposes.

(di  発明の構成 本発明者は、上記の2つの要求特性を同時に81足する
繊維について鋭意研究を重ねた結央、ゴム構造物補強用
繊維等として使用された場合に高強度並びに優れた耐疲
労性を発現するためには下記■〜■の特性を膚足するポ
リエステル繊維が好適であることを見出しだのである。
(di) Structure of the Invention The present inventor has conducted extensive research on fibers that simultaneously satisfy the above two required properties, and has developed a fiber that has high strength and excellent durability when used as fibers for reinforcing rubber structures, etc. They found that polyester fibers that meet the following characteristics (1) to (2) are suitable for exhibiting fatigue resistance.

■ 延伸糸の切断強度が9.0 I/de  以上■ 
力学的損失弾性率の温度分散に現われる主分散のピーク
温度が127℃以上 ■以上上分散の半価幅が55℃以下 ■ 長周期が130〜t6oX 本発明で言う力学的損失弾性率は、巻本製作所製スペク
トロメーターYES−F型を用い、長さ3aのマルチフ
ィラメントサンプルに0.259/deの静荷重をかけ
、0.17%の歪t’HNで周波数10 Hz +昇温
速度1.6℃/分の条件で1ljll定したものである
■ Cutting strength of drawn yarn is 9.0 I/de or more ■
The peak temperature of the main dispersion that appears in the temperature dispersion of the mechanical loss modulus is 127°C or higher■The half width of the upper dispersion is 55°C or lower■The long period is 130 to t6oX The mechanical loss modulus referred to in the present invention is A static load of 0.259/de was applied to a multifilament sample with a length of 3a using a spectrometer YES-F manufactured by this company, and a strain of 0.17% t'HN was applied at a frequency of 10 Hz + a heating rate of 1. It was determined at 1ljll at 6°C/min.

木発明者らが上記■〜■の特性がゴム拾遺物中での補強
材として好適であることを見出すに至った信造・物質的
背景及び製造法について説明する。
The material background and manufacturing method that led the wood inventors to discover that the above characteristics (1) to (2) are suitable as a reinforcing material in rubber artifacts will be explained.

ポリエステル繊維として代表的なボリエ手しンテレフタ
レート繊維では、未延伸糸のり屈折率(△n)が例えば
13 x 1o−3といった低配向度の場合、多段延伸
した後高温で熱処理する方法等で99/da以上の高強
度の延伸糸を得ることは比較的容易である。しかしなが
ら、この場合延伸糸をコード化しディップ処理してゴム
構造物の補強材として使用するには耐疲労性は充分でな
い。一方、ポリエチレンテレフタレートを例えば250
0m/分といつだ高紡速下に紡糸し、未延伸糸の複屈近
率(△n)が40XIO3といった高配向の未延伸糸と
し、多段延伸熱処理した場合の、ゴム構造物の補強材と
しての耐疲労性は優れたものが得られるものの、強度は
精々8−5Fl/deレベルに留まり、高強度を示さな
い。
When the undrawn yarn refractive index (△n) of BOLIER hand-drawn terephthalate fiber, which is a typical polyester fiber, has a low degree of orientation such as 13 x 1o-3, it can be 99 It is relatively easy to obtain a drawn yarn with a high strength of /da or more. However, in this case, the drawn yarn is not sufficiently fatigue resistant to be used as a reinforcing material for rubber structures by cording and dipping the yarn. On the other hand, polyethylene terephthalate, for example 250
A reinforcing material for a rubber structure when the yarn is spun at a high spinning speed of 0 m/min, has a highly oriented undrawn yarn with a near birefringence ratio (△n) of 40XIO3, and is subjected to multi-stage stretching heat treatment. Although excellent fatigue resistance can be obtained, the strength remains at the level of 8-5 Fl/de at most, and does not exhibit high strength.

木発明者らはこのような現状技術を打破すべく、動的粘
弾性やX腺解析等により、構造物性面からの検討を行な
った結果、驚くべきことシて繊維の力学的損失弾性率の
温度分散に現われる主分散において、その曲線の半価幅
が55℃以下であるようなシャープな形状を示し、また
X線小角孜乱測定装置を用いて従来の方法にて求めだ長
周期(L)が130〜160λの範囲にあるのが耐疲労
性の面から必要であること、また愼維の力学的損失弾性
率の温度分散仙界中の主分散のピーク温度が127℃以
上の高71側に位置するのが高強度を得るためには必要
であることを見出した。更に後述するような新ノ1な製
造法でこのような特性を実現した時に高強度と耐疲労性
の両立という本発明の目的を達成できることを究明し、
本発明に到達したのである。
In order to break through the current state of the art, the wood inventors investigated the structural properties of fibers using dynamic viscoelasticity and X-gland analysis, and surprisingly found that the mechanical loss modulus of fiber The main dispersion that appears in the temperature dispersion shows a sharp shape with a half-value width of 55°C or less, and also has a long period (L ) is in the range of 130 to 160λ from the viewpoint of fatigue resistance, and the peak temperature of the main dispersion in the temperature dispersion of the mechanical loss modulus of the fiber is 127℃ or higher on the high 71 side. It was found that it is necessary to have a high strength. Furthermore, we have discovered that the purpose of the present invention, which is to achieve both high strength and fatigue resistance, can be achieved when these characteristics are achieved using a novel manufacturing method as described below.
The present invention has been achieved.

力学的損失弾性率の温度分散中の主分散1.Hついて更
に詳細に考察を行なう。87¥1図は11種の製造法に
よるポリエステル繊維の力学的損失弾性率の温度分散に
現われる主分散曲;・pを示す。図中において曲線(1
)は本発明のポリエステル繊維、曲線(2)は低配向度
の未延伸糸を高倍率で多段延伸して得られるポリエステ
ル繊維、曲線(3)は高配向度の未延伸糸を多段延伸・
熱処理して得られるポリエステルJ、”; f:pの各
主分散を夫々模式的に示したものである。
Principal dispersion during temperature dispersion of mechanical loss modulus 1. Let us consider H in more detail. 87¥1 The figure shows the principal dispersion curve;・p that appears in the temperature distribution of the mechanical loss modulus of polyester fibers produced by 11 different manufacturing methods. In the figure, the curve (1
) is the polyester fiber of the present invention, curve (2) is the polyester fiber obtained by multi-stage drawing of an undrawn yarn with a low degree of orientation at a high magnification, and curve (3) is the polyester fiber obtained by multi-stage drawing of an undrawn yarn with a high degree of orientation.
Each main dispersion of polyester J,";f:p obtained by heat treatment is schematically shown.

この曲線のピーク(イ)とそのピーク温度(ロ)との距
離を2等分する(ハ)〜に)間の温度幅が半価ヰ4(W
)である(以下、単に半価幅と記す)。
Dividing the distance between the peak (a) of this curve and its peak temperature (b) into two, the temperature width between
) (hereinafter simply referred to as half-value width).

本発明者らはかかる曲線において、半歯1冷によって代
表される曲線の形状は繊維微細t7造の非晶領域におけ
る分子鎖配向度の分布を示し、他方ピーク温度は非晶領
域の分子ζ、1配向度の程度を示していることを知った
。これらの知見に立脚して再度各曲線について考Hする
と、曲線(2)の如くピーク温度が127 ℃よりも高
くて半価幅が55℃をたqえ、即ち主分散がブロードな
形状を呈するI:i;(pは非晶′r(域((おける分
子鎖は配向度は高くても、その配向度には大きな分布が
存在することを示している。更に、曲線(3)の如く、
半価幅が55℃11下であって主分散の形状がシャープ
ではあるものの、ピークn度が127℃未満となる7Q
 fftは、非晶領域の分子鎖配向度の分布が小さくて
も、その配向度そのものの程度は低いことを示している
The present inventors found that in such a curve, the shape of the curve represented by half-tooth 1 cold indicates the distribution of the degree of molecular chain orientation in the amorphous region of the fiber fine structure, while the peak temperature is the molecular ζ of the amorphous region, I learned that it shows a degree of orientation. Considering each curve again based on these findings, as shown in curve (2), the peak temperature is higher than 127 °C and the half-width is 55 °C, that is, the main dispersion has a broad shape. I: i; (p is the amorphous 'r() region ((It shows that even though the molecular chains in ,
7Q where the half width is below 55°C and the shape of the main dispersion is sharp, but the peak n degree is below 127°C.
fft indicates that even if the distribution of the degree of molecular chain orientation in the amorphous region is small, the degree of orientation itself is low.

以上の結果から、本発明者らは本発明の目的である切断
強度が9.9/de以上の高強度で且つ優れた耐疲労性
とを兼ね備えたポリエステル4’&fr’lは、非晶領
域における分子鎖の配向度が高く月つその配向度の分布
が小さいような微細構造を有するものでなければならず
、この也から前記■〜■の特性を同時に満足することが
必要なのである。更にこの点について詳述する。大発明
において第1K重要な点(1、ポリエステル繊維の力学
的損失弾性率の温度分散に現われる主分散の形状がシャ
ープであることである。換言すれば、力学的損失弾性率
の主分散の半価零が55℃以下、好ましくは50℃11
下を示すことである。ここでかかる主分散の半価幅が5
5℃を越えて高くなる場合には本発明との関連において
主分散の形状がブロードとなり、このような主分散の形
状を呈するポリエステル繊維は非晶領域における分子鎖
・配向度にかなり広い分布が存在している。従って、か
かる繊維に張力が働いた時には、非晶領域における特定
の分子鎖に応力集中が起き、従ってその分子鎖が切断さ
れ易くなるため、耐疲労性が劣るのである。
From the above results, the present inventors believe that polyester 4'&fr'l, which has a high cutting strength of 9.9/de or more and excellent fatigue resistance, which is the object of the present invention, has an amorphous region. It must have a fine structure in which the degree of orientation of the molecular chains is high and the distribution of the degree of orientation of the molecular chains is small, and from this point of view it is necessary to simultaneously satisfy the characteristics (1) to (2) above. This point will be further explained in detail. The first important point in the great invention (1. The shape of the main dispersion that appears in the temperature dispersion of the mechanical loss modulus of polyester fibers is sharp. In other words, it is half the main dispersion of the mechanical loss modulus of polyester fibers. Zero value is 55℃ or less, preferably 50℃11
It is to show the bottom. Here, the half-value width of the principal variance is 5
When the temperature exceeds 5°C, the shape of the main dispersion becomes broad in relation to the present invention, and polyester fibers exhibiting such a shape of main dispersion have a fairly wide distribution of molecular chains and degree of orientation in the amorphous region. Existing. Therefore, when tension is applied to such fibers, stress concentration occurs on specific molecular chains in the amorphous region, and the molecular chains are therefore likely to be broken, resulting in poor fatigue resistance.

第2に重要な点は、主分散のピーク温度が高いことであ
る。換言すればピーク温度が]27℃以上、好ましくは
128℃以上に位置することである。このピーク温度が
127℃未満である場合、このようなポリエステル繊維
の微細構造においては、その非晶領域の分子鎖配向度が
低いことを示している。勿論、この場合KU繊維全体の
配向度も低くなるため繊維の切断強度も当然のことなが
ら低いものとなる。切断強度が9.0g/de以上の高
強度の場合にはピーク温度が127℃以上であることが
必要なのである。
The second important point is that the peak temperature of the main dispersion is high. In other words, the peak temperature is at least 27°C, preferably at least 128°C. When this peak temperature is less than 127° C., it indicates that the degree of molecular chain orientation in the amorphous region in the microstructure of such polyester fiber is low. Of course, in this case, the degree of orientation of the entire KU fiber also decreases, and the cutting strength of the fiber also naturally decreases. In the case of a high cutting strength of 9.0 g/de or more, the peak temperature needs to be 127° C. or more.

以上は主として非晶領域について記述したが、非晶領域
と結晶領域とで構成される全体の組織についても、特に
耐疲労性の面から重要であることを木発明者らは知った
。即ち、X線小角散乱より求められる長周期(L)が1
30〜160λのに!囲にあるのが優れた耐皮労性を得
るために必要であることを見出した。一般に長周期は繊
維の長さ方向に操り返して交互に存在する非晶領域と結
晶領域の繰り返し周期長とされている。長周期が160
X以上の場合は、全体組織の中に通常大きな結晶が数少
ない粗なる状態で存在し、もろい組織となり、耐疲労性
に劣る。才だ、長周期が130久未満の場合は、結晶組
織の発達が不充分であり、耐疲労性に劣ると見られる。
The above description has mainly been about amorphous regions, but the inventors have learned that the overall structure composed of amorphous regions and crystalline regions is also important, particularly from the standpoint of fatigue resistance. That is, the long period (L) obtained from small-angle X-ray scattering is 1
30-160λ! It has been found that the surrounding area is necessary in order to obtain excellent skin resistance. In general, the long period is defined as the repeating periodic length of amorphous regions and crystalline regions that alternate in the length direction of the fiber. long period is 160
If it is X or more, there are usually only a few large crystals in the overall structure in a coarse state, resulting in a brittle structure and inferior fatigue resistance. However, if the long period is less than 130 years, the crystal structure is insufficiently developed and fatigue resistance is considered to be poor.

大発明で特定する長周期130〜160Xの領域が、結
晶も充分発達しており、且つ非晶−結晶の両領域の結合
が緻密であり、良好な#を疲労性を力えるのである。
In the region with a long period of 130 to 160X, which is specified in the invention, crystals are sufficiently developed, and the bond between the amorphous and crystalline regions is dense, resulting in good # and fatigue resistance.

本発明で言うポリエステルとは、テレフタール酸成分と
エチレングリコール成分とからなるポリエチレンテレフ
タレートを主たる対象とするが、テレフタール酸の一部
、通常10モル%以下を他のジカルボン酸成分で置換、
tたポリエステルであっても、及び/又はエチレングリ
コール成分の一部、通常10モル%以下を他のジオール
成分で置換えだポリエステルであっても良い。まだ、か
かるポリエステルには必要に応じて例えば改質剤、安定
剤等を任意に使用しても良論。
The polyester referred to in the present invention mainly refers to polyethylene terephthalate consisting of a terephthalic acid component and an ethylene glycol component, but a portion of the terephthalic acid, usually 10 mol% or less, is replaced with another dicarboxylic acid component,
The polyester may be a polyester having a diol component, and/or a polyester in which a portion of the ethylene glycol component, usually 10 mol % or less, is replaced with another diol component. However, it is also a good idea to optionally use modifiers, stabilizers, etc. in such polyesters, if necessary.

かかるポリエステルよりなる本発明の4Q 4%の重合
度は、最終ゴム構造物中で補強材としてその意図する特
性を発揮するためには、き限粘度で表わして0.80以
上、特には0.83〜1.OOの範囲が好ましい。なお
、水明細書で言う極限粘度は35℃のオルソク口口フニ
ソール溶液にして求めた。
The degree of polymerization of the 4Q 4% of the present invention made of such polyester must be 0.80 or more, particularly 0.80 or more expressed in terms of critical viscosity, in order to exhibit its intended properties as a reinforcing material in the final rubber structure. 83-1. A range of OO is preferred. In addition, the intrinsic viscosity referred to in the water specification was determined by making the solution of Orthokokuchifunisol at 35°C.

また1本発明のポリエステル繊維は1o当Q / 10
6グラムポリマー以下の末端カルボキシル基欲であるこ
とが好ましい。末端カルボキシル基量が犬になると、ゴ
ム構造物中で補強材として用いた場合、耐久性上問題と
なることがある。末端カルボキシル基量を低下させる。
In addition, the polyester fiber of the present invention has a Q/10 per 1o
A terminal carboxyl group preference of 6 grams or less of polymer is preferred. If the amount of terminal carboxyl groups becomes too high, it may cause problems in terms of durability when used as a reinforcing material in rubber structures. Decrease the amount of terminal carboxyl groups.

方法は任意の方法、例えばポリエステルにフェニルグリ
シジルエーテル、線状ポリエステルカーボネイト、エチ
レンオキサイド。
Any method can be used, such as polyester, phenyl glycidyl ether, linear polyester carbonate, or ethylene oxide.

ジアリールオキザレート類、カルボジイミド又は環状イ
ミノエーテルを反応させる方法など所望の極限粘度や末
端カルボキシル基量に応じて適宜採用することが可能で
ある。%に1得られる欽維の着色を避け、紡糸中での添
加剤の分解による発泡がなく、重合度を低下させること
なくて末端カルボ午シル基量を10aa>1o6グラム
ボリマー以下にする方法が好適である。
Depending on the desired intrinsic viscosity and amount of terminal carboxyl groups, a method of reacting diaryl oxalates, carbodiimides, or cyclic imino ethers can be used as appropriate. A preferred method is to avoid coloring of the obtained fibers, to avoid foaming due to decomposition of additives during spinning, and to reduce the amount of terminal carboxyl groups to 10aa>106g polymer or less without reducing the degree of polymerization. It is.

更に、本発明のポリエステル繊維としては175℃の乾
熱収縮率が10%以下であるのが望ましい。延伸後の繊
維の乾熱収縮宅が10%より高いと、後加工時の熱処理
を強化しても、特に延伸糸の強度が99/de以上の高
強度糸の場合には充分に低い収縮率とはなり難い。従っ
てゴム構造物中の補強材として熱寸法安定性が不良とな
る欠点を有するようになる。
Further, it is desirable that the polyester fiber of the present invention has a dry heat shrinkage rate of 10% or less at 175°C. If the dry heat shrinkage ratio of the fiber after drawing is higher than 10%, even if the heat treatment during post-processing is strengthened, the shrinkage rate will be sufficiently low, especially in the case of a high-strength yarn with a drawn yarn strength of 99/de or more. It's hard to say. Therefore, it has the disadvantage of poor thermal dimensional stability as a reinforcing material in rubber structures.

以上述べてきた高強度で且つ耐疲労性にも優れたポリエ
ステル繊維は以下に記述する新規な製造法によって得る
ことができる。極限粘度が好ましくは0.7以上、特に
好ましくは0.85以上のポリエステルを溶融吐出した
後、冷風を吹き付けて1500m/分以上の引取り速度
で引き取り、複屈折率(△n)が20X103以上の未
延伸糸を得る。この際、口金直下には加熱筒を設置し、
口金から吐出された糸東を直ちに冷風にて冷却せずに2
00℃以上、好ましくは250℃以上の温度に(ffl
持されている高温雰囲気中に吐出し、然る後冷風にて冷
却するのが好ましい。次いでかがる未延伸糸を任意の延
伸方法、例えば加熱o−2,加熱ピン、ホットプレート
、ホットバス、温水浴、スチームジェット等によって1
段又は多段の延伸を行ない複屈折率が120XZO−3
以上、結晶化度(X)が20%以上の結晶性高配向ポリ
エステルf、& Mとする。この延伸は紡糸に続いて連
続して行なっても、紡糸後一旦捲き取ってから行なって
も良い。
The above-mentioned polyester fibers having high strength and excellent fatigue resistance can be obtained by a new manufacturing method described below. After melting and discharging polyester having an intrinsic viscosity of preferably 0.7 or more, particularly preferably 0.85 or more, the polyester is blown with cold air and taken at a take-up speed of 1500 m/min or more, and the birefringence (△n) is 20X103 or more. An undrawn yarn is obtained. At this time, a heating cylinder is installed directly below the cap,
2 without immediately cooling the yarn discharged from the nozzle with cold air.
At a temperature of 00°C or higher, preferably 250°C or higher (ffl
It is preferable to discharge the material into a high-temperature atmosphere and then cool it with cold air. The undrawn yarn is then drawn by any drawing method such as heating O-2, heating pin, hot plate, hot bath, hot water bath, steam jet, etc.
Birefringence is 120XZO-3 by stage or multi-stage stretching.
The above is a crystalline highly oriented polyester f, &M having a crystallinity (X) of 20% or more. This stretching may be carried out continuously following spinning, or may be carried out after winding up once after spinning.

然る後、この結晶性高配向ポリエステル繊維を下記式【
1〕及び(2〕、好ましくは〔1つ及び〔2′〕を満足
する範囲内の一定張力又は延伸温度の上昇と共に減少す
る張力を加えながら下記式〔3〕、好ましくは〔3つを
満足する延伸温度域Iでおいて段階的に延伸温度を上昇
させながら、延伸熱処卵することによって本発明で特定
する高強度で且つ耐疲労性の良好なポリエステル繊維が
得られる。
After that, this crystalline highly oriented polyester fiber was converted into the following formula [
1] and (2), preferably satisfying [1 and 2'], or applying a tension that decreases as the stretching temperature increases, while applying the following formula [3], preferably satisfying [3]. By carrying out drawing heat treatment while gradually increasing the drawing temperature in the drawing temperature range I, the polyester fiber specified in the present invention has high strength and good fatigue resistance.

2.0≦F≦:4.8−0.0 0 6T      
        (1)F<3.8         
     〔2〕Tg+50<T<Tm  15   
        (3:1但し F:張 力 (1/d
e ) T:各延伸段階における延伸温度(℃)Tg:該結晶性
高配向ポリエステル繊維 のガラス転移温度(℃) Tm:核結晶性高配向ポリエステル繊 維の融点(℃) 好ましくは下記式〔1つ〔2つ〔3つを満足させるもの
である。
2.0≦F≦:4.8-0.0 0 6T
(1) F<3.8
[2] Tg+50<T<Tm 15
(3:1 However, F: Tension (1/d
e) T: Stretching temperature (°C) at each drawing stage Tg: Glass transition temperature (°C) of the crystalline highly oriented polyester fiber Tm: Melting point (°C) of the nuclear crystalline highly oriented polyester fiber Preferably, the following formula [one It satisfies [2] [3].

2.3<:F<6.6−0.00157       
[:1’)F<a、6               
 r2′]Tg+80<T<Tm−30C3″l このように一定張力又は延伸温度の上昇と共に減少する
張力を加えながら段階的に温度を昇温させて延伸・熱処
理を実施する延伸方式を以下逐次昇温延伸方式と名付け
る。逐次昇温延伸方式によって高紡糸速度で紡糸して得
た複屈折率が20X103以上のいわゆるpoyを用い
て高強度糸を得ることが可能)・:なったのである。
2.3<:F<6.6-0.00157
[:1') F<a, 6
r2']Tg+80<T<Tm-30C3″l In this way, the stretching method in which stretching and heat treatment are carried out by gradually increasing the temperature while applying a constant tension or a tension that decreases as the stretching temperature increases is gradually increased as follows. It is called the hot drawing method.It is possible to obtain a high-strength yarn by using a so-called poy having a birefringence of 20×103 or more obtained by spinning at a high spinning speed using the sequential heating drawing method.

逐次外温延伸用の原糸としては複屈折率が120X]0
−3以上、好ましくは150X10−3以上で結晶化度
(X)が20%以上、好ましくは30%以上の高配向結
晶性繊維を用いる必要がある。複屈折率が120X10
3未満、結晶化度が20%未満の場合は逐次昇温法には
適していない。逐次昇温延伸法の延伸は前記 〔1〕 
〔2〕 〔3〕 式、 々了ま し く は 〔1勺 
〔2勺 〔3′〕式で規制される。〔1〕式で示される
範囲よりも低い延伸張力では逐次昇温延伸しても高強度
繊維とはならず、逆に〔1〕式及び〔2〕式で示される
範囲よりも高い延伸張力で延伸すると延伸時に繊維の単
糸切れ、更には断糸の発生に至る。また、〔3〕式で示
される範囲よりも低温で延伸すると、張力が大なる場合
は繊維の単糸切れが発生しゃすいばかりでなく繊維の構
造が破壊されてむしろ強度が低下することもある。逆に
〔3〕式で示される範囲よりも高温で延伸すると、延伸
がブロー気味になり、高強度にならなかったり、断糸が
発生しやすくなる。
The birefringence index is 120X]0 as a raw yarn for sequential ectothermal drawing.
It is necessary to use highly oriented crystalline fibers having a crystallinity (X) of −3 or more, preferably 150×10 −3 or more, and a crystallinity (X) of 20% or more, preferably 30% or more. Birefringence is 120X10
If the crystallinity is less than 3 or less than 20%, it is not suitable for the sequential heating method. Stretching by the sequential heating stretching method is described in [1] above.
[2] [3] The ceremony will be completed as soon as possible.
It is regulated by the [2-[3'] formula. At a stretching tension lower than the range shown by formula [1], high-strength fibers will not be obtained even if the temperature is stretched sequentially, and conversely, at a stretching tension higher than the range shown by formulas [1] and [2], When stretched, single fiber breakage and even yarn breakage occur during stretching. In addition, when drawing at a temperature lower than the range shown by formula [3], if the tension is large, not only will single fiber breakage occur, but the fiber structure may be destroyed and the strength may actually decrease. . On the other hand, if the stretching is carried out at a temperature higher than the range shown by the formula [3], the stretching tends to be a little blown, and high strength may not be obtained or yarn breakage may easily occur.

逐次昇温延伸する際には、各延伸段階の張力は一定張力
又は延伸温度の1件と共に減少する張力であることが肝
要である。延伸温度の上昇と共に延伸張力を増大させる
と延伸時断糸が発生し易くなる。逐次昇温延伸法は結晶
延伸方式による超延伸法の一種であるが、延伸後の微細
構造の状態に適応した延伸条件に逐次調整させながら延
伸できるのであるが、本発明で特定する延伸原糸を用い
、本発明で特定する延伸温度範囲及び延伸張力範囲に調
整した場合にのみ、高温・高張力下での延伸が可能とな
り、従って高延伸fき率が達成でき、高強度糸が得られ
るのである。更に本延伸法にては延伸温1友を通常の多
段延伸に比較してより高温屋上げ得るので、熱セツト効
果が犬となり、熱寸法安定性が良好になるという副次的
な効果も生じてくる。
In the case of sequential temperature stretching, it is important that the tension at each stretching stage be a constant tension or a tension that decreases with increasing stretching temperature. If the stretching tension is increased with an increase in the stretching temperature, yarn breakage is likely to occur during stretching. The sequential heating stretching method is a type of super-stretching method using a crystal stretching method, and it can be stretched while sequentially adjusting the stretching conditions to suit the state of the microstructure after stretching. Only when the stretching temperature range and stretching tension range specified in the present invention are adjusted using the above-described method, stretching at high temperature and high tension becomes possible, and therefore a high stretching ratio can be achieved and a high-strength yarn can be obtained. It is. Furthermore, in this stretching method, the stretching temperature can be raised to a higher temperature than in normal multi-stage stretching, so the heat setting effect is improved and the secondary effect is that the thermal dimensional stability is improved. It's coming.

紡速1500m/分で且つ複屈折率2QX10−3以上
の未延伸糸の通常手段の延伸により得られた複屈折率1
20X10 −3以上、結晶化度(X) 20%以上の
結晶性高配向繊維を逐次昇温延伸に供する際核結晶性高
配向fl#!維を一旦捲き取って逐次昇温延伸に供して
も良く、まだ一旦捲き取らずに未延伸糸の通常手段の延
伸に引き続いて連続して逐次昇温延伸しても何ら差し支
えはない。
A birefringence of 1 obtained by drawing an undrawn yarn with a birefringence of 2QX10-3 or more at a spinning speed of 1500 m/min using conventional means
When a crystalline highly oriented fiber with a crystallinity (X) of 20X10 -3 or more and a crystallinity (X) of 20% or more is subjected to sequential temperature raising stretching, the nucleus crystalline highly oriented fl#! The fiber may be once rolled up and subjected to sequential heating-up stretching, or there is no problem even if the undrawn yarn is drawn by conventional means without being wound up and then successively heated-up drawing is carried out successively.

(e)   実  1@  例 以下に実施例をあげて本発明を更に説明する。なお、実
施例中の各種測定値は以下の方法による。
(e) Practical Example 1 The present invention will be further explained with reference to Examples below. In addition, various measured values in the examples are based on the following methods.

(1)  複屈折率(△n) フィラメント中の分子の配向度を示すパラメーターであ
って、溶液にブロムナフタリンを用いペレソクコンベン
セーターを用いてリターデーション法により求められる
(1) Birefringence (Δn) A parameter indicating the degree of orientation of molecules in a filament, which is determined by the retardation method using bromonaphthalene as a solution and a Peresoc convencator.

(この方法の詳しい説明は共立出版「高分子S、h:験
学百’f gli高分子の物性IF Jを参照)(2)
  長周期(L) 長(、r、H期(L)はX線小角散乱測定装置を用い、
従来公知の方法、即ち波長1.54 XのCuKa線を
線源とし、繊維軸に直角に照射して得られる子午線千折
の回折線よりブラッグの式を用いて算出した。
(For a detailed explanation of this method, please refer to Kyoritsu Shuppan ``Polymer S, h: Physical Properties of Gli Polymers IF J'') (2)
Long period (L) Long (, r, H period (L) using small-angle X-ray scattering measurement device,
It was calculated using Bragg's equation from the meridional 1,000 diffraction line obtained by using a conventionally known method, that is, using CuKa rays with a wavelength of 1.54× as a radiation source and irradiating the fiber axis at right angles.

(3)  荷重−荷卸曲線 JIS L 1017−1963 (5,4’)に準拠
した。
(3) Load-unloading curve Compliant with JIS L 1017-1963 (5,4').

(4)乾熱175℃収縮率 JIS L 1017−1963 (5,1,2)に準
拠した。
(4) Dry heat shrinkage rate at 175° C. Compliant with JIS L 1017-1963 (5, 1, 2).

(5)  結晶化度(X> 25℃ICおいてn−ヘプタノ−四塩化炭素炭素混合溶
媒による密度勾配管法によって測定した密度d (,9
/CrI)  より下記式を用いて算出。
(5) Crystallinity (X> Density d (,9
/CrI) using the following formula.

(6)  チューブ発熱温度、チューブ寿命耐疲労性を
示すパラメーターであって、JISL 1017−19
631.32.I A法に準拠(但し、曲げ角度906
)して測定したものである。チューブ発熱温度は運転開
始90分後にチューブ表面の温度を赤外非接触温度計(
5AN−F、x社)で測定した温度を示し、チューブ寿
命はチューブ破断までの時間で示しだ。
(6) Tube heat generation temperature, a parameter indicating tube life fatigue resistance, JISL 1017-19
631.32. Compliant with IA law (however, bending angle 906
). The tube heat generation temperature is determined by measuring the temperature of the tube surface with an infrared non-contact thermometer (90 minutes after the start of operation).
5AN-F, x company), and the tube life is shown as the time until the tube breaks.

(7)  ガラス転移温度(Tg)及び融点(Tm)理
学電機製、TG −DTA標準型装置を用いて10℃/
分の昇温速度で測定した時のベースラインレベルの相違
よりTgを求め、発熱ピーク値よりTmを求めた。
(7) Glass transition temperature (Tg) and melting point (Tm) 10℃/
Tg was determined from the difference in the baseline level when measured at a heating rate of 100 min, and Tm was determined from the exothermic peak value.

実施例1〜4.比較例1〜2 極限粘度が0.99のポリエチレンテレフタレート(酸
化チタン含量0.07%)を約300℃で溶融し、孔径
0−40門+孔数250個を有する紡糸口金を通して吐
出し、雰囲気温度が250℃に保持されている長さ20
0龍の加熱筒内を走行させた後、25℃の冷却風を5.
ONぜ7m口吹き付けながら冷却固化させ、その後オイ
リングローラで油剤を付与した。然る後2500 m 
/ whipの速度で回転する引取りローラで捲き取り
、複屈折率(△n)37X10”の未延伸糸とした。
Examples 1-4. Comparative Examples 1 and 2 Polyethylene terephthalate (titanium oxide content: 0.07%) having an intrinsic viscosity of 0.99 was melted at about 300°C and discharged through a spinneret having a pore diameter of 0 to 40 + 250 pores in an atmosphere. Length 20 where the temperature is maintained at 250℃
After running inside the heated cylinder of Zero Dragon, 5.
The mixture was cooled and solidified while being sprayed with a 7 m mouth, and then an oil agent was applied using an oiling roller. After that 2500 m
The yarn was wound up with a take-up roller rotating at a speed of /whip to obtain an undrawn yarn with a birefringence index (Δn) of 37×10”.

この未延伸糸を90℃に加熱されている第1加熱ネルソ
ンローラ対と150℃に加熱されている第2加熱ネルソ
ンローラ対との間で第1段延伸を1.35倍で行ない、
引き続き第2加熱ネルソンローラ対と積極的には加熱し
ていない引取り用ネルソンローラ対との間で第2段延伸
を1.55倍で行ない、200m/mの捲取速度で捲き
堰り、逐次昇温延伸の原繊維とした。原繊維の糸質は1
200デニール、強度7.8 g/ de 。
This undrawn yarn is subjected to first-stage stretching at 1.35 times between a first pair of heated Nelson rollers heated to 90°C and a second pair of heated Nelson rollers heated to 150°C,
Subsequently, a second stage of stretching was performed at 1.55 times between the second heating Nelson roller pair and the taking-off Nelson roller pair that was not actively heated, and winding was performed at a winding speed of 200 m/m. It was made into a fibril that was drawn at successive temperature increases. The fiber quality is 1
200 denier, strength 7.8 g/de.

伸度11.7%、△n=170X10−3.結晶化度x
=41%、Tg80℃、Tm=261℃であった。
Elongation 11.7%, △n=170X10-3. Crystallinity x
=41%, Tg: 80°C, Tm: 261°C.

この原繊維を加熱ネルソンローラ対を用いて3段階の逐
次昇温延伸を行ない、200+n/分の捲取り速度で捲
き取った。なお第1段階の加熱ネルソンローラ対に供糸
する前に室温の供給ネルソンローラ対との間で1.09
/daの予備張力を寿えた。逐次昇温延伸条件と得られ
たヤーンの物性を第1表に示した。次いで、この処理系
に下撚、上撚を各々49回/ 10 cm入れて生コー
ドを作成し、レゾルシン−ホルマリン系の接着剤を付与
した後、乾熱温度が240℃の雰囲気下、得られる処理
コードの伸度が4.5に9荷重時に35%となるような
緊張率で1分間の熱処皿を行なった。得られた処理コー
ドの物性も第1表に併せて示した。
This fibril was stretched in three stages with successive temperature increases using a pair of heated Nelson rollers, and wound up at a winding speed of 200+n/min. In addition, before supplying the yarn to the pair of heating Nelson rollers in the first stage, the temperature between the pair of Nelson rollers at room temperature and the pair of supplying Nelson rollers is 1.09.
/da of pretension was achieved. Table 1 shows the stretching conditions with successive temperature increases and the physical properties of the obtained yarn. Next, a green cord was created by applying a first twist and a second twist 49 times/10 cm each to this treatment system, and after applying a resorcinol-formalin adhesive, the cord was obtained in an atmosphere with a dry heat temperature of 240°C. Heat treatment was performed for 1 minute at a tension rate such that the elongation of the treated cord was 4.5 and 35% at 9 loads. The physical properties of the obtained treated cord are also shown in Table 1.

比較例3〜4 実施例1〜4と同様に紡糸し、600m/分の速度で回
転する引ホリローラで捲き取り、複屈折率(△n)8x
10−3の未延伸糸とした。この未延伸糸を90℃に加
熱されている第1加熱ネルソンローラ幻と120℃に加
熱されている第2加熱ネルソンローラ対との間で第1段
延伸を3.3倍で行ない、次いで第2加熱ネルソンロ−
ラ対と積極的には加熱していない引取り用ネルソンロー
ラ対との間で第2段延伸を1.58倍で行ない、捲取り
速度200m/分にて捲き取り、逐次昇温延伸用の原繊
維とした。原繊維の糸質は1200デニール、強度8−
2 g/de 、 伸度12,5%、△h=178X1
03.結晶化度X−43%+Tg=75℃、Tm=26
0℃であった。
Comparative Examples 3 to 4 Spinning in the same manner as Examples 1 to 4, winding up with a pulling roller rotating at a speed of 600 m/min, birefringence (△n) 8x
It was made into an undrawn yarn of 10-3. This undrawn yarn is subjected to a first drawing at 3.3 times between a first heated Nelson roller pair heated to 90°C and a second heated Nelson roller pair heated to 120°C, and then a second heated Nelson roller pair heated to 120°C. 2 heating nelson low
The second stage stretching was performed at 1.58 times between the pair of rollers and a pair of Nelson rollers for taking off that were not actively heated, and winding was performed at a winding speed of 200 m/min. It was made into a fibril. The filament quality is 1200 denier and the strength is 8-
2 g/de, elongation 12.5%, △h=178X1
03. Crystallinity X-43% + Tg = 75°C, Tm = 26
It was 0°C.

仁の原繊維を実施例1と同様に加熱ネルソンローラ対を
用いて3段階の逐次昇温延伸を行ない、200m/分の
捲取り速度で捲き取った。なお第1段階の加熱ネルソン
ローラ対に供給する前の予備張力は実施例1と同様1−
09/de としだ。
As in Example 1, the fibrils were subjected to three stages of sequential heating-up stretching using a pair of heated Nelson rollers, and wound up at a winding speed of 200 m/min. Note that the preliminary tension before being supplied to the pair of heating Nelson rollers in the first stage is 1- as in Example 1.
09/de Toshida.

次いでこの延伸糸を実施例1と同様にして処理コードに
した。得られた延伸糸及び処理コードの物性を第1表に
併せて示しだ。
Next, this drawn yarn was made into a treated cord in the same manner as in Example 1. The physical properties of the obtained drawn yarn and treated cord are also shown in Table 1.

比較例5〜6 実施例1と同一の未延伸糸を用い、実開1と同様に90
℃に加熱されている第1加熱ネルソンローラ対と150
℃に加熱されている第2ネルソンローラ対との間で第1
段延伸を1.35倍行ない、次に@2加熱ネルソンロー
ラ対と200〜230℃に加熱されている第3加熱ネル
ソンローラ対との間で第2段延伸を1.55倍行ない、
引き続き第3加熱ネルソンローラ対と積極的には加熱し
ていない引取用ネルソンローラ対との間で第3段延伸を
1.00−1.10倍行なった。第3段延伸倍率は1.
10倍で最大であった。なお比較例5及び6では第2加
熱ネルソンローラ対と引取り用ネルソンローラ対の間で
は300℃の気体浴を使用し、熱セットを行なった。比
較例7では気体浴による熱セットは行なっていない。次
いでこの延伸糸を実施例1と同様にして処理コードにし
た。得られた延伸糸及び処理コードの物性を第2表に併
せて示した。
Comparative Examples 5 to 6 Using the same undrawn yarn as in Example 1, 90
a first pair of heated Nelson rollers which are heated to 150 °C;
The first pair of Nelson rollers is heated to
Stage stretching is performed by 1.35 times, and then second stage stretching is performed by 1.55 times between the @2 heating Nelson roller pair and the third heating Nelson roller pair heated to 200 to 230 ° C.
Subsequently, third-stage stretching was performed by a factor of 1.00 to 1.10 between the third heating Nelson roller pair and the taking-off Nelson roller pair that was not actively heated. The third stage stretching ratio is 1.
The maximum was 10 times. In Comparative Examples 5 and 6, heat setting was performed using a 300° C. gas bath between the second heating Nelson roller pair and the taking-off Nelson roller pair. In Comparative Example 7, heat setting using a gas bath was not performed. Next, this drawn yarn was made into a treated cord in the same manner as in Example 1. The physical properties of the obtained drawn yarn and treated cord are also shown in Table 2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は種々のポリエステル繊維の力学的損失弾性率の
温度分散に現われる主分散の曲線を示す。 曲i!1(11本発明のポリエステル繊維曲線(2):
高強度ではあるが耐疲労性に劣るポリエステル繊維 曲N(31:耐疲労性に優れているが強度が低いポリエ
ステルt′RM W    : 半  価  σ 第1図 温度(0C)
FIG. 1 shows curves of the main dispersion that appears in the temperature dispersion of the mechanical loss modulus of various polyester fibers. Song i! 1 (11 Polyester fiber curve of the present invention (2):
Polyester fiber bend N (31: Polyester with excellent fatigue resistance but low strength) W: Half value σ Figure 1 Temperature (0C)

Claims (1)

【特許請求の範囲】 (1)エチレンテレフタレートを主たる構成単位とする
ポリエステル繊維であって下記[1]〜[4]の特性を
満足してなるポリエステル繊維。 [1]切断強度が9.0g/de以上 [2]力学的損失弾性率の温度分散にあらわれる主分散
のピーク温度が127℃以上 [3]該主分散の半価幅が55℃以下 [4]長周期が130〜160Å (2)力学的損失弾性率の温度分散にあらわれる主分散
の半価幅が50℃以下である特許請求の範囲第(1)項
記載のポリエステル繊維。 (3)力学的損失弾性率の温度分散にあらわれる主分散
のピーク温度が128℃以上である特許請求の範囲第(
1)項記載のポリエステル繊維。 (4)切断強度が9.5g/de以上である特許請求の
範囲第(1)項〜第(3)項のいずれか1項記載のポリ
エステル繊維。 (5)溶融紡糸された紡出糸条を1500m/分以上の
引取り速度で引取って得た複屈折率 20×10^−^3以上の未延伸糸を延伸して複屈折率
が120×10^−^3以上で且つ結晶化度が20%以
上である結晶性高配向ポリエステル繊維となし、然る後
該結晶性高配向ポリエステル繊維を下記式〔1〕及び〔
2〕を満足する範囲内の一定張力又は延伸温度の上昇と
共に減少する張力を加えながら下記式〔3〕を満足する
延伸温度域内において段階的に延伸温度を上昇させなが
ら延伸・熱処理することを特徴とするポリエステル繊維
の製造法。 2.0≦F≦4.8−0.006T〔1〕 F≦3.8〔2〕 Tg+50≦T≦Tm−15〔3〕 但しF:張力(g/de) T:各延伸段階にての延伸温度(℃) Tg:該結晶性高配向ポリエステル 繊維のガラス転移温度(℃) Tm:該結晶性高配向ポリエステル 繊維の融点(℃) (6)紡糸口金直下に加熱筒を設置して口金直下の雰囲
気温度を200℃以上とする特許請求の範囲第(5)項
記載のポリエステル繊維の製造法。 (7)結晶性高配向ポリエステル繊維の複屈折率が15
0×10^−^3以上である特許請求の範囲第(5)項
又は第(6)項記載のポリエステル繊維の製造法。 (8)結晶性高配向ポリエステル繊維の結晶化度が30
%以上である特許請求の範囲第(5)項〜第(7)項の
いずれか1項記載のポリエステル繊維の製造法。 (9)結晶性高配向ポリエステル繊維を下記式〔1′〕
及び〔2′〕を満足する範囲内の一定張力又は延伸温度
の上昇と共に減少する張力を加えながら〔3′〕を満足
する延伸温度域内において延伸温度を上昇させながら延
伸・熱処理する特許請求の範囲第(5)項〜第(8)項
のいずれか1項記載のポリエステル繊維の製造法。 2.5≦F≦6.6−0.015T〔1′〕F≦3.6
〔2′〕 Tg+80≦T≦Tm−30〔3′〕
[Scope of Claims] (1) A polyester fiber containing ethylene terephthalate as a main constituent unit and satisfying the following properties [1] to [4]. [1] The cutting strength is 9.0 g/de or more [2] The peak temperature of the main dispersion that appears in the temperature dispersion of the mechanical loss modulus is 127 °C or more [3] The half width of the main dispersion is 55 °C or less [4] ] The polyester fiber according to claim (1), wherein the long period is 130 to 160 Å. (2) The half width of the main dispersion appearing in the temperature dispersion of the mechanical loss modulus is 50° C. or less. (3) The peak temperature of the main dispersion appearing in the temperature dispersion of the mechanical loss modulus is 128°C or more (
The polyester fiber described in section 1). (4) The polyester fiber according to any one of claims (1) to (3), which has a cutting strength of 9.5 g/de or more. (5) Undrawn yarn with a birefringence of 20 x 10^-^3 or more obtained by taking the melt-spun spun yarn at a take-up speed of 1500 m/min or more is drawn to have a birefringence of 120 x10^-^3 or more and crystallinity of 20% or more, and then convert the crystalline highly oriented polyester fibers into the following formulas [1] and [
Stretching and heat treatment are carried out while applying a constant tension within a range that satisfies [2] or a tension that decreases as the stretching temperature increases, while gradually increasing the stretching temperature within a stretching temperature range that satisfies the following formula [3]. A method for producing polyester fiber. 2.0≦F≦4.8-0.006T [1] F≦3.8 [2] Tg+50≦T≦Tm-15 [3] However, F: Tension (g/de) T: At each stretching stage Drawing temperature (°C) Tg: Glass transition temperature (°C) of the crystalline highly oriented polyester fiber Tm: Melting point (°C) of the crystalline highly oriented polyester fiber (6) Install a heating cylinder directly under the spinneret The method for producing polyester fibers according to claim (5), wherein the ambient temperature immediately below is 200° C. or higher. (7) Birefringence of crystalline highly oriented polyester fiber is 15
0x10^-^3 or more, the method for producing a polyester fiber according to claim (5) or (6). (8) Crystallinity of highly oriented polyester fiber is 30
% or more, the method for producing a polyester fiber according to any one of claims (5) to (7). (9) Crystalline highly oriented polyester fiber according to the following formula [1']
and [2'], or applying a tension that decreases as the stretching temperature increases, and stretching and heat treatment while increasing the stretching temperature within the stretching temperature range that satisfies [3']. The method for producing polyester fiber according to any one of items (5) to (8). 2.5≦F≦6.6-0.015T[1']F≦3.6
[2'] Tg+80≦T≦Tm-30 [3']
JP21038184A 1984-10-09 1984-10-09 Polyester yarn and its production Pending JPS6189322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21038184A JPS6189322A (en) 1984-10-09 1984-10-09 Polyester yarn and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21038184A JPS6189322A (en) 1984-10-09 1984-10-09 Polyester yarn and its production

Publications (1)

Publication Number Publication Date
JPS6189322A true JPS6189322A (en) 1986-05-07

Family

ID=16588396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21038184A Pending JPS6189322A (en) 1984-10-09 1984-10-09 Polyester yarn and its production

Country Status (1)

Country Link
JP (1) JPS6189322A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016106967A (en) * 2014-12-10 2016-06-20 有限会社佐藤化成工業所 Method of manufacturing tampon and cotton swab

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122015A (en) * 1979-03-12 1980-09-19 Unitika Ltd Polyester fiber for reinforcing rubber
JPS58115117A (en) * 1981-12-25 1983-07-08 Asahi Chem Ind Co Ltd Polyester yarn and its preparation
JPS58197310A (en) * 1982-05-13 1983-11-17 Teijin Ltd Polyester fiber
JPS58203108A (en) * 1982-05-17 1983-11-26 Teijin Ltd Polyester fiber
JPS5921714A (en) * 1982-07-23 1984-02-03 Toray Ind Inc Method for drawing polyester fiber
JPS59100711A (en) * 1982-11-25 1984-06-11 Teijin Ltd Production of polyester yarn

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122015A (en) * 1979-03-12 1980-09-19 Unitika Ltd Polyester fiber for reinforcing rubber
JPS58115117A (en) * 1981-12-25 1983-07-08 Asahi Chem Ind Co Ltd Polyester yarn and its preparation
JPS58197310A (en) * 1982-05-13 1983-11-17 Teijin Ltd Polyester fiber
JPS58203108A (en) * 1982-05-17 1983-11-26 Teijin Ltd Polyester fiber
JPS5921714A (en) * 1982-07-23 1984-02-03 Toray Ind Inc Method for drawing polyester fiber
JPS59100711A (en) * 1982-11-25 1984-06-11 Teijin Ltd Production of polyester yarn

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016106967A (en) * 2014-12-10 2016-06-20 有限会社佐藤化成工業所 Method of manufacturing tampon and cotton swab

Similar Documents

Publication Publication Date Title
KR100402839B1 (en) Polyethylene naphtalate fiber of high strength
CN1727539B (en) Polyester multi-filament yarn for tire cord
JP4337539B2 (en) Polyester fiber production method and spinneret for melt spinning
JPH05311512A (en) Production of polyester yarn
JPH06511293A (en) High modulus polyester yarn for tire cord and composites
JPS6119812A (en) Polyester fiber
JPH0261109A (en) Polyester fiber
EP0456496A2 (en) A spinning process for producing high strength, high modulus, low shrinkage synthetic yarns
JPS6189322A (en) Polyester yarn and its production
KR0140230B1 (en) Manufacturing method of dimensional stability polyester yarn
US5085818A (en) Process for dimensionally stable polyester yarn
JPH0323644B2 (en)
JPH0450407B2 (en)
JPH0144810B2 (en)
KR100505018B1 (en) Polyethylene-2,6-naphthalate fibers having excellent processability, and process for preparing the same
JPS61194218A (en) Production of polyester fiber
JPS5813718A (en) Polyester fiber
EP0456495A2 (en) A drawn polyester yarn having a high tenacity, a high initial modulus and a low shrinkage
JPH10251919A (en) Polyester fiber and its production
JPH0141722B2 (en)
JPH0321647B2 (en)
EP0456494A2 (en) An as-spun polyester yarn having small crystals and high orientation
JPS58197310A (en) Polyester fiber
JP3190553B2 (en) Polyester fiber
KR930010799B1 (en) Polyester fiber for tyre cord