JPS6119812A - Polyester fiber - Google Patents

Polyester fiber

Info

Publication number
JPS6119812A
JPS6119812A JP14065584A JP14065584A JPS6119812A JP S6119812 A JPS6119812 A JP S6119812A JP 14065584 A JP14065584 A JP 14065584A JP 14065584 A JP14065584 A JP 14065584A JP S6119812 A JPS6119812 A JP S6119812A
Authority
JP
Japan
Prior art keywords
polyester
elongation
less
fiber
intrinsic viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14065584A
Other languages
Japanese (ja)
Inventor
Shiro Kumakawa
熊川 四郎
Kazuyuki Yamamoto
和幸 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP14065584A priority Critical patent/JPS6119812A/en
Priority to US06/751,796 priority patent/US4690866A/en
Priority to DE8585108266T priority patent/DE3565698D1/en
Priority to EP85108266A priority patent/EP0169415B1/en
Publication of JPS6119812A publication Critical patent/JPS6119812A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:Polyester fibers that contains ethylene terephthalate as a major repeating unit and have specific values of intrinsic viscosity, elongation at break and crystallinity, thus showing a variety of good properties such as high strength, low shrinkage, high fatigue resistance, further having good drawability. CONSTITUTION:The objective fibers include ethylene terephthalate as a major repeating unit with an intrinsic viscosity of over 0.9, preferably 0.9-1.3 and elongation at break of less than 150%, preferably 150-40% and satisfy the equation [XX is crystallinity according to the X-ray wide angle diffraction; n is optical birefringence (higher than 0.06, preferably 0.06-0.14)]. Further, it is preferred that the crystal size is more than 50Angstrom and the dry heat shrinkage is less than 10% at 180 deg.C.

Description

【発明の詳細な説明】 a、産業上の利用分野 本発明は、工業用ポリエステル繊維とじて高強度で低収
縮、耐疲労性の緒特性を同時に兼ね備え、亘つ延伸性良
好なポリエステル繊維を得るためのポリエステル未延伸
繊、維に関するものである。
Detailed Description of the Invention: a. Industrial Field of Application The present invention provides a polyester fiber that simultaneously has high strength, low shrinkage, and fatigue resistance characteristics as an industrial polyester fiber, and has good stretchability. The present invention relates to undrawn polyester fibers and fibers.

b、従来技術 ポリエステル繊維は種々の優れた。特性を有するため、
衣料用のみならず工業用として広  ′く利用されてい
る。特に高強度で且つ寸法安定性に優れたポリエステル
繊維は、工業用途において有用であり、タイヤ用途のみ
ならず産資用途にも使用されてきているが、最近共益高
度の性能が要求されている。例えばタイヤコード用とし
てはタイヤ成型時の歩留向上のため更に低収縮化、乗心
地の向上のため高モデュラス化、また大型タイヤへの適
用には耐疲労性の向上、一方V−ベルト用コードとして
はメンテナンスフリーのために高モデュラス化、更に大
型の高負荷ラップベルト用コードとしては伸度の大きな
高タフネス、耐疲労性が要求されている1、かかる観点
から高強度で低収縮、高モデュラス、耐疲労性を兼ね備
えたポリエステルコードが得られるなら、ポリエステル
繊維の鉤素材とのコスト競争力の優位性から益々使用さ
れる分野が増大する。
b. Prior art polyester fibers have various advantages. Because it has the characteristics,
It is widely used not only for clothing but also for industrial purposes. Polyester fibers, which have particularly high strength and excellent dimensional stability, are useful in industrial applications, and have been used not only for tires but also for industrial assets, but recently there has been a demand for a high level of mutually beneficial performance. For example, for tire cords, we need lower shrinkage to improve yield during tire molding, higher modulus to improve ride comfort, and improved fatigue resistance for large tires, while V-belt cords. As a cord for maintenance-free use, high modulus is required, and as a cord for large, high-load lap belts, high elongation, high toughness, and fatigue resistance are required1.From this perspective, cords with high strength, low shrinkage, and high modulus are required. If a polyester cord with fatigue resistance can be obtained, it will be used in an increasing number of fields due to its cost competitiveness with polyester fiber hook materials.

特にポリエステル繊維は、歴史の古いレーヨン繊維、ビ
ニロン繊維に比べてモデュラス、収縮性が劣り、更に歴
史の古い汎用性のポリアミド繊維に比べて耐疲労性が著
しく劣ってお沙、これらの点の改良が重要である。これ
らの点が改良されれば、ポリエステル繊維はレーヨン繊
維、ビニロン繊維、ポリアミド繊維よりコスト/パーフ
ォ−マンの優れた繊維として工業用繊維としての位置付
けが益々高くなる3、 工業用繊維に要求される高強度を発現させるためKは、
例えば特公昭41−7892号公報、特公昭53−13
67号公報に開示されているような高重合度ポリエステ
ルを使用し紡糸段階で分子配向を抑制し、延伸段階で出
来るだけ延伸倍率を増大させる方法が知られている。
In particular, polyester fibers are inferior in modulus and shrinkage compared to older rayon fibers and vinylon fibers, and also significantly inferior in fatigue resistance compared to older general-purpose polyamide fibers. Improvements in these points are necessary. is important. If these points are improved, polyester fiber will be positioned more and more as an industrial fiber as it has superior cost and performance compared to rayon fiber, vinylon fiber, and polyamide fiber3. In order to develop high strength, K is
For example, Japanese Patent Publication No. 41-7892, Japanese Patent Publication No. 53-13
A method is known in which a high polymerization degree polyester as disclosed in Japanese Patent No. 67 is used, molecular orientation is suppressed in the spinning stage, and the stretching ratio is increased as much as possible in the stretching stage.

しかしながら、この方法に依れば、非晶分子鎖の配向度
が高いために高強度のものが得られる反面、収縮率も増
大する。一方、収縮率を低下するためには、例えば特開
昭53−58028号公報に開示されているような低重
合度ポリエステルを使用する方法が知られている。しか
しながら、この方法では強度、タフネスの高いものが得
難い。また、上記2つの方法では、いずれも耐疲労性の
低いものしか得られない。
However, according to this method, since the degree of orientation of the amorphous molecular chains is high, high strength can be obtained, but on the other hand, the shrinkage rate also increases. On the other hand, in order to reduce the shrinkage rate, a method is known in which a low degree of polymerization polyester is used, for example as disclosed in JP-A-53-58028. However, with this method, it is difficult to obtain products with high strength and toughness. In addition, both of the above two methods yield products with low fatigue resistance.

低収縮性で且つ耐疲労性を向上せしめるには、例えば特
開昭53−58031号公報、同53−58032号公
報には、延伸系の分子配向度を低下し且つ仕事損失を小
さくして耐疲労性を改善することを目的としたポリエス
テル繊維及びその製造方法が提案されている。
In order to achieve low shrinkage and improve fatigue resistance, for example, Japanese Unexamined Patent Application Publication Nos. 53-58031 and 53-58032 recommend reducing the degree of molecular orientation in the drawing system and reducing work loss. Polyester fibers and methods for producing the same have been proposed with the aim of improving fatigue properties.

この方法では、紡糸口金下で10〜60℃のガス雰囲気
で急冷することを特徴とするが、高強度にするのに糸の
切断寸前まで延伸を行うため伸度が極めて小さく、また
延伸時の糸切れが多発して安定した製造が困難であると
いう欠点を有している。
This method is characterized by rapid cooling in a gas atmosphere of 10 to 60°C under a spinneret, but the degree of elongation is extremely small because the yarn is stretched to the point of cutting to achieve high strength. It has the disadvantage that thread breakage occurs frequently and stable production is difficult.

C1問題を解決するための手段 一本発明者はかかる欠点を解消せんとして、鋭意検討の
結果、特定の重合度を有する結晶性未延伸飯維で、且つ
通常の未延伸繊維に比べて高度の配向性を有していなが
ら充分攻切伸伸度を有する未延伸繊維を使用すれば、延
伸性が良好で、所望の特性を有する延伸系やコードが得
られることを見い出した。即ち、高強度で、伸度が太き
−く、低収縮、゛耐疲労性の良好な工業用途として好適
なコードを提供するポリエステル繊維を安定して製造す
ることが可能であることを見出し、本発明に到達した。
Means for Solving the C1 Problem The inventors of the present invention, in an attempt to eliminate such drawbacks, have made intensive studies and found that a crystalline undrawn fiber with a specific degree of polymerization and a higher degree of It has been found that by using undrawn fibers that have sufficient cross-cut elongation while having orientation, a drawn system or cord with good drawability and desired properties can be obtained. That is, we have discovered that it is possible to stably produce polyester fibers that have high strength, high elongation, low shrinkage, and good fatigue resistance, and provide cords suitable for industrial use. We have arrived at the present invention.

即ち、本発明はエチレンテレフタレートを主たる繰返単
位とし極限粘度が0.9 Jd上のポリエステルよりな
り、切断伸度が150%以上で且つ下記式 %式% を満足するポリエステル繊維に係るものである。
That is, the present invention relates to a polyester fiber containing ethylene terephthalate as a main repeating unit, having an intrinsic viscosity of 0.9 Jd or more, having a breaking elongation of 150% or more, and satisfying the following formula %. .

本発明のポリエステル繊維を構成するポリマーは、分子
鎖中にエチレンテレフタレート繰返し単位を90モル弊
以上、好ましくは95モル弊以上含むポリエステルであ
る。かかるポリエステルとしてはポリエチレンテレフタ
レートが好適であるが、10モル5未満、t!fiしく
は5モルラ未満の割合で他の共重合成分を含んでも差し
つかえない。このような共重合成分としては例えばイソ
フタル酸、ナフタレ/ジカルボン酸、アジピン酸、オキ
シ安息香酸、ジエチレングリコール、プロピレングリコ
ール、トリメリット酸、ペンタエリスリトール等があげ
られる。また、これらのポリエステルには安定、剤、着
色剤等の添加剤を含んでも差しつかえない。
The polymer constituting the polyester fiber of the present invention is a polyester containing 90 moles or more, preferably 95 moles or more of ethylene terephthalate repeating units in the molecular chain. Polyethylene terephthalate is preferred as such polyester, but less than 10 moles 5, t! In other words, it may contain other copolymer components in a proportion of less than 5 molar. Examples of such copolymerization components include isophthalic acid, naphthalene/dicarboxylic acid, adipic acid, oxybenzoic acid, diethylene glycol, propylene glycol, trimellitic acid, and pentaerythritol. Furthermore, these polyesters may contain additives such as stabilizers, colorants, and the like.

本発明のポリエステル未延伸繊維は、25°COCクー
ロフェノール溶液から求めた極限粘度が0.90 以上
であることが必要である。
The undrawn polyester fiber of the present invention needs to have an intrinsic viscosity of 0.90 or more as determined from a 25° COC coulophenol solution.

極限粘度が0.90 未満では高強度なポリエステルコ
ードが・得られない。極限粘度としては0.9〜1.3
が好ましい。
If the intrinsic viscosity is less than 0.90, a high-strength polyester cord cannot be obtained. Intrinsic viscosity is 0.9 to 1.3
is preferred.

本発明のポリエステル未延伸繊維は、25℃0−クロロ
フェノール溶液から求めた極限粘度が0.90 以上で
あることが必要である。
The undrawn polyester fiber of the present invention needs to have an intrinsic viscosity of 0.90 or more as determined from a 0-chlorophenol solution at 25°C.

極限粘度が0.90 未満では高強度なポリエステルコ
ードが得られない。極限粘度としては0.9〜1.3が
好ましい。
If the intrinsic viscosity is less than 0.90, a high-strength polyester cord cannot be obtained. The intrinsic viscosity is preferably 0.9 to 1.3.

本発明の一ポリエステル未延伸繊維は、結晶性であるこ
とが必要である。結晶性でないとレーヨン繊維やビニロ
/繊維の如き低収縮性が得られない。ここで結託性であ
るかどうかは、X線広角回折図形で回折バター/が出現
するかどうかで検出される。なお、X線広角回折から結
晶化度及び結晶サイズは以下の方法により求めた。
One polyester undrawn fiber of the present invention needs to be crystalline. If it is not crystalline, it will not be possible to obtain the low shrinkage properties of rayon fibers and vinyl fibers. Here, whether or not there is collusion is detected by whether diffraction butter/ appears in the X-ray wide-angle diffraction pattern. Note that the crystallinity and crystal size were determined by the following method from X-ray wide-angle diffraction.

結晶化度 試料を入射X線に垂直な面内で回転して得ら
れるプロフィルと 試料を固定して子午方向Vζ走査 して得られるプロフィルにより 板圧、温品法を用いて算出した。
Crystallinity Degree of crystallinity was calculated using the plate pressure method using the profile obtained by rotating the sample in a plane perpendicular to the incident X-rays and the profile obtained by scanning the sample in the meridian direction Vζ while the sample was fixed.

結晶サイズ 赤道線走査の(010)(100)強度分
布曲線の半価中よりシェラ −の式を用いて求めた。
Crystal size was determined using the Scherrer equation from the half value of the (010)(100) intensity distribution curve of equatorial line scanning.

本発明の繊維は、結晶性でありながら充分な切断伸度、
即ち150%以下の切断伸度を有することが必要である
。一般に工業用ポリエステル繊維を製造するKは、未延
伸繊維として非品性で切断伸度が150%を越えた高伸
度のものの方が延伸俗本を増大することが可能で、高強
度のものを得るのに好適であるとされていた。しかしな
がら、前述の如く高強度のものは得られるが、低収縮率
で耐疲労性の良好なポリエステルコードは得られない。
The fiber of the present invention has sufficient cutting elongation while being crystalline.
That is, it is necessary to have a cutting elongation of 150% or less. In general, the K used to manufacture industrial polyester fibers is undrawn fiber with a high elongation of over 150%, which is undrawn, and has a high elongation of over 150%. It was considered suitable for obtaining. However, as mentioned above, although high strength can be obtained, a polyester cord with low shrinkage rate and good fatigue resistance cannot be obtained.

工業用途として少くとも所望の強度を有し、且つ低収縮
率、耐疲労性の極めて良好なポリエステル;−ドを得る
Kは、結晶性で且つ切断伸度が150%以下である未延
伸繊維を延伸に供することが必要である。切断伸度は1
50%以下で40%以上のものが延伸性が良好なので好
ましい。
To obtain a polyester that has at least the desired strength for industrial use, low shrinkage rate, and extremely good fatigue resistance; It is necessary to subject it to stretching. Cutting elongation is 1
50% or less and 40% or more are preferable because stretchability is good.

本発明の未延伸繊維は上記の如く結晶性で特定の切断伸
度を有し且つそれらの相関を示す結晶化度と配向度が次
式の関係を満足することが必要である。
As mentioned above, the undrawn fiber of the present invention must be crystalline and have a specific cutting elongation, and the degree of crystallinity and degree of orientation, which are correlated with each other, must satisfy the following relationship.

Xx=2.4X10’XΔm + 4 ここでXxは、X線広角回折により求めた結晶化度で前
述の方法で算出した。
Xx=2.4X10'XΔm+4 Here, Xx is the crystallinity determined by X-ray wide-angle diffraction, and was calculated by the method described above.

また、Δれは複屈折率で、偏光光学顕微鏡にとりつけら
れたベレツクコンベンセーターを用いて測定したもので
あり、該複屈折率は0.06以上が必要である。複屈折
率が0.06未満では、低収縮、耐疲労性を著しく向上
させることが困難であり、好ましくは0.06以上0.
14 以下である。
Further, the delta deviation is a birefringence index, which is measured using a Bereck convenser attached to a polarizing optical microscope, and the birefringence index must be 0.06 or more. If the birefringence is less than 0.06, it is difficult to significantly improve low shrinkage and fatigue resistance, and it is preferably 0.06 or more.
14 or less.

本発明の未延伸繊維は、上記結晶化度と複屈折率の関係
を満足して始めて延伸性がよ〈且つ得られる延伸線維か
らコードを作成した場合、所望の高強度と低収縮性、耐
疲労性の極峠て良好なものが得られる不可欠な条件であ
る。
The undrawn fiber of the present invention has good drawability only when it satisfies the above relationship between crystallinity and birefringence, and when a cord is made from the obtained drawn fiber, the desired high strength, low shrinkage, and resistance can be obtained. This is an essential condition for obtaining a product with excellent fatigue resistance.

ま庭、本発明の未延伸繊維は、上述の方法で算出した結
晶サイズが50A以上と結晶が適度に発達したものが好
ましく、更に180℃における乾熱収縮率が10%以下
と未延伸繊維でありながらも低収縮率であることが特に
好ましい。なお、180℃における乾熱収縮率はJIS
L1017−1963(5,12)に記載の方法に準拠
して算出した。
Preferably, the undrawn fiber of the present invention has a crystal size of 50A or more calculated by the method described above and has moderately developed crystals, and further has a dry heat shrinkage rate of 10% or less at 180°C. It is particularly preferable to have a low shrinkage rate. In addition, the dry heat shrinkage rate at 180℃ is JIS
Calculated according to the method described in L1017-1963 (5, 12).

本発明の未延伸繊維は例えば以下の方法で得られる。エ
チレンテレフタレートを主たる繰返単位とする極限粘度
が0.95〜1.5のポリエステル又は極限粘度が0.
7〜0.9のポリエステルに重合度促進剤を反応させて
常法により溶融輸送し、紡糸口金より、延伸後の繊度が
1〜20 daになる如く糸条に吐出し、吐出後直ちに
急冷するか、融点以下結晶化開始温度までの温度に保温
するか、又は融点以上の温度の加熱雰囲気中に、ある時
間さらして遅延冷却を行う。その後、糸条な冷却固化さ
せるが、その際以下の条件のもとて冷却固化させること
が有用である。
The undrawn fiber of the present invention can be obtained, for example, by the following method. Polyester containing ethylene terephthalate as a main repeating unit and having an intrinsic viscosity of 0.95 to 1.5, or a polyester having an intrinsic viscosity of 0.95 to 1.5.
7 to 0.9 polyester is reacted with a degree of polymerization accelerator, melted and transported by a conventional method, and discharged from a spinneret into a yarn so that the fineness after drawing becomes 1 to 20 da, and immediately after discharge, it is rapidly cooled. Alternatively, the material is kept at a temperature below the melting point and up to the crystallization initiation temperature, or delayed cooling is performed by exposing it to a heated atmosphere at a temperature above the melting point for a certain period of time. Thereafter, it is cooled and solidified in a filamentous manner, and it is useful to cool and solidify it under the following conditions.

次いで、上記の如く冷却固化させた後、油剤を付与後3
000m/分以上の速度で引取る。
Next, after cooling and solidifying as described above, the oil agent was applied and then 3
Pick up at a speed of 000 m/min or more.

油剤付与は例えばオイリングローラ一方式。For example, one-way oil application is done using an oiling roller.

スプレ一方式など随意の方式が可能である。Any method such as a one-way spray method is possible.

また、油剤は必要に応じて任意の繊維用油剤を適用する
ことが可能である。この際、繊維の用途としてゴムとの
接着性が重視される分野では、接着性を付与するために
、表面処理剤を付与することが有用である。
Further, as the oil agent, any textile oil agent can be applied as necessary. At this time, in fields where adhesion with rubber is important as a fiber application, it is useful to apply a surface treatment agent to impart adhesion.

上述の条件を随時に選択することにより、極限粘度が0
.90以上で切断伸度が150係以下の結晶性未延伸線
維であって、結晶化度Xxと複屈折率△nがXx=2.
4X10’X△n+4の関係を満足し、複屈折率が0.
06以上のものが得られる。
By selecting the above conditions as needed, the intrinsic viscosity becomes 0.
.. A crystalline undrawn fiber having a cutting elongation of 90 or more and a cutting elongation of 150 or less, and a crystallinity Xx and a birefringence Δn of Xx=2.
The relationship of 4X10'X△n+4 is satisfied, and the birefringence is 0.
06 or higher can be obtained.

本発明においては、3000rr+/分以上の速度で引
き取った上記特性を有する未延伸繊維は、紡糸に続いて
連続して延伸しても、一旦捲き取った後側工程で延伸し
てもよい。紡糸に続いて連続して延伸する場合には、先
に提案した特願昭57−88927号公報記載の方法に
準拠して行うことが出来る。また、紡糸後一旦捲き取っ
てから延伸する場合には、先に提案した特願昭57−1
89094号公報記載の方法に準拠して行うことが出来
る。延伸時の延伸歪みや熱処理歪みを少くする点では後
者の延伸方法が好ましい。即ち、未延伸繊維をTg+1
5〜Tg+50℃(ここで’rgは該繊維のガラス転移
温度)の温度で少くとも0.5秒予熱後全延伸倍率の7
5係以下の倍率で第1段延伸して未延伸繊維の複屈折率
の1.2〜3.3倍の複屈折率とする。次いで1段延伸
糸条な更に多段延伸熱処理する。この際、9イヤ補強用
コードの如く高強度が要求される場合、最終の緊張熱処
理は、温度として繊維の融解温度−50℃から融解温度
−3)0℃の範囲で定長又は5.0%まての緊張度で、
好ましくは定長又は2.5係までの緊張度で0.4〜1
.5秒間保持する方法がよい、 また、大型の高負荷ラソプドベルト用コードの如く伸度
が大きく、タフネスの要求されるものは、1段延伸後繊
維の融解゛温度−50℃から融解温度−3)0℃の範囲
で第2段延伸を行い、全延伸倍率を切断延伸倍率の85
係以下にするのが好ましい。
In the present invention, the undrawn fibers having the above-mentioned characteristics taken at a speed of 3000 rr+/min or more may be drawn continuously after spinning, or may be drawn in a step after being wound once. When the spinning is followed by continuous drawing, it can be carried out in accordance with the method described in Japanese Patent Application No. 57-88927 previously proposed. In addition, when the yarn is wound up once after spinning and then stretched, it is possible to
This can be carried out in accordance with the method described in Japanese Patent No. 89094. The latter stretching method is preferred in terms of reducing stretching strain during stretching and heat treatment strain. That is, the undrawn fiber is Tg+1
7 of the total draw ratio after preheating for at least 0.5 seconds at a temperature of 5 to Tg + 50°C (where 'rg is the glass transition temperature of the fiber).
The first stage of drawing is performed at a factor of 5 or less to give a birefringence of 1.2 to 3.3 times the birefringence of the undrawn fiber. Next, the single-stage drawn yarn is further subjected to multi-stage drawing heat treatment. At this time, when high strength is required such as a 9-year reinforcing cord, the final tension heat treatment is carried out at a constant length or 5. With a tension level of %,
Preferably a constant length or a tension of up to 2.5 tension of 0.4 to 1
.. It is better to hold it for 5 seconds. Also, for cords for large, high-load rasped belts that have high elongation and require toughness, the melting temperature of the fiber after the first stage of stretching should be from -50°C to -3). The second stage stretching was performed in the range of 0°C, and the total stretching ratio was reduced to 85, which was the cutting stretching ratio.
It is preferable to keep it below the limit.

更に、延伸##をコート化せず、そのままで使用する産
資用途においては、多段延伸熱処理の融解温度−50℃
から融解温度−3)0℃の範囲で0.4〜1.5秒間保
持しなから20係以下の弛緩熱処理を行うのが好ましい
Furthermore, in industrial applications where stretched ## is used as it is without being coated, the melting temperature of multi-stage stretching heat treatment is -50°C.
It is preferable to carry out a relaxation heat treatment at a temperature of 0.4 to 1.5 seconds at a melting temperature of -3) 0.degree.

以上の方法により得られる延伸されたポリエステル繊維
は強度6.0.!i’/de以上、伸度が10係以上1
80℃乾熱収縮率が8.5憾以下非晶配向度が0.64
以下長周期間階が16OAの特徴を示す。かかるポリエ
ステル繊維はそのままで製編織した彼そのまま又は熱処
理されて産資用に使用される。この際、その優れた繊維
特性はそのまま発現し、極めて有°効である。また、常
法に従ってコードとなし、接着剤を付与し熱処理してゴ
ム構造物に適用することもできる。なお、ゴム構造物と
は、例えばタイヤ、ホース、■−ベルト、コンベアベル
トの如き天然ゴム、合成ゴムよりなる構造物全てを指す
The drawn polyester fiber obtained by the above method has a strength of 6.0. ! i'/de or more, elongation is 10 or more 1
80℃ dry heat shrinkage rate is 8.5 or less Amorphous orientation degree is 0.64
The characteristics of the long cycle period floor being 16OA are shown below. Such polyester fibers are used for industrial purposes either as they are after being knitted or woven, or after being heat treated. At this time, the excellent fiber properties are expressed as they are and are extremely effective. Alternatively, it can be made into a cord according to a conventional method, applied with an adhesive, heat-treated, and applied to a rubber structure. Note that the term "rubber structure" refers to all structures made of natural rubber or synthetic rubber, such as tires, hoses, belts, and conveyor belts.

d、実施例 以下に実施例をあげて本発明を更に詳述する。なお、実
施例中の部は全て重量部を示す。
d. Examples The present invention will be explained in further detail with reference to Examples below. Note that all parts in the examples indicate parts by weight.

雄側 ジメチルテレフタレート97部、エチレングリコール6
9部、酢酸カルノウAl水塩0.034部及び三酸化ア
ンチモン0.025部をオートクレーブに仕込み、窒素
をゆるやかに通じながら180〜230℃でエステル交
換の結果生成するメタノールを除去したのち、HsPO
a の50チ水溶液を0.05部加えて加熱温度を28
0℃まで上昇させると共に徐々に減圧に移行し、約1時
間を要して反応系の圧力を0.2mm1gにして1時間
50分重合反応を続けて固有粘度O,SO。
Male side: 97 parts of dimethyl terephthalate, 6 parts of ethylene glycol
9 parts of Carnow Al acetate hydrate, and 0.025 parts of antimony trioxide were charged into an autoclave, and methanol produced as a result of transesterification was removed at 180 to 230°C while slowly passing nitrogen through, and then HsPO
Add 0.05 part of 50% aqueous solution of a and raise the heating temperature to 28.
While raising the temperature to 0°C, the pressure was gradually reduced to 0.2 mm/g in about 1 hour, and the polymerization reaction was continued for 1 hour and 50 minutes to obtain an intrinsic viscosity of O, SO.

末端カルボキシル基量28当量/10グラムポリマーの
重合体を得た。
A polymer having a terminal carboxyl group weight of 28 equivalents/10 grams was obtained.

この重合体チップ100部に2,2′−ビス(2−オキ
サゾリン)(cE)を第1表に示す量トライブレンドし
た後、約300℃で溶融輸送し、孔径0.6mm孔数2
50個を有する紡糸口金より吐出後、吐出糸条な第1表
記載の冷却条件に保持し、その後25℃の冷却風を30
0 mmに亘って4.0Nd1分吹きつげながら冷却固
化せしめた後オイリングローラ−で油剤を付与後第1表
記載の引取速度で捲取った。得られた未延伸繊維の特性
を第1表に示した。
100 parts of this polymer chip was triblended with 2,2'-bis(2-oxazoline) (cE) in the amount shown in Table 1, and then melted and transported at about 300°C, with a pore diameter of 0.6 mm and a number of pores of 2.
After being discharged from a spinneret having 50 yarns, the discharged yarn was maintained under the cooling conditions listed in Table 1, and then 25°C cooling air was applied to the yarn for 30 minutes.
After cooling and solidifying while blowing 4.0 Nd over a thickness of 0 mm for 1 minute, an oil agent was applied with an oiling roller and the film was rolled up at the take-up speed shown in Table 1. The properties of the obtained undrawn fibers are shown in Table 1.

この未延伸繊維を85℃に加熱され次ロールに供給し、
引取ロールとの間で第1表記載の倍率(DR,)で第1
段延伸後325℃に加熱された気体浴を介して表記載の
倍率(DR,)で第2段延伸した。その後130℃の加
熱ローラ、330℃の気体浴を表記載のように使用又は
使用せずに表記載の倍率DR,で緊張熱処理した。得ら
れた延伸糸の性能を第1表に併記した。
This undrawn fiber is heated to 85°C and supplied to the next roll,
between the take-up roll and the first one at the magnification (DR,) listed in Table 1.
After stage stretching, a second stage stretching was carried out at the magnification (DR,) shown in the table through a gas bath heated to 325°C. Thereafter, tension heat treatment was carried out at the magnification DR as described in the table, with or without using a heating roller at 130°C and a gas bath at 330°C as described in the table. The performance of the obtained drawn yarn is also listed in Table 1.

次にこれら延伸糸の一部について490回/mの2撚を
与えた後これを2本合わせて490回/mのS撚を与え
て1000deX2本の生フードとした。この生フード
を接着剤(RFL液)に浸漬し、245℃で2分間緊張
熱処理した。
Next, some of these drawn yarns were given two twists of 490 turns/m, and then the two were combined to give an S twist of 490 turns/m to form two 1000 deX raw foods. This raw food was immersed in an adhesive (RFL liquid) and subjected to tension heat treatment at 245° C. for 2 minutes.

この処理フードの特性及びゴム中に埋込λ加硫してチュ
ーブ疲労性、耐熱強力を測定した。その結果を第1表に
併記した。
The characteristics of this processing hood, tube fatigue resistance, and heat resistance strength were measured by embedding it in rubber and vulcanizing it. The results are also listed in Table 1.

尚、処理フードの特性値は以下の方法により測定した。Note that the characteristic values of the processing hood were measured by the following method.

(3)荷重−荷押曲線はJISL1017−1963(
5,4)に準拠゛した、 (2)  乾熱175℃収縮率はJISLIO17−1
963(5,12)に準拠した。
(3) The load-loading curve is JISL1017-1963 (
(2) Dry heat 175℃ shrinkage rate is JISLIO17-1
963(5,12).

(3)  チューブ寿命はJISL1017 =196
3.1.3.2.IA法に準拠した。但し曲げ角度を9
0°とした。
(3) Tube life is JISL1017 = 196
3.1.3.2. Compliant with IA law. However, the bending angle is 9
It was set to 0°.

(4)  耐熱強力は化コートをRFL接着液に浸漬し
張力1245℃で2分間熱処理した。この処理コードを
加硫モールド中に埋め込み170℃圧力sokg/dで
120分間促進加硫した後処理コードを取シ出し強力を
測定した。
(4) For heat resistance and strength, the chemical coat was immersed in RFL adhesive solution and heat treated at a tension of 1245° C. for 2 minutes. This treated cord was embedded in a vulcanization mold and accelerated vulcanization was carried out at 170° C. and a pressure of sokg/d for 120 minutes.The treated cord was then taken out and its strength was measured.

手続補正書 昭和59年9月 0日Procedural amendment September 0, 1980

Claims (3)

【特許請求の範囲】[Claims] (1)エチレンテレフタレートを主たる繰返単位とし極
限粘度が0.9以上のポリエステルよりなり、切断伸度
が150%以下で且つ下記式Xx=2.4×10^2×
Δn+4 〔ここでXxはX線広角回折による結晶化度Δnは複屈
折率で0.06以上〕 を満足するポリエステル繊維。
(1) Made of polyester whose main repeating unit is ethylene terephthalate and whose intrinsic viscosity is 0.9 or more, whose elongation at break is 150% or less, and whose formula is as follows: Xx=2.4×10^2×
A polyester fiber that satisfies the following: Δn+4 [where Xx is the crystallinity determined by wide-angle X-ray diffraction Δn is the birefringence index of 0.06 or more].
(2)結晶サイズが50Å以上である特許請求の範囲第
1項記載のポリエステル繊維。
(2) The polyester fiber according to claim 1, which has a crystal size of 50 Å or more.
(3)180℃における乾熱収縮率が10%以下である
特許請求の範囲第1項又は第2項記載のポリエステル繊
維。
(3) The polyester fiber according to claim 1 or 2, which has a dry heat shrinkage rate of 10% or less at 180°C.
JP14065584A 1984-07-09 1984-07-09 Polyester fiber Pending JPS6119812A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP14065584A JPS6119812A (en) 1984-07-09 1984-07-09 Polyester fiber
US06/751,796 US4690866A (en) 1984-07-09 1985-07-03 Polyester fiber
DE8585108266T DE3565698D1 (en) 1984-07-09 1985-07-04 Polyester fiber
EP85108266A EP0169415B1 (en) 1984-07-09 1985-07-04 Polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14065584A JPS6119812A (en) 1984-07-09 1984-07-09 Polyester fiber

Publications (1)

Publication Number Publication Date
JPS6119812A true JPS6119812A (en) 1986-01-28

Family

ID=15273689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14065584A Pending JPS6119812A (en) 1984-07-09 1984-07-09 Polyester fiber

Country Status (1)

Country Link
JP (1) JPS6119812A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132616A (en) * 1984-11-29 1986-06-20 Teijin Ltd Polyester fiber
JPS6391029A (en) * 1986-10-03 1988-04-21 東レ株式会社 Raw yarn for fishing net
JPH04502181A (en) * 1988-12-08 1992-04-16 アライド―シグナル・インコーポレーテッド High strength polyester yarn for improved fatigue resistance
US5242645A (en) * 1989-11-15 1993-09-07 Toray Industries, Inc. Rubber-reinforcing polyester fiber and process for preparation thereof
US6828021B2 (en) 1988-07-05 2004-12-07 Alliedsignal Inc. Dimensionally stable polyester yarn for high tenacity treated cords
JP2005068635A (en) * 2000-07-28 2005-03-17 Toyobo Co Ltd Polyester fiber for rubber reinforcement and dipped cord
JP2010530480A (en) * 2007-06-20 2010-09-09 コーロン インダストリーズ,インコーポレイテッド Polyethylene terephthalate drawn yarn, polyethylene terephthalate tire cord, manufacturing method thereof, and tire including the same
JP2010530481A (en) * 2007-06-20 2010-09-09 コーロン インダストリーズ,インコーポレイテッド Polyethylene terephthalate drawn yarn, polyethylene terephthalate tire cord, manufacturing method thereof, and tire including the same
JP2011529140A (en) * 2008-07-22 2011-12-01 コーロン インダストリーズ インク Polyethylene terephthalate tire cord and tire including the same
JP2013133570A (en) * 2011-12-27 2013-07-08 Teijin Ltd Fabric substance superior in abrasion resistance for material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691009A (en) * 1979-12-25 1981-07-23 Teijin Ltd Polyester fiber for reinforcing rubber composite
JPS5699239A (en) * 1980-01-14 1981-08-10 Teijin Ltd Modification of polyester molded product
JPS57154411A (en) * 1981-03-16 1982-09-24 Toray Ind Inc Polyester fiber
JPS58197310A (en) * 1982-05-13 1983-11-17 Teijin Ltd Polyester fiber
JPS5921714A (en) * 1982-07-23 1984-02-03 Toray Ind Inc Method for drawing polyester fiber
JPS5953736A (en) * 1982-09-22 1984-03-28 東レ株式会社 Polyester tire cord and production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691009A (en) * 1979-12-25 1981-07-23 Teijin Ltd Polyester fiber for reinforcing rubber composite
JPS5699239A (en) * 1980-01-14 1981-08-10 Teijin Ltd Modification of polyester molded product
JPS57154411A (en) * 1981-03-16 1982-09-24 Toray Ind Inc Polyester fiber
JPS58197310A (en) * 1982-05-13 1983-11-17 Teijin Ltd Polyester fiber
JPS5921714A (en) * 1982-07-23 1984-02-03 Toray Ind Inc Method for drawing polyester fiber
JPS5953736A (en) * 1982-09-22 1984-03-28 東レ株式会社 Polyester tire cord and production thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132616A (en) * 1984-11-29 1986-06-20 Teijin Ltd Polyester fiber
JPS6391029A (en) * 1986-10-03 1988-04-21 東レ株式会社 Raw yarn for fishing net
US6828021B2 (en) 1988-07-05 2004-12-07 Alliedsignal Inc. Dimensionally stable polyester yarn for high tenacity treated cords
JPH04502181A (en) * 1988-12-08 1992-04-16 アライド―シグナル・インコーポレーテッド High strength polyester yarn for improved fatigue resistance
US5242645A (en) * 1989-11-15 1993-09-07 Toray Industries, Inc. Rubber-reinforcing polyester fiber and process for preparation thereof
JP2005068635A (en) * 2000-07-28 2005-03-17 Toyobo Co Ltd Polyester fiber for rubber reinforcement and dipped cord
JP2010530480A (en) * 2007-06-20 2010-09-09 コーロン インダストリーズ,インコーポレイテッド Polyethylene terephthalate drawn yarn, polyethylene terephthalate tire cord, manufacturing method thereof, and tire including the same
JP2010530481A (en) * 2007-06-20 2010-09-09 コーロン インダストリーズ,インコーポレイテッド Polyethylene terephthalate drawn yarn, polyethylene terephthalate tire cord, manufacturing method thereof, and tire including the same
US9005752B2 (en) 2007-06-20 2015-04-14 Kolon Industries, Inc. Drawn poly(ethyleneterephthalate) fiber, poly(ethyleneterephthalate) tire-cord, their preparation method and tire comprising the same
US9347154B2 (en) 2007-06-20 2016-05-24 Kolon Industries, Inc. Drawn poly(ethyleneterephthalate) fiber, poly(ethyleneterephthalate) tire-cord, their preparation method and tire comprising the same
JP2011529140A (en) * 2008-07-22 2011-12-01 コーロン インダストリーズ インク Polyethylene terephthalate tire cord and tire including the same
US9062394B2 (en) 2008-07-22 2015-06-23 Kolon Industries, Inc. Poly(ethyleneterephthalate) tire cord, and tire comprising the same
JP2013133570A (en) * 2011-12-27 2013-07-08 Teijin Ltd Fabric substance superior in abrasion resistance for material

Similar Documents

Publication Publication Date Title
EP0169415B1 (en) Polyester fiber
PL184254B1 (en) Yarn made of continuous polyester monofilaments, polyester tyre reinforcement cord and method of making them
JPS6119812A (en) Polyester fiber
JPH06184815A (en) Polyethylene naphthalate fiber excellent in thermal stability and its production
JPS6141320A (en) Polyester fiber
JPS6269819A (en) Polyester fiber
JPH0663128B2 (en) Polyester fiber for reinforcing rubber structure and method for producing the same
JPS62156312A (en) Polyester fiber
JPH06136614A (en) Polyester fiber having improved dimensional stability and its production
JPH0261109A (en) Polyester fiber
JPH0450407B2 (en)
JPH0323644B2 (en)
EP0295147B1 (en) High strength polyester yarn
JPS61289115A (en) Polyester fiber
JP2839817B2 (en) Manufacturing method of polyester fiber with excellent thermal dimensional stability
JPS62162016A (en) Production of polyester fiber
JPS61132616A (en) Polyester fiber
JPS62162017A (en) Polyester fiber for rubber hose reinforcement
JP2776003B2 (en) Method for producing polyester fiber
JPH03137218A (en) Polyester fiber
JPH0147575B2 (en)
JPH0262612B2 (en)
JPH10251919A (en) Polyester fiber and its production
JPH0423011B2 (en)
KR20160071714A (en) Process for preparing polyester multifilament having excellent dimensional stability and heat-resistance for tire cord