JPH0144810B2 - - Google Patents

Info

Publication number
JPH0144810B2
JPH0144810B2 JP57014725A JP1472582A JPH0144810B2 JP H0144810 B2 JPH0144810 B2 JP H0144810B2 JP 57014725 A JP57014725 A JP 57014725A JP 1472582 A JP1472582 A JP 1472582A JP H0144810 B2 JPH0144810 B2 JP H0144810B2
Authority
JP
Japan
Prior art keywords
polyester
cord
stretching
less
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57014725A
Other languages
Japanese (ja)
Other versions
JPS58136852A (en
Inventor
Toshio Yamauchi
Nobuo Yokota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP57014725A priority Critical patent/JPS58136852A/en
Publication of JPS58136852A publication Critical patent/JPS58136852A/en
Publication of JPH0144810B2 publication Critical patent/JPH0144810B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はベルト補強用に適した新規なコードの
製造法に関するものである。更に詳細にはポリエ
ステル合成繊維からなる高モジユラスで低収縮
性、耐疲労性に優れたベルト構造物の補強用に適
したコードの製造法に関するものである。 最近ベルト製品、特に動力伝達ベルト(例えば
V−ベルト、ローエツジV−ベルト、ポリV−ベ
ルト、コンベアベルト、タイミングベルト、ポリ
マツクス等)がより苛酷な条件で使用されるよう
になり、該ベルト製品を補強するためのコードに
もより高度の物性が要求されるようになつてき
た。 従来、ベルト製品の補強用コードとしては、レ
ーヨンコード、ナイロンコード、ポリエチレンテ
レフタレートコード、ガラスコード、スチールコ
ードが使用されている。しかしながら、レーヨン
コードは強力が小さく、ナイロンコードはヤング
率が低いという問題がある。ポリエチレンテレフ
タレートは、比較的すぐれた性質を有するために
汎用的に使用されているが、モジユラス、寸法安
定性、耐疲労性が未だ充分でなく、苛酷な条件で
使用される動力伝達ベルトなどの補強材として
は、更に性能向上が要求されている。 本発明者らは、ポリエチレンテレフタレートコ
ードに関する上述の性能を向上すべく鋭意検討し
た結果、特定の性能を有するポリエステル繊維を
コード化し、特定の条件で緊張熱処理することに
より、高モジユラスで収縮特性、耐疲労性が著し
く向上することを見い出し、本発明に到達したの
である。 即ち本発明は、エチレンテレフタレートを主た
る構成単位とするポリエステルよりなり最大熱収
縮応力が0.5〜0.6g/deであるポリエステル繊維
に下撚及び/又は上撚を施し、次いで5〜20%の
緊張下200℃以上の温度で熱処理して最大熱収縮
応力を前記繊維の55%以下にすることを特徴とす
るベルト用コードの製造法に関するものである。 本発明でいうポリエステルとはテレフタル酸成
分とエチレングリコール成分とからなるポリエチ
レンテレフタレートを主たる対象とするが、テレ
フタル酸成分の一部、通常10モル%以下を他のジ
カルボン酸成分で置換えたポリエステルであつて
も、及び/又はエチレングリコール成分の一部、
通常10モル%以下を他のジオール成分で置換えた
ポリエステルであつてもよい。また、かかるポリ
エステルには必要に応じて改質剤、安定剤、添加
剤等任意に使用してもよい。 また、本発明のポリエステル繊維の重合度につ
いては特に制限する必要はないが、最終ベルト構
造物中において充分な強度が要求される場合に
は、極限粘度で表わして0.65以上、好ましくは
0.8以上、なかでも0.83〜0.95であるのが特に好適
である。ここでいう極限粘度は35℃のオルソクロ
ロフエノール溶媒溶液により求めた。 本発明のポリエステル繊維は、その特徴として
最大熱収縮応力が0.5〜0.6g/deであることが必
要であると共に、切断強度が7.5g/de以上、更
には8.5g/de以上であることが好ましく、また
175℃の乾熱収縮率が9〜17%であるのが好まし
い。 尚熱収縮応力は初荷重:30グラム、試料長:11
cm、昇温速度:4℃/分の条件で測定した。ま
た、後述の処理コードについては初荷重のみ60グ
ラムとし、他の条件は同一とした。 従来のベルト補強用のポリエステル繊維にあつ
ては最大熱収縮応力が0.6g/deを越えた場合、
コード化後緊張熱処理しても、充分な低収縮性コ
ードが得られない。また最大熱収縮応力が0.5
g/de未満であつては、コード化後緊張熱処理
しても収縮率の改善効果が少なく、場合によつて
は却つて収縮率が増大することがあつて充分な低
収縮性コードが得られない。また強度が7.5g/
de未満のものは、熱収縮応力が0.5〜0.6g/deを
満足すればコード化後の緊張熱処理により低収縮
になるが、ベルト補強用として充分な高強力、高
モジユラスの処理コードが得られ難い。また、
175℃の乾収が9%より小さいと、コード化後の
緊張熱処理による収縮率の改善効果が少なく、17
%より大きいとコード化後の緊張熱処理によつて
も充分に低収縮化し難い傾向がある。従つて、ベ
ルト補強用として充分な強度、モジユラスと低収
縮性のコードを得るには最大熱収縮応力が0.5〜
0.6g/de、強度7.5g/de以上、175℃の乾収が
9〜17%のポリエステル繊維が最も好ましい。 本発明のポリエステル繊維は以下の如き方法に
よつて得られる。即ち、極限粘度が0.70以上、好
ましくは0.85以上、更に好ましくは0.87〜1.10の
ポリエステルを溶融状態で冷却域内に紡出して直
ちに急冷固化せしめ、引取速度1000m/分以上、
好ましくは1500〜5000m/分で引取ることによつ
て複屈折率2000〜8000×10-5、好ましくは3000〜
7000×10-5、更に好ましくは4000〜5000×10-5
未延伸糸を得、この未延伸糸の切断伸度の80%以
上、好ましくは82%以上延伸することによつて製
造される。この延伸は紡糸に続いて連続して行な
つても、紡糸後一旦捲取つてから延伸してもよ
い。紡糸に続いて連続して行なう場合は、先ず第
1段延伸でX線広角回折図形に子午線反射(001)
の存在する複屈折率が0.16以下の1段延伸糸とな
し、更にこれを1段又は多段延伸熱処理する方法
が有用である。また紡糸後一旦捲取つてから延伸
する場合は、第1段延伸を全延伸倍率の75%以下
にして、複屈折率の増分を4倍以下とした後更に
1段又は多段延伸熱処理する方法が有用である。
いずれにしろこの延伸に当つて(多段延伸すると
きはその第1段延伸の)その加熱手段として250
〜650℃、好ましくは280〜600℃の加熱水蒸気を
噴出させるスチームジエツト方式や80〜120℃の
加熱ローラ方式を採用することができる。また延
伸後必要に応じて熱処理することができるが、得
られる繊維の最大熱収縮応力を0.5〜0.6g/de、
好ましくは175℃乾熱収縮率も9〜17%の範囲に
なるように、実質熱処理温度として融点より60℃
以上低い温度で0.4〜1.5秒間熱処理することが有
用である。 尚ベルト補強用のポリエステルコードのゴム中
耐熱性を高め、ベルト製品の耐久性を向上させる
には、上記ポリエステル繊維の末端カルボキシル
基量を20当量/106グラムポリマー以下、好まし
くは15当量/106グラムポリマー以下にすること
が特に好ましいが、そのためには以下の各種の方
法が採用できる。 即ち、 (1) 特公昭44−27911号公報の如く、溶融状態の
ポリエステルにフエニルグリシジルエーテルを
反応させる方法 (2) 特公昭45−41235号公報の如く、溶融状態の
ポリエステルに線状ポリエステルカーボネート
を反応させる方法 (3) 特公昭47−12891号公報の如く、ポリエステ
ルにエチレンオキサイドを反応させる方法 (4) 特公昭48−35953号公報の如く、ポリエステ
ルにシユウ酸のグリコールエステル又はシユウ
酸ポリエステルを反応させる方法 (5) 特公昭48−41713号公報の如く、ポリエステ
ルに環状カーボネートを反応させる方法 (6) 特公昭49−5233号公報の如く、ポリエステル
にジアリールオキザレート類及び/又はジアリ
ールマロネート類とジアリールカーボネート類
を反応させる方法 (7) 米国特許第3193522号の如く、ポリエステル
にカルボジイミドを反応させる方法 (8) 特開昭55−145734号公報の如く、ビス環状イ
ミノエーテルを反応させる方法 など所望の固有粘度や末端カルボキシル基量に応
じて随時採用することが可能である。特に、得ら
れる成型物の着色を避け、成型中での添加剤の分
解による発泡がなく、重合度を低下させなくて、
末端カルボキシル基量を15当量/106グラムポリ
マー以下にする方法が好適である。 本発明においては、上記特性を有するポリエス
テル繊維に常法に従つて下撚及び/又は上撚を施
す。その際以下に定義するK値を900〜2600の範
囲にすることが、後続の熱処理を施した処理コー
ドが高強力、高モジユラス、低収縮性であるのみ
ならず、ベルト補強物中での発熱温度の低下、耐
疲労性向上に有用である。 K=T√ ここでTはコードの10cmの長さ当りの上撚数 Dはコードを構成する繊維の総デニール 本発明においては、次いで撚を施したコードに
緊張熱処理するが、その際緊張熱処理した処理コ
ードの最大熱収縮応力をコード化前のポリエステ
ル繊維の55%以下とすることが、ベルト補強用と
して所望の低収縮性を得るのに必要である。処理
コードの最大熱収縮応力をコード化前のポリエス
テル繊維の55%以下とする方法としては、5%以
上20%までの伸長下で200〜260℃の温度で充分通
常30〜240秒高張力下で熱処理する。得られる処
理コードはベルト補強用として充分な強度即ち6
g/de以上、充分な低収縮性即ち175℃の乾熱収
縮率が4.5%以下で、4.5Kg荷重下の伸度が4.5%以
下の高モジユラスで且つ曲げ角度90゜におけるチ
ユーブ寿命が300分以上の高耐疲労性を示す。 本発明のベルト用コードは上述の如く、強力、
収縮性、モジユラス及び耐疲労性の面で優れてい
るため、各種のベルト構造物、例えばV−ベル
ト、ローエツジベルト、ポリV−ベルト、コンベ
アベルト、タイミングベルト、ポリマツクスの如
き天然ゴム、合成物等の構造物補強用に極めて有
用である。 以下に実施例をあげて本発明を更に説明する。
なお実施例中の各種の測定値は以下の方法によ
る。 (1) △nはフイラメント中の分子の配向度を示す
パラメーターであつて、浸漬液にブロムナフタ
リンを用い、ベレツクコンペンセーターを用い
てリターデーシヨン法により求めた。詳細な説
明は共立出版「高分子実験学講座・高分子の物
性」を参照されたい。 (2) 荷重−荷伸曲線はJISL1017−1963(5.4)に準
拠した。 (3) 乾熱175℃収縮率はJISL1017−1963(5.12)に
準拠した。 (4) チユーブ発熱温度及びチユーブ寿命は
JISL1017−1963、1.3.2.1A法に準拠した。但し
曲げ角度を90℃とした。発熱温度は運転開始90
分後チユーブ表面の温度を赤外非接触温度計
(SAN−EI社製)で測定し、チユーブ寿命はチ
ユーブ破断までの時間で示した。 実施例 1 極限粘度が1.05のポリエチレンテレフタレート
(酸化チタン含量なし)を約290℃で溶融し、孔径
0.55mm、孔数250個を有する紡糸口金より吐出後、
吐出糸条に直ちに25℃の冷却風を2.0Nm3/min吹
きつけながら冷却固化させ、その後オイリングロ
ーラで油剤を付与後引取ローラーに導き、捲き取
らずに直ちに延伸ロールとの間に介在する2.2
Kg/cm3Gのスチームジエツトを糸条に45゜の角度
で噴射させて延伸するか又は加熱ロールに捲回後
延伸して各種の延伸糸を得た。この際引取ローラ
ーの速度、スチームジエツトの温度、延伸倍率、
延伸ロールの温度を変化させた。 これら延伸糸はいずれもX線広角回折図形に、
子午線反射(001)が明瞭に観察された。 次にこれら延伸糸を325℃の加熱浴を介して第
2段延伸し更に300℃の加熱浴を介して緊張熱処
理して第1表に示す全延伸倍率に延伸熱処理した
糸条の性能を第1表に示した。
The present invention relates to a method for producing a novel cord suitable for belt reinforcement. More specifically, the present invention relates to a method for producing a cord made of polyester synthetic fiber, which has high modulus, low shrinkage, and excellent fatigue resistance, and is suitable for reinforcing belt structures. Recently, belt products, especially power transmission belts (e.g. V-belts, low-edge V-belts, poly V-belts, conveyor belts, timing belts, polymer belts, etc.) have been used under more severe conditions. Cords used for reinforcement are now required to have even higher physical properties. Conventionally, rayon cords, nylon cords, polyethylene terephthalate cords, glass cords, and steel cords have been used as reinforcing cords for belt products. However, rayon cords have a problem of low strength, and nylon cords have a low Young's modulus. Polyethylene terephthalate is widely used due to its relatively excellent properties, but its modulus, dimensional stability, and fatigue resistance are still insufficient, making it suitable for reinforcing power transmission belts used under harsh conditions. As a material, further improvement in performance is required. As a result of intensive studies to improve the above-mentioned performance of polyethylene terephthalate cords, the present inventors have found that by coding polyester fibers with specific properties and subjecting them to tension heat treatment under specific conditions, they have achieved high modulus, shrinkage properties, and resistance. They discovered that the fatigue resistance was significantly improved and arrived at the present invention. That is, in the present invention, polyester fibers made of polyester having ethylene terephthalate as a main constituent unit and having a maximum heat shrinkage stress of 0.5 to 0.6 g/de are first twisted and/or final twisted, and then twisted under a tension of 5 to 20%. The present invention relates to a method for manufacturing a cord for a belt, characterized in that the cord is heat-treated at a temperature of 200° C. or higher to reduce the maximum thermal shrinkage stress to 55% or less of the fiber. The polyester referred to in the present invention mainly refers to polyethylene terephthalate consisting of a terephthalic acid component and an ethylene glycol component, but it is also a polyester in which a part of the terephthalic acid component, usually 10 mol% or less, is replaced with another dicarboxylic acid component. and/or part of the ethylene glycol component,
It may also be a polyester in which 10 mol% or less of the diol component is usually replaced with another diol component. In addition, modifiers, stabilizers, additives, etc. may be optionally used in the polyester as required. The degree of polymerization of the polyester fiber of the present invention is not particularly limited, but if sufficient strength is required in the final belt structure, the degree of polymerization is preferably 0.65 or more expressed in terms of intrinsic viscosity.
A value of 0.8 or more, particularly preferably 0.83 to 0.95, is particularly preferred. The intrinsic viscosity referred to here was determined using an orthochlorophenol solvent solution at 35°C. The polyester fiber of the present invention must have a maximum heat shrinkage stress of 0.5 to 0.6 g/de, and a cutting strength of 7.5 g/de or more, more preferably 8.5 g/de or more. preferred and also
It is preferable that the dry heat shrinkage rate at 175°C is 9 to 17%. The heat shrinkage stress is initial load: 30 grams, sample length: 11
cm, heating rate: 4° C./min. In addition, for the processing code described below, only the initial load was 60 grams, and the other conditions were the same. For conventional polyester fibers used to reinforce belts, if the maximum thermal shrinkage stress exceeds 0.6 g/de,
Even if the cord is subjected to tension heat treatment after cording, a sufficiently low shrinkage cord cannot be obtained. Also, the maximum heat shrinkage stress is 0.5
If it is less than g/de, even if the tension heat treatment is performed after cording, there will be little effect on improving the shrinkage rate, and in some cases, the shrinkage rate may even increase, making it impossible to obtain a sufficiently low shrinkage cord. do not have. Also, the strength is 7.5g/
For cords with less than de, if the heat shrinkage stress satisfies 0.5 to 0.6 g/de, the tension heat treatment after cording will result in low shrinkage, but a treated cord with sufficient strength and modulus for belt reinforcement will not be obtained. hard. Also,
If the dry yield at 175℃ is less than 9%, the shrinkage rate improvement effect of the tension heat treatment after cording will be small, and 17
%, it tends to be difficult to reduce the shrinkage sufficiently even by tension heat treatment after cording. Therefore, to obtain a cord with sufficient strength, modulus, and low shrinkage for belt reinforcement, the maximum heat shrinkage stress should be 0.5~
Most preferred is a polyester fiber having a strength of 0.6 g/de or more, a strength of 7.5 g/de or more, and a dry yield at 175°C of 9 to 17%. The polyester fiber of the present invention can be obtained by the following method. That is, a polyester having an intrinsic viscosity of 0.70 or more, preferably 0.85 or more, more preferably 0.87 to 1.10 is spun in a molten state into a cooling zone and immediately quenched and solidified, at a drawing speed of 1000 m/min or more,
Birefringence is preferably 2000 to 8000×10 −5 , preferably 3000 to 3000, by drawing at preferably 1500 to 5000 m/min
It is produced by obtaining an undrawn yarn of 7000 x 10 -5 , more preferably 4000 to 5000 x 10 -5 , and drawing it by at least 80%, preferably at least 82%, of the elongation at break of the undrawn yarn. . This stretching may be carried out continuously following spinning, or it may be carried out once after spinning and then stretching. When carrying out continuous spinning following spinning, first the first stage drawing produces a meridian reflection (001) in the X-ray wide-angle diffraction pattern.
It is useful to prepare a single-stage drawn yarn with a birefringence of 0.16 or less, which is then heat-treated for one-stage or multi-stage stretching. In addition, in the case of stretching the filament after it has been wound once after spinning, it is recommended that the first stage of stretching be 75% or less of the total stretching ratio so that the increment in birefringence is 4 times or less, followed by one or more stages of stretching heat treatment. Useful.
In any case, during this stretching (in the case of multi-stage stretching, the first stage stretching), as a heating means, 250
A steam jet method in which heated steam is ejected at ~650°C, preferably 280-600°C, or a heated roller system at 80-120°C can be adopted. In addition, heat treatment can be performed as necessary after stretching, but the maximum heat shrinkage stress of the obtained fiber is 0.5 to 0.6 g/de,
Preferably, the actual heat treatment temperature is 60°C below the melting point so that the dry heat shrinkage rate at 175°C is in the range of 9 to 17%.
It is useful to heat treat at a lower temperature for 0.4 to 1.5 seconds. In order to increase the heat resistance in the rubber of the polyester cord for reinforcing the belt and improve the durability of the belt product, the terminal carboxyl group weight of the above polyester fiber should be 20 equivalents/10 to 6 grams of polymer or less, preferably 15 equivalents/10 Although it is particularly preferable to reduce the amount of polymer to 6 grams or less, the following various methods can be adopted for this purpose. That is, (1) A method of reacting phenyl glycidyl ether with molten polyester as in Japanese Patent Publication No. 44-27911. (2) A method of reacting a linear polyester carbonate with molten polyester as in Japanese Patent Publication No. 45-41235. (3) A method of reacting polyester with ethylene oxide, as disclosed in Japanese Patent Publication No. 47-12891. (4) A method of reacting ethylene oxide with polyester, as disclosed in Japanese Patent Publication No. 48-35953. Method of reaction (5) A method of reacting polyester with a cyclic carbonate as described in Japanese Patent Publication No. 48-41713 (6) Method of reacting polyester with diaryl oxalates and/or diaryl malonates as described in Japanese Patent Publication No. 49-5233 (7) A method of reacting polyester with a carbodiimide, as in U.S. Pat. No. 3,193,522. (8) A method of reacting a bis-cyclic imino ether, as in JP-A-55-145734. It is possible to employ it at any time depending on the desired intrinsic viscosity and amount of terminal carboxyl groups. In particular, it avoids coloring of the resulting molded product, does not cause foaming due to decomposition of additives during molding, and does not reduce the degree of polymerization.
A preferred method is to reduce the amount of terminal carboxyl groups to 15 equivalents/10 6 grams of polymer or less. In the present invention, polyester fibers having the above characteristics are subjected to first twisting and/or final twisting according to a conventional method. In this case, setting the K value defined below in the range of 900 to 2600 not only ensures that the treated cord subjected to subsequent heat treatment has high strength, high modulus, and low shrinkage, but also that heat generation in the belt reinforcement Useful for lowering temperature and improving fatigue resistance. K=T√ Here, T is the number of twists per 10 cm length of the cord D is the total denier of the fibers making up the cord In the present invention, the twisted cord is then subjected to tension heat treatment; In order to obtain the desired low shrinkage for belt reinforcement, it is necessary to make the maximum heat shrinkage stress of the treated cord less than 55% of that of the polyester fiber before cording. To reduce the maximum heat shrinkage stress of the treated cord to 55% or less of the polyester fiber before cording, it is sufficient to stretch the cord by 5% to 20% at a temperature of 200 to 260°C, usually for 30 to 240 seconds under high tension. Heat treated with The resulting treated cord has sufficient strength for belt reinforcement, i.e. 6
g/de or more, sufficiently low shrinkage, i.e. dry heat shrinkage at 175℃ of 4.5% or less, high modulus with elongation under 4.5Kg load of 4.5% or less, and tube life of 300 minutes at a bending angle of 90°. It shows high fatigue resistance. As mentioned above, the belt cord of the present invention is strong,
Due to its superior shrinkage, modulus and fatigue resistance, it is suitable for various belt structures such as natural rubber and synthetic materials such as V-belts, low edge belts, poly V-belts, conveyor belts, timing belts, and polymers. It is extremely useful for reinforcing structures such as The present invention will be further explained below with reference to Examples.
In addition, various measured values in the examples are based on the following methods. (1) Δn is a parameter indicating the degree of orientation of molecules in the filament, and was determined by the retardation method using bromonaphthalene as the immersion liquid and a Bereck compensator. For a detailed explanation, please refer to Kyoritsu Shuppan's "Polymer Experimental Course/Physical Properties of Polymers." (2) The load-stretching curve conformed to JISL1017-1963 (5.4). (3) Dry heat shrinkage rate at 175°C complies with JISL1017-1963 (5.12). (4) Tube heat generation temperature and tube life are
Compliant with JISL1017−1963, 1.3.2.1A law. However, the bending angle was 90°C. The exothermic temperature is 90 at the start of operation.
After a few minutes, the temperature of the tube surface was measured using an infrared non-contact thermometer (manufactured by SAN-EI), and the tube life was expressed as the time until tube rupture. Example 1 Polyethylene terephthalate (no titanium oxide content) with an intrinsic viscosity of 1.05 was melted at approximately 290°C, and the pore size was
After being discharged from a spinneret with a size of 0.55 mm and 250 holes,
The discharged yarn is immediately cooled and solidified while blowing cooling air at 25°C at 2.0Nm 3 /min, and then an oil agent is applied with an oiling roller, and then guided to a take-up roller, and immediately interposed between it and a drawing roll without being wound up.2.2
A steam jet of Kg/cm 3 G was sprayed onto the yarn at an angle of 45° to draw it, or the yarn was wound on a heating roll and then stretched to obtain various drawn yarns. At this time, the speed of the take-up roller, the temperature of the steam jet, the stretching ratio,
The temperature of the stretching rolls was varied. All of these drawn yarns have X-ray wide-angle diffraction patterns,
The meridian reflection (001) was clearly observed. Next, these drawn yarns were drawn in a second stage in a heating bath at 325°C, and then subjected to tension heat treatment in a heating bath at 300°C to achieve the total draw ratio shown in Table 1. It is shown in Table 1.

【表】 尚、表中の延伸温度におけるSJはスチームジ
エツトを使用した場合を示し、HRは加熱ロール
を用いた場合を示す。又、表中の未延伸糸の極限
粘度〔η〕及び複屈折率△nは室温の引取ローラ
ーに導いた後、延伸せずそのまま捲取つた未延伸
糸条について測定したものである。 又、第1段延伸倍率は引取ローラーと延伸ロー
ラーとの間に介在するスチームジエツトを噴射さ
せるか、加熱ロールで予熱後延伸ロールに導き、
延伸ローラーの速度を徐々に上昇させ切断する時
の最大延伸倍率に対する延伸倍率の割合(%)で
示した。 上記実施例の各延伸糸を使用して下撚次いで上
撚各49T/10cm(K値約2330)を加えてコードを
作成し、次いで乾熱240℃で2分間緊張下に熱処
理した。得られた処理コードの性能は第2表の通
りである。尚緊張率は延伸糸の物性に応じて処理
コードの4.5Kg荷重時の伸度が約3.5%になるよう
に設定した。
[Table] In addition, in the stretching temperature in the table, SJ indicates the case where a steam jet is used, and HR indicates the case where a heated roll is used. In addition, the intrinsic viscosity [η] and birefringence Δn of the undrawn yarn in the table were measured for the undrawn yarn that was led to a take-off roller at room temperature and then wound without being stretched. In addition, the first stage stretching ratio can be determined by injecting a steam jet interposed between the take-up roller and the stretching roller, or by preheating with a heating roll and then guiding it to the stretching roll.
It is expressed as a ratio (%) of the stretching ratio to the maximum stretching ratio when cutting by gradually increasing the speed of the stretching roller. Using each of the drawn yarns of the above examples, cords were prepared by first twisting and then final twisting each at 49T/10cm (K value approximately 2330), and then heat-treated under tension at dry heat at 240°C for 2 minutes. The performance of the obtained processing code is shown in Table 2. The tension ratio was set in accordance with the physical properties of the drawn yarn so that the elongation of the treated cord at a load of 4.5 kg was approximately 3.5%.

【表】【table】

【表】 延伸糸の最大熱収縮応力
実施例 2 実施例1実験No.10のポリエステル繊維を使用し
て下撚次いで上撚を加えて、コードを作成し、次
いで2分間緊張熱処理した。この際、撚数及び緊
張度、熱処理温度に伴う処理コードの物性を第3
表に示した。
[Table] Maximum heat shrinkage stress of drawn yarn
Example 2 Using the polyester fiber of Experiment No. 10 in Example 1, a cord was prepared by first twisting and then final twisting, and then subjected to tension heat treatment for 2 minutes. At this time, the physical properties of the treated cord due to the number of twists, degree of tension, and heat treatment temperature are
Shown in the table.

【表】【table】

Claims (1)

【特許請求の範囲】 1 エチレンテレフタレートを主たる構成単位と
するポリエステルよりなり最大熱収縮応力が0.5
〜0.6g/deであるポリエステル繊維に下撚及
び/又は上撚を施し、次いで5〜20%の緊張下
200℃以上の温度で熱処理して最大熱収縮応力を
前記繊維の55%以下にすることを特徴とするベル
ト用コードの製造法。 2 ポリエステル繊維が7.5g/de以上の切断強
度を有する特許請求の範囲第1項記載のベルト用
コードの製造法。 3 ポリエステル繊維が9〜17%の175℃乾熱収
縮率を有する特許請求の範囲第1項又は第2項記
載のベルト用コードの製造法。
[Claims] 1 Made of polyester whose main constituent unit is ethylene terephthalate and has a maximum heat shrinkage stress of 0.5.
~0.6 g/de polyester fibers are first twisted and/or final twisted and then under tension of 5 to 20%.
1. A method for producing a belt cord, characterized by heat treatment at a temperature of 200° C. or higher to reduce the maximum thermal shrinkage stress to 55% or less of the fiber. 2. The method for producing a belt cord according to claim 1, wherein the polyester fiber has a cutting strength of 7.5 g/de or more. 3. The method for producing a belt cord according to claim 1 or 2, wherein the polyester fiber has a 175°C dry heat shrinkage rate of 9 to 17%.
JP57014725A 1982-02-03 1982-02-03 Production of cord for belt Granted JPS58136852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57014725A JPS58136852A (en) 1982-02-03 1982-02-03 Production of cord for belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57014725A JPS58136852A (en) 1982-02-03 1982-02-03 Production of cord for belt

Publications (2)

Publication Number Publication Date
JPS58136852A JPS58136852A (en) 1983-08-15
JPH0144810B2 true JPH0144810B2 (en) 1989-09-29

Family

ID=11869100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57014725A Granted JPS58136852A (en) 1982-02-03 1982-02-03 Production of cord for belt

Country Status (1)

Country Link
JP (1) JPS58136852A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146876A (en) * 1984-12-19 1986-07-04 東洋紡績株式会社 Production of polyester code for reinforcing rubber
JPS60224879A (en) * 1984-04-23 1985-11-09 東洋紡績株式会社 Production of polyester code for reinforcing rubber
JPS60231044A (en) * 1984-04-26 1985-11-16 Bando Chem Ind Ltd Power transmission belt
JPS60260734A (en) * 1984-06-05 1985-12-23 Toyobo Co Ltd Belt having superior strength
JPS61278641A (en) * 1985-06-03 1986-12-09 Mitsuboshi Belting Ltd Tensile body for power transmission belt and power transmission belt employing said tensile body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358032A (en) * 1976-10-26 1978-05-25 Celanese Corp Manufacture of high strength improved polyester filament having especially stable internal structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358032A (en) * 1976-10-26 1978-05-25 Celanese Corp Manufacture of high strength improved polyester filament having especially stable internal structure

Also Published As

Publication number Publication date
JPS58136852A (en) 1983-08-15

Similar Documents

Publication Publication Date Title
EP0169415B1 (en) Polyester fiber
KR100402839B1 (en) Polyethylene naphtalate fiber of high strength
JPH0128127B2 (en)
JP4337539B2 (en) Polyester fiber production method and spinneret for melt spinning
JPS6141320A (en) Polyester fiber
JPH0144810B2 (en)
KR101602387B1 (en) Method of manufacturing polyethyleneterephthalate tire cord with high modulus and polyethyleneterephthalate tire cord manufactured by the same method
KR100492337B1 (en) Polyethylene terephthalate fibers using stress-strain curve, and process for preparing the same
KR0140230B1 (en) Manufacturing method of dimensional stability polyester yarn
JP3130683B2 (en) Method for producing polyester fiber with improved dimensional stability
JPS5813718A (en) Polyester fiber
JPH0323644B2 (en)
KR20170091968A (en) Manufacturing method of polyethylene terephthalate cord having excellent fatigue resistance
KR100505018B1 (en) Polyethylene-2,6-naphthalate fibers having excellent processability, and process for preparing the same
JPH0141722B2 (en)
KR100585248B1 (en) Rubber-reinforcing polyester fibers and dip cords
JPH0450407B2 (en)
KR0166479B1 (en) The manufacture method of the industrial polyester yarn
JP2839817B2 (en) Manufacturing method of polyester fiber with excellent thermal dimensional stability
KR960002887B1 (en) High strength and low shrinkage polyester fiber and the method for manufacturing thereof
KR0160464B1 (en) Method of manufacturing polyester industrial fiber
JPH0321647B2 (en)
KR930010797B1 (en) Process for manufacturing of polyester dip cord yarn
KR100505016B1 (en) Polyethylene-2,6-naphthalate fibers by using high speed spinning and process for preparing the same
JPH0147575B2 (en)