JPS5813718A - Polyester fiber - Google Patents
Polyester fiberInfo
- Publication number
- JPS5813718A JPS5813718A JP10997881A JP10997881A JPS5813718A JP S5813718 A JPS5813718 A JP S5813718A JP 10997881 A JP10997881 A JP 10997881A JP 10997881 A JP10997881 A JP 10997881A JP S5813718 A JPS5813718 A JP S5813718A
- Authority
- JP
- Japan
- Prior art keywords
- curve
- fibers
- load
- polyester
- elongation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Artificial Filaments (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はポリエステル繊維、更に詳しくは特に、高モジ
ュラスで低収縮性、耐疲労性に優れたゴム構造物の補強
用に適したポリエステル繊維に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to polyester fibers, and more particularly to polyester fibers that have high modulus, low shrinkage, and excellent fatigue resistance and are suitable for reinforcing rubber structures.
ポリエステル、特にポリエチレンテレフタレートよりな
る繊維は、多くの優れた特性を有するがゆえに、衣料用
のみならず、ゴム構造物、例えばタイヤ、■−ベルト、
コンベアベルト。Fibers made of polyester, especially polyethylene terephthalate, have many excellent properties and are therefore used not only for clothing, but also for rubber structures such as tires, belts,
conveyor belt.
タイミングベルト等の補強用にも使用されている。It is also used to reinforce timing belts, etc.
かかルコム構造物の補強用のポリエステル繊維には、高
強度、高モジュラスで且つ低収縮性であることが要求さ
れる。従来、高強度のポリエステル繊維を得るためには
、高重合度の未延伸糸を高倍率で多段延伸した後高温で
充分に熱処理する方法が知られている。そして、このよ
うな高倍率で多段延伸し易い未延伸糸を得るために、紡
糸口金直下の雰囲気を高温に保持して、紡出糸条゛を徐
冷して得られる未延伸糸の配向度を低くする方法が採用
されている。しかしながら、高重合度のポリエステル繊
維を高倍率で多段延伸すると、得られる鴬伸糸の収縮率
が増大し、上記方法では充分に低収縮性の繊維は得られ
ない。Polyester fibers for reinforcing Kalkom structures are required to have high strength, high modulus, and low shrinkage. Conventionally, in order to obtain high-strength polyester fibers, a method has been known in which undrawn yarn with a high degree of polymerization is drawn in multiple stages at a high magnification and then sufficiently heat-treated at a high temperature. In order to obtain an undrawn yarn that can be easily drawn in multiple stages at such a high magnification, the atmosphere directly below the spinneret is maintained at a high temperature and the spun yarn is slowly cooled to increase the degree of orientation of the undrawn yarn. A method has been adopted to lower the However, when polyester fibers with a high degree of polymerization are drawn in multiple stages at a high magnification, the shrinkage rate of the resulting drawn yarn increases, and the above method cannot obtain fibers with sufficiently low shrinkage.
また、高モジュラスのポリエステル繊維を得るKは、非
晶部の欠陥を少なくして非晶部の配向度を大きくするた
めに、比較的低重合度のポリエステル未延伸糸な^倍率
で多段延伸する方法が考えられる。しかしながら、この
方法では得られる繊維の強度が低下する。In order to obtain a high modulus polyester fiber, in order to reduce defects in the amorphous part and increase the degree of orientation of the amorphous part, undrawn polyester yarn with a relatively low degree of polymerization is drawn in multiple stages at a magnification. There are possible ways. However, this method reduces the strength of the resulting fibers.
更に、低収縮性の繊維を製造する方法として、低重合度
の未延伸糸を多段延伸するが、高重合度の未凧伸糸を使
用して蔦伸後制限収縮可能な状瞼で熱処理する方法が知
□られている。しかしながら、これらの方法でも得られ
る繊維の強度が低下する。Furthermore, as a method for producing low-shrinkage fibers, undrawn yarn with a low degree of polymerization is drawn in multiple stages, and undrawn yarn with a high degree of polymerization is used and heat-treated in a shape that allows limited shrinkage after stretching. The method is known. However, even with these methods, the strength of the fibers obtained is reduced.
このようK、高強度、高モジュラス及び低収縮性共に満
足するポリニス1ル繊維は、従来製造し難かった。しか
も、上述のように高重合度のポリエステル未葺伸糸を高
倍率で多段延伸し、高温で充分に熱処理しても得られる
高強度ポリエステル繊維は、モジュラスが充分に高くな
いばかりか、収縮・率も光分に低くすることができず、
更に強力保持率や耐疲労性が充分でなく、特に耐疲労性
の改善が強く要求されている。Conventionally, it has been difficult to produce polynisle fibers that satisfy K, high strength, high modulus, and low shrinkage. Moreover, as mentioned above, the high-strength polyester fiber obtained by multi-stage drawing of high degree of polymerization unfinished polyester yarn at high magnification and sufficient heat treatment at high temperature not only does not have a sufficiently high modulus but also shrinks and The rate cannot be lowered to the level of light,
Furthermore, strength retention and fatigue resistance are insufficient, and there is a strong demand for improvement in fatigue resistance.
本発明者は高強度、高モジュラス、低収縮性。The inventor has high strength, high modulus, and low shrinkage.
強力保持率及び耐疲労性のいずれにも優れた、ゴム構造
物の補強用に適したポリエステル繊維を提供せんとして
鋭意検討したが、従来の高強度ポリエステル繊維の製造
法の範層においては全く成功しなかった。従来の技術を
抜本的に見直した結果、ポリエステル繊維をゴム構造物
の補強用に使用する場合、通常高重合度ポリエステルを
、高温雰囲気中に溶融紡出して可及的に低配向糸を得、
高倍率に多段延伸し、高温下充分に熱処理して高強力繊
維となし、これに下塗り及び/又は上撚りを施してコー
ドとなし、接着剤を付与した後再、び高温下充分に緊張
熱処理し、jll後にゴム構造−中に配設し、加硫され
ることから明らかなように、度々苛酷な熱処理を受ける
ことに着目した。即ち、紡糸後鷺伸・熱処理によって充
分に結晶化され、最適状態に調整されたポリエステル繊
維は、再度荀酷な緊張熱処理を受けるととKよって、最
終的に得られるゴム構造物中においては、−に変質劣化
していることに着目し、本発明者は、最終製品にした際
に最高の性能を発揮するポリエステル繊維を提供せんと
して更に検討を重ねた結果、本発明の新規な特性を備え
たポリエステル繊維を見出すに到った。We conducted extensive research to provide a polyester fiber suitable for reinforcing rubber structures that has excellent strength retention and fatigue resistance, but we were unable to achieve any success within the range of conventional high-strength polyester fiber production methods. I didn't. As a result of a fundamental review of conventional technology, when polyester fibers are used for reinforcing rubber structures, it is customary to melt-spun high-polymerization polyester in a high-temperature atmosphere to obtain fibers with as little orientation as possible.
Multi-stage stretching at high magnification, heat treatment at high temperatures to produce high-strength fibers, which are then undercoated and/or twisted to form cords, coated with adhesive, and then fully tensioned and heat treated at high temperatures. However, we focused on the fact that it is often subjected to severe heat treatment, as is clear from the fact that it is disposed in a rubber structure and vulcanized after it is cured. That is, the polyester fibers that have been sufficiently crystallized and adjusted to an optimal state by stretching and heat treatment after spinning are subjected to severe tension heat treatment again, so that in the final rubber structure, The inventor of the present invention focused on the fact that the polyester fiber has undergone deterioration and deterioration, and as a result of further study in order to provide a polyester fiber that exhibits the best performance when made into a final product, the inventor has found that it has the novel characteristics of the present invention. We have now discovered a polyester fiber.
即ち、本発明はエチレンテレフタレートを主たる構成単
位とするポリエステルよりなり、荷重−荷押曲線におい
ていずれの点でも正の勾配を呈し、破断前の最後の2.
5チ伸長の応力増分が0.471 /ds以下で且つ5
75℃における乾熱収縮率が17−以下であるゴム構造
物補強用に適したポリエステル繊維に係るものである。That is, the present invention is made of polyester containing ethylene terephthalate as a main constituent unit, exhibits a positive slope at any point in the load-loading curve, and has a positive slope at any point in the load-loading curve, and the last 2.5 points before breaking.
The stress increment of 5-chi elongation is 0.471/ds or less and 5
The present invention relates to a polyester fiber suitable for reinforcing rubber structures, which has a dry heat shrinkage rate of 17 or less at 75°C.
本発明のポリエステル繊維の特徴を添付図面によって説
明する。図は荷重−荷押曲線を示し、図中の曲線(11
は本発明の繊維の荷重−荷押曲線であって、ピ)の点が
破断点である。本発明の繊維では、破断前の最後の2,
5%伸長の応力増分l−Lが0.4 y /da以下で
なければならない(図中の曲線(+1では、△Lは約0
.2 JF /deである)。The characteristics of the polyester fiber of the present invention will be explained with reference to the accompanying drawings. The figure shows the load-loading curve, and the curve (11
is a load-loading curve of the fiber of the present invention, and point P) is the breaking point. In the fiber of the present invention, the last 2,
The stress increment l-L at 5% elongation must be 0.4 y/da or less (the curve in the figure (at +1, △L is approximately 0
.. 2 JF /de).
この応力増分△Lが0.4 g /deより大になると
、コード作製後の熱処理や加硫時勢における熱劣化が生
じ、本発明の目的が達成されない。これに対し、従来の
通常のゴム構造物補強用ポリエステル繊維の荷重−荷押
曲線が曲線(2)であって、その破断前の最後の25チ
伸長の応力増分ΔLは1.41 /daもあり、フード
作製後の熱処理時における熱劣化を避けることはできな
い。なお、本発明の繊維の切断強度は、あまりに高いと
フード作製後の熱処理時における熱劣化が大きくなる傾
向があり、逆にあまりに低いとコード作製後の熱処理を
最適条件で行なっても、充分な強度が得られなくなる傾
向があるので、61/d@以上?、 51 /de未溝
の範囲にあることが好ましい。図中、曲線(1)の切断
強度は約7−01 /deであり、曲線(2)の切断強
度は8.21 /deである。If this stress increment ΔL exceeds 0.4 g/de, thermal deterioration occurs during heat treatment after cord production or during vulcanization, and the object of the present invention cannot be achieved. On the other hand, the load-loading curve of the conventional conventional polyester fiber for reinforcing rubber structures is curve (2), and the stress increment ΔL during the final 25-inch elongation before breakage is as much as 1.41/da. However, thermal deterioration during heat treatment after hood fabrication cannot be avoided. It should be noted that if the cutting strength of the fibers of the present invention is too high, thermal deterioration during heat treatment after making the hood tends to increase, and conversely, if the cutting strength is too low, even if the heat treatment after making the cord is performed under optimal conditions, it will not be sufficient. There is a tendency that strength cannot be obtained, so 61/d@ or more? , 51 /de is preferably in the ungrooved range. In the figure, the cutting strength of curve (1) is about 7-01 /de, and the cutting strength of curve (2) is about 8.21 /de.
更に、本発明の繊維は、上記荷重−荷伸曲線の特性に加
えて175℃における乾熱収縮率が17チ以下であるこ
とが必要である。この収縮率がxr%を越えるものけ、
荷重−荷押曲線の特性を満足していても、コード作製後
の熱処理時に大きく変質劣化し、更に加硫時においても
劣化するようになる。また、175℃における乾熱収縮
率があまりに低いと、コード作製後の熱処理による収縮
性能の改善が充分でなく、かえって収縮率が悪化(即ち
増大)することがあるので、この収縮率は9〜15%の
範囲にあるのが好ましい。更に、この乾熱収縮性と関連
するが、この繊維の最大熱収縮応力を055〜o、 s
s I /doの範囲にするのが好ましく、こうする
ことによってフード作製後の熱処理による収縮性の低減
効果を大にすることができる。Furthermore, the fiber of the present invention must have a dry heat shrinkage rate of 17 inches or less at 175° C. in addition to the above-mentioned load-stretching curve characteristics. Those whose shrinkage rate exceeds xr%,
Even if the load-loading curve characteristics are satisfied, the cord undergoes significant alteration and deterioration during heat treatment after cord production, and further deteriorates during vulcanization. In addition, if the dry heat shrinkage rate at 175°C is too low, the shrinkage performance may not be sufficiently improved by heat treatment after cord production, and the shrinkage rate may worsen (i.e. increase). Preferably it is in the range of 15%. Furthermore, although it is related to this dry heat shrinkability, the maximum heat shrinkage stress of this fiber is 055~o, s
It is preferable to set the s I /do to a range of s I /do, thereby increasing the effect of reducing shrinkage caused by heat treatment after producing the hood.
上記荷重−荷押曲線の特性及び乾熱収縮特性を備えた本
発明のポリニスディレ繊維は、従来のゴム構造物補強用
ポリエステル繊維に比較して1、−見劣っているが、本
発明の繊維は、これに上撚り及び/又は下撚りを施して
コードとなし、接着剤付与後熱処理し、ゴム構造物中に
配設加硫して得られるゴム構造物中において、最高の性
能を発揮し、最終のゴム構造物中においては、従来のも
のより遥かに優れた特性を呈するようになる。Although the polyvinis dire fiber of the present invention having the above-mentioned load-loading curve characteristics and dry heat shrinkage characteristics is inferior to conventional polyester fibers for reinforcing rubber structures, the fiber of the present invention is , which is twisted and/or first twisted to form a cord, applied with an adhesive, heat treated, placed in a rubber structure and vulcanized, exhibits the best performance in the rubber structure obtained, The final rubber structure exhibits properties far superior to those of conventional rubber structures.
本発明のポリエステル繊維の重合度、複屈折率等につい
ても特に制限する必要はないが、最終ゴム構造物中にお
いて充分な強度が要求される場合には、極限粘度で表わ
して064以上が望ましく、%Ko、y以上が好ましい
。被屈折率は少なくとも0.!lが望ましく、特に0.
15以上が好ましい。なお、本FIAIIMi書で言う
極限粘度は35℃のオルツク9t2フエノール溶媒溶液
により求めた。It is not necessary to particularly limit the degree of polymerization, birefringence, etc. of the polyester fiber of the present invention, but if sufficient strength is required in the final rubber structure, it is desirable that the intrinsic viscosity is 064 or more, %Ko,y or more is preferable. The refractive index is at least 0. ! 1 is desirable, especially 0.
15 or more is preferable. Note that the intrinsic viscosity referred to in this FIAIIMi document was determined using an Ortsuk 9t2 phenol solvent solution at 35°C.
本発明のポリエステル繊維は、極限粘度0,64以上、
好ましくは0.7以上、更に好ましくは0、85以上の
ポリエステルな溶融状態で冷却域■
内に紡出して直ちに血塗固化せしめ、引取速度soo〜
5000肩/分、好ましくは1000〜3500m/分
で引取ることによって複屈折率900X10 〜700
0X1G 、好ましくは1200X10−5〜600
0XIO−5の未延伸糸をその切断伸度の80s以上、
好ましくは82チ以上延伸することによって製造される
。The polyester fiber of the present invention has an intrinsic viscosity of 0.64 or more,
Preferably 0.7 or more, more preferably 0.85 or more polyester is spun in a molten state in a cooling zone and immediately solidified, and the take-up speed is soo~
Birefringence 900X10 to 700 by taking off at 5000 shoulders/min, preferably 1000 to 3500 m/min
0X1G, preferably 1200X10-5 to 600
0XIO-5 undrawn yarn at its cutting elongation of 80 seconds or more,
Preferably, it is produced by stretching 82 inches or more.
この延伸は、紡糸KMいて連続して行なっても、紡糸後
一旦捲取ってから延伸してもよく、一段で一挙に切断伸
度の80−以上延伸しても、二段以上の多段延伸によっ
てもよい。この延伸に当って、(多段延伸するときはそ
の第1段延伸の)その加熱手段として250〜650℃
、好ましくは280〜600℃の加熱水蒸気を噴出させ
るスチーム・ジ−エト方式や80〜120℃の加熱ロー
ラ方式を採用することができる。また、鷺伸稜必IIK
応じて熱処理することができるが、得られる繊維の切断
前の最後の25チ伸長の応力増分△Lを0.41 /d
e以下とし、且つ176℃における乾熱収縮率を17チ
以下、好ましくは9〜15%にするには、(ポリエステ
ルの融点−90℃)〜(ポリエステルの融点−60℃)
の温度で熱処理すべきである。This stretching may be carried out continuously by spinning KM, or by winding the fiber once after spinning and then stretching, or by stretching at a cutting elongation of 80 or more in one stage, or by multi-stage stretching of two or more stages. Good too. In this stretching, the heating means (in the first stage of stretching when multi-stage stretching) is 250 to 650°C.
Preferably, a steam jet method in which heated steam at a temperature of 280 to 600° C. is ejected or a heated roller method at a temperature of 80 to 120° C. can be employed. Also, Sagi Shinryo IIK
The stress increment △L of the last 25 strands of elongation before cutting of the resulting fibers can be heat-treated accordingly to 0.41/d.
e or less and the dry heat shrinkage rate at 176°C to be 17cm or less, preferably 9 to 15%, (melting point of polyester -90°C) to (melting point of polyester -60°C)
It should be heat treated at a temperature of
こりようにして得られる本発明のポリエステル繊維をゴ
ム構造物の補強用に使用するには、常法に従ってブード
となし、接着剤を付与し、熱処理し、しかる後ゴム構造
物に適用される。In order to use the thus obtained polyester fiber of the present invention for reinforcing a rubber structure, it is formed into a bouquet according to a conventional method, applied with an adhesive, heat-treated, and then applied to the rubber structure.
この場合の熱処理は、処理前のポリエステル繊維の最大
熱収縮応力の5sqb以下になるように熱処理温度及び
伸長度を調整することが好ましい。そのため、コード化
後の熱処理を20−までの伸長下200〜260℃の温
度で充分に、通常30〜240秒間熱処理することが好
ましい。このよ5な熱処理を施すことによつズ、−以下
の実施例により明らかなように、最高の性能を発揮する
ようKなる。即ち、このようにして得られる熱処理後の
コードは強度5.51 /do以上、175℃における
乾熱収縮率4.5s以下、4.5睦荷重時の伸度が4.
5−以下と高強度、低収縮性で且つ高モジュラスである
。また、ゴム中に配設加硫して得られるゴム構造物中に
おける発熱温度は、従来のゴム補強用ポリエステル繊維
より得られるものに比較して著しく低く、耐疲労性が顕
著に改善されている、
本発明で言うゴム構造物とは、例えばタイヤ。In this case, the heat treatment temperature and degree of elongation are preferably adjusted so that the stress is 5 sqb or less, which is the maximum heat shrinkage stress of the polyester fiber before treatment. Therefore, it is preferable that the heat treatment after coding be carried out sufficiently at a temperature of 200 to 260° C. under elongation up to 20° C., usually for 30 to 240 seconds. By applying such heat treatment, the temperature is increased to exhibit the best performance, as will be clear from the following examples. That is, the heat-treated cord thus obtained has a strength of 5.51/do or more, a dry heat shrinkage rate of 4.5 seconds or less at 175°C, and an elongation of 4.5 mm under a load of 4.5 mm.
It has high strength, low shrinkage, and high modulus of 5- or less. In addition, the heat generation temperature in the rubber structure obtained by disposing and vulcanizing in rubber is significantly lower than that obtained from conventional rubber reinforcing polyester fibers, and the fatigue resistance is significantly improved. The rubber structure referred to in the present invention is, for example, a tire.
V−ベルト、コンベアベルトの如き天然ゴム。Natural rubber such as V-belts and conveyor belts.
合成ゴム等よりなる構造物全てを指す。Refers to all structures made of synthetic rubber, etc.
本発明で言うポリエステルとは、テレフタル酸成分とエ
チレングリコール成分とからなるポリエチレンテレフタ
レートを主たる対象とするが、テレフタル酸成分の一部
、通常10モルチ以下を他のジカルボン酸成分で置換え
たポリエステルであっても、及び/又はエチレングリコ
ール成分の一部、通常10モルチ以下を他のジオール成
分で置換えたポリエステルであってもよい。また、かが
るポリエステルには必要に応じて改質剤、安定剤、添加
剤等任意に使用してもよい。The polyester referred to in the present invention mainly refers to polyethylene terephthalate consisting of a terephthalic acid component and an ethylene glycol component, but it also refers to a polyester in which a portion of the terephthalic acid component, usually 10 mol or less, is replaced with another dicarboxylic acid component. It may also be a polyester in which a portion of the ethylene glycol component, usually 10 molar or less, is replaced with another diol component. Further, modifiers, stabilizers, additives, etc. may be optionally used in the overcast polyester as required.
以下に実施例をあげて本廃明を更に説明する。The present invention will be further explained with reference to Examples below.
なお実施例中の各種の測定倣は以下の方法による。In addition, various measurements and traces in the examples are carried out by the following methods.
+11 △nはフィラメント中の分子の配向度を示す
パラメーターであって、浸漬液にブームナフタリンを用
い、ペレックコンペンセーターを用いてリターデーショ
ン法により求めた。+11 Δn is a parameter indicating the degree of orientation of molecules in the filament, and was determined by the retardation method using Boomnaphthalene as the immersion liquid and a Perec compensator.
詳細な説明は共立出版「高分子実験学講座・高分子の物
性■」を参照されたい。For a detailed explanation, please refer to Kyoritsu Shuppan's ``Polymer Experimental Course/Physical Properties of Polymers ■''.
(2) 荷重−背伸曲線はJ I S L 1017
−1963(s、 4 )に準拠した。(2) Load-back extension curve is JIS L 1017
-1963 (s, 4).
(3) 乾熱175℃収縮率はJISL1017−1
963 (5,12)に準拠した。(3) Dry heat 175℃ shrinkage rate is JISL1017-1
963 (5, 12).
(4) タフネス及び強力利用率は次式で算出した。(4) Toughness and power utilization rate were calculated using the following formula.
タフネス−1強カ×Vマ■
強力利用率=−外1葺り二」ヱと1カーX 100延伸
糸の強力×2
(5) チューブ発熱温度及びチューブ寿命はJIS
L1017−1963.1.3LzIA法に準拠した。Toughness - 1 strong force x V force ■ Strength utilization rate = - 1 strong force x 1 force x 100 drawn yarn strength x 2 (5) Tube heat generation temperature and tube life are JIS
Compliant with L1017-1963.1.3 LzIA Law.
但し曲げ角度を80’とした。発熱温度は運転開始90
分11後チユ一ブ表面の温度を赤外非接触温度計(5A
N−EI社製)で測定し、チューブ寿命はチューブ破断
までの時間で示した。However, the bending angle was 80'. The exothermic temperature is 90 at the start of operation.
After 11 minutes, check the temperature on the tube surface using an infrared non-contact thermometer (5A).
(manufactured by N-EI), and the tube life was expressed as the time until tube breakage.
実施例
極限粘度が!、05のポリエチレンテレフタレート(酸
化チタン含量なし)を約290℃で溶融し、孔径0.5
5鰭、孔数2509を有する紡糸口金より吐出後、吐出
糸条に直ちに2S℃の冷却風を2.0 Nvrt/m吹
きつけながら冷却固化させ、その後オイリングルーラで
油剤を付与後引取ローラーに導き、捲き取らすに直ちに
延伸ロールとの間に介在する22 k& / d Gの
スチームジェットな糸条に45″の角度で噴射させて篤
伸するか又は加熱p−ルに捲回後延伸して各種の鴬伸糸
を得た。この際引取p−ラーの速度、スチームジェット
の温度、鷺伸倍率、鷺伸ロール温度の変化に伴う狐伸糸
の物性は第1表の通りである。なお、実験轟8で得た鴬
伸糸の荷重−背伸曲線を図に曲線(1)で示した。Example intrinsic viscosity! , 05 polyethylene terephthalate (without titanium oxide content) was melted at about 290°C, and the pore size was 0.5.
After being discharged from a spinneret with 5 fins and 2509 holes, the discharged yarn is immediately cooled and solidified while blowing cooling air at 2S°C at 2.0 Nvrt/m, and then an oil agent is applied with an oil ruler and then guided to a take-up roller. Immediately after winding up, a 22 k&/d G steam jet thread interposed between the drawing rolls is sprayed at an angle of 45'' for stretching, or it is wound on a heating roll and then stretched for various purposes. At this time, the physical properties of the fox drawn yarn as a result of changes in the speed of the p-lar, the temperature of the steam jet, the stretching ratio, and the temperature of the stretching roll are shown in Table 1. The load-back extension curve of the drawn Utsugi yarn obtained in Experiment 8 is shown by curve (1) in the figure.
なお、81表中の延伸温度の禰におゆるSJはスチーム
ジェットを使用した場合を、HRは加熱ロールを用いた
場合を示し、ムLは切断前の最後の2.5−伸長の応力
増分を示し、未延伸糸の極限粘度[り〕及び複屈折率△
nは、室温の引取りローラ後延伸せずそのまま捲取った
未延伸糸条について測定したものである1、また、第1
段蝋伸倍率は、引取ローラーと延伸ローラーとの間に介
在するスチームジェットを噴射させるか又は加熱ロール
で予熱後延伸p−ルに導き、鷺伸p−ラーの速度を徐々
に上昇させ切断する時の最大延伸倍率に対する延伸倍率
の割合(qb)で示した。In Table 81, regarding the stretching temperature, SJ indicates the case where a steam jet is used, HR indicates the case where a heating roll is used, and L indicates the stress increment during the final 2.5-stretching before cutting. , and the intrinsic viscosity [ri] and birefringence △ of undrawn yarn
n is measured for an undrawn yarn that is wound up as it is without being drawn after being drawn by a take-up roller at room temperature.
The step wax stretching ratio can be determined by injecting a steam jet interposed between a take-up roller and a stretching roller, or by preheating with a heated roll, leading to a stretching roller, and gradually increasing the speed of the stretching roller to cut. It is expressed as the ratio (qb) of the stretching ratio to the maximum stretching ratio at the time.
上記実施例の各延伸糸を使用して、下撚、次いで上撚各
49T/102を加えてコードを作成し、次いで乾熱2
40’(:で1分間、緊張下に熱処理した。得られた処
理コードの性能は第2表の通りである。なお、緊張率は
延伸糸の物性に応じて、処理コードの45ゆ荷重時の伸
度が3.5%になるように設定した。Using each of the drawn yarns of the above examples, a cord was created by adding 49T/102 of first twist and then second twist, and then dry heat 2
The performance of the obtained treated cord is shown in Table 2.The tension ratio is determined according to the physical properties of the drawn yarn. The elongation was set to be 3.5%.
比較例
極限粘度が1.01のポリエチレンテレフタレート(酸
化チタン含量007チ)を約300℃で溶融し、孔径a
411111孔数250個を有する紡糸口金より吐出
後、直ちに温度335℃の雰囲気中を200諺走行させ
た後、25℃の冷却風を5.0 Nd1m 吹きてけ
ながら冷却固化させ、その後オイリングローラ−で油剤
を付与後5f19m/閣の速度で回転する引取ローラー
に導き、捲き取らすに直ちに、100℃に予熱されてい
る加熱ローラーと120℃に加熱されている第1廻伸ロ
ーラーとの間で3.4倍に第1JRjl:伸し、引き続
き180℃に加熱されている段付き第1廻伸ローラーと
の間で1.5倍に蔦伸後3チの弛緩熱処理して2910
IN / 111+で捲取った。Comparative Example Polyethylene terephthalate (titanium oxide content: 0.07 cm) with an intrinsic viscosity of 1.01 was melted at about 300°C, and the pore size a
411111 After being discharged from a spinneret having 250 holes, it was immediately run in an atmosphere at a temperature of 335°C for 200 hours, then cooled and solidified while blowing 5.0 Nd1m of 25°C cooling air, and then passed through an oiling roller. After applying the oil agent, it is guided to a take-up roller rotating at a speed of 5 f 19 m/kil, and immediately after being rolled up, it is passed between a heating roller preheated to 100°C and a first rotation roller heated to 120°C. .1st JRjl: Stretched to 4 times, then stretched to 1.5 times between the stepped first rolling roller heated to 180°C, and then subjected to relaxation heat treatment for 3 times to 2910°C.
I turned it over with IN/111+.
得られた繊維の荷重−荷押曲線を第1図に曲線(2)で
示した。この際、未延伸糸の〔り〕は0、88 、△n
は350XlOであった。The load-loading curve of the obtained fiber is shown in FIG. 1 by curve (2). At this time, the [ri] of the undrawn yarn is 0, 88, △n
was 350X1O.
得られた性能は下記の通りである。The obtained performance is as follows.
次にこの延伸糸に下撚次いで上撚各49丁710clL
を加えてコードを作成し、次いで乾熱240℃で1分間
緊張下に熱処理した。得られた処理コードの性能は下記
の通りである、Next, this drawn yarn was first twisted and then top twisted, 49 pieces, 710 clL each.
was added to create a cord, and then dry heat treated at 240° C. for 1 minute under tension. The performance of the obtained processing code is as follows.
図は荷重−荷押曲線であり、曲線(t) ht本発明の
ポリエステル繊維の荷重−荷押曲線、曲線(2)は従来
のゴム構造暢補強用ポリエステル繊維の荷重−荷押曲線
である。
図中ピ)は切断点、△Lは切断前の最後の2.5チ伸長
の応力増分である。
伸度(96)The figure shows a load-loading curve, curve (t) ht is a load-loading curve of the polyester fiber of the present invention, and curve (2) is a load-loading curve of a conventional polyester fiber for reinforcing rubber structure. In the figure, p) is the cutting point, and ΔL is the stress increment during the last 2.5 inches of elongation before cutting. Elongation (96)
Claims (1)
するポリエステルよりなり、荷重−荷伸曲線においてい
ずれの点でも正の勾配を呈し、破断前の最後の2.5チ
伸長の応力増分が0.411 /d・以下で且つ175
℃における乾熱収縮率が17%以下であるゴム構造物補
強用に適したポリエステル繊維。 (2) 切断強度が61/da以上7.51/ /d
o未満である特許請求の範囲第1項記載のポリエステル
繊維。 (31175℃における乾熱収縮率が9〜151である
特許請求の範囲第1項又は第2項記載のポリエステル繊
維。[Claims] 11) Made of polyester whose main constituent unit is ethylene terephthalate, the load-stretching curve exhibits a positive slope at any point, and the stress increment during the last 2.5 inches of elongation before fracture is 0.411/d・or less and 175
A polyester fiber suitable for reinforcing rubber structures with a dry heat shrinkage rate of 17% or less at °C. (2) Cutting strength is 61/da or more 7.51//d
The polyester fiber according to claim 1, which has a molecular weight of less than o. (The polyester fiber according to claim 1 or 2, which has a dry heat shrinkage rate of 9 to 151 at 31175°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10997881A JPS5813718A (en) | 1981-07-16 | 1981-07-16 | Polyester fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10997881A JPS5813718A (en) | 1981-07-16 | 1981-07-16 | Polyester fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5813718A true JPS5813718A (en) | 1983-01-26 |
JPH0151565B2 JPH0151565B2 (en) | 1989-11-06 |
Family
ID=14523970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10997881A Granted JPS5813718A (en) | 1981-07-16 | 1981-07-16 | Polyester fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5813718A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58203108A (en) * | 1982-05-17 | 1983-11-26 | Teijin Ltd | Polyester fiber |
EP0143624A2 (en) * | 1983-11-25 | 1985-06-05 | Fujitsu Limited | Dynamic semiconductor memory device having divided memory cell blocks |
JPS61132616A (en) * | 1984-11-29 | 1986-06-20 | Teijin Ltd | Polyester fiber |
JPS61289115A (en) * | 1985-06-10 | 1986-12-19 | Teijin Ltd | Polyester fiber |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5153019A (en) * | 1974-11-06 | 1976-05-11 | Teijin Ltd | Horiesuterusenino seizohoho |
JPS57161119A (en) * | 1981-03-20 | 1982-10-04 | Teijin Ltd | Polyester fiber |
-
1981
- 1981-07-16 JP JP10997881A patent/JPS5813718A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5153019A (en) * | 1974-11-06 | 1976-05-11 | Teijin Ltd | Horiesuterusenino seizohoho |
JPS57161119A (en) * | 1981-03-20 | 1982-10-04 | Teijin Ltd | Polyester fiber |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58203108A (en) * | 1982-05-17 | 1983-11-26 | Teijin Ltd | Polyester fiber |
JPH0323644B2 (en) * | 1982-05-17 | 1991-03-29 | Teijin Ltd | |
EP0143624A2 (en) * | 1983-11-25 | 1985-06-05 | Fujitsu Limited | Dynamic semiconductor memory device having divided memory cell blocks |
US4744061A (en) * | 1983-11-25 | 1988-05-10 | Fujitsu Limited | Dynamic semiconductor memory device having a simultaneous test function for divided memory cell blocks |
JPS61132616A (en) * | 1984-11-29 | 1986-06-20 | Teijin Ltd | Polyester fiber |
JPS61289115A (en) * | 1985-06-10 | 1986-12-19 | Teijin Ltd | Polyester fiber |
JPH0423008B2 (en) * | 1985-06-10 | 1992-04-21 | Teijin Ltd |
Also Published As
Publication number | Publication date |
---|---|
JPH0151565B2 (en) | 1989-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4987030A (en) | High-tenacity conjugated fiber and process for preparation thereof | |
JPH0128127B2 (en) | ||
JP4337539B2 (en) | Polyester fiber production method and spinneret for melt spinning | |
JPS6088120A (en) | Polyester yarn | |
KR101602387B1 (en) | Method of manufacturing polyethyleneterephthalate tire cord with high modulus and polyethyleneterephthalate tire cord manufactured by the same method | |
KR100602286B1 (en) | Polyester fiber and preparation thereof | |
JPS5813718A (en) | Polyester fiber | |
JPH0733610B2 (en) | Manufacturing method of polyester tire cord | |
KR100492337B1 (en) | Polyethylene terephthalate fibers using stress-strain curve, and process for preparing the same | |
JP3130683B2 (en) | Method for producing polyester fiber with improved dimensional stability | |
KR0140230B1 (en) | Manufacturing method of dimensional stability polyester yarn | |
JP2882697B2 (en) | Polyester fiber and method for producing the same | |
JPH0323644B2 (en) | ||
JPH0144810B2 (en) | ||
JPH0141722B2 (en) | ||
KR20170091968A (en) | Manufacturing method of polyethylene terephthalate cord having excellent fatigue resistance | |
JP2839817B2 (en) | Manufacturing method of polyester fiber with excellent thermal dimensional stability | |
JPH0450407B2 (en) | ||
KR960002887B1 (en) | High strength and low shrinkage polyester fiber and the method for manufacturing thereof | |
KR0166479B1 (en) | The manufacture method of the industrial polyester yarn | |
JPH0321647B2 (en) | ||
JPH0571033A (en) | Polyester tire cord for passenger car and its production | |
JPS58197310A (en) | Polyester fiber | |
JPH10251919A (en) | Polyester fiber and its production | |
JPS61289115A (en) | Polyester fiber |