JPS6269819A - Polyester fiber - Google Patents

Polyester fiber

Info

Publication number
JPS6269819A
JPS6269819A JP20529585A JP20529585A JPS6269819A JP S6269819 A JPS6269819 A JP S6269819A JP 20529585 A JP20529585 A JP 20529585A JP 20529585 A JP20529585 A JP 20529585A JP S6269819 A JPS6269819 A JP S6269819A
Authority
JP
Japan
Prior art keywords
polyester
polyester fiber
less
fiber according
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20529585A
Other languages
Japanese (ja)
Inventor
Shiro Kumakawa
熊川 四郎
Kazuyuki Yamamoto
和幸 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP20529585A priority Critical patent/JPS6269819A/en
Publication of JPS6269819A publication Critical patent/JPS6269819A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PURPOSE:To provide the titled fiber composed of a polyester consisting of ethylene terephthalate unit and having a specific viscosity, having specific orientation degree of amorphous part and crystal melting point, high strength, low shrinkage and excellent fatigue-resistance and drawability and useful as an industrial material. CONSTITUTION:For example, a polyester containing ethylene terephthalate as a main recurring unit and having an intrinsic viscosity of 0.9-1.5 is melt-spun and cooled slowly in an atmosphere heated above the melting point of the polyester. The cooled polyester yarn is further cooled and solidified under the condition of formula (X is distance between the spinneret and the blasting surface of the cooling air stream and is <=450mm; y is blasting length of the cooling air stream and is 100-500mm; Q is rate of blasting of the cooling air and is 2-6Nm<2>/min). The solidified yarn is oiled and taken up to obtain the objective fiber having an amorphous orientation degree of 0.3-0.55 and a crystal melting point of 265 deg.C and composed of a polyester containing ethylene terephthalate as a main recurring unit and having an intrinsic viscosity of >=0.9.

Description

【発明の詳細な説明】 a、技術分野 本発明は、産業資材用として有用な、高強度。[Detailed description of the invention] a. Technical field The present invention has high strength and is useful as an industrial material.

低収縮で、耐疲労性が良好で、かつ延伸性が良好なポリ
エステル繊維に関する。
The present invention relates to a polyester fiber that has low shrinkage, good fatigue resistance, and good stretchability.

b、従来技術 ポリエステル繊維は種々の優れた特性を有するため、衣
料用のみならず工業用として広く利用されている。特に
高強度で且つ寸法安定性に優れたポリエステル繊維は、
工業用途において有用であり、タイヤ用途のみならず産
資用途にも益々使用されてきているが、最近共々高度の
性能が要求されている。例えばコンベアベルト、ゴムホ
ース用途においては成型時の寸法安定性から益々の低収
縮性化、苛酷な使用条件での耐久性、耐疲労性が要求さ
れている。また、タイヤコード用としては、タイヤ成型
時の保留向上のため、更に低収縮化、乗心地の向上のた
めの高モジユラス化、また大型タイヤへの適用には耐疲
労性の向上、一方■−ベルト用コードとしてはメンテナ
ンスフリーのために高モジユラス化、更に大型の高負荷
ラップベルト用コードとしては伸度の大きな高タフネス
、耐疲労性が要求されている。かかる観点から高強度で
低収縮、高モジユラス、耐疲労性を兼ね備えたポリエス
テルコードが得られるなら、ポリエステル繊維の他素材
とのコスト競争力の優位性から益々使用される分野が増
大する。
b. Prior art Because polyester fibers have various excellent properties, they are widely used not only for clothing but also for industrial purposes. Polyester fibers have particularly high strength and excellent dimensional stability.
They are useful in industrial applications and are increasingly being used not only in tire applications but also in property applications, both of which are now required to have a high degree of performance. For example, in conveyor belt and rubber hose applications, dimensional stability during molding requires lower shrinkage, durability under harsh usage conditions, and fatigue resistance. In addition, for tire cords, we need lower shrinkage to improve retention during tire molding, higher modulus to improve riding comfort, and improved fatigue resistance for use with large tires. Cords for belts are required to have high modulus to be maintenance-free, and cords for large, high-load lap belts are required to have high elongation, high toughness, and fatigue resistance. From this perspective, if a polyester cord with high strength, low shrinkage, high modulus, and fatigue resistance can be obtained, polyester fibers will be used in more and more fields due to their cost competitiveness with other materials.

特にポリエステル繊維は、歴史の古いレーヨン繊維、ビ
ニロン繊維に比べてモデュラス、収縮性が劣り、更に歴
史の古い汎用性のポリアミド繊維i維に比べて耐疲労性
が著しく劣っており、これらの点の改良が重要である。
In particular, polyester fibers are inferior in modulus and shrinkage compared to rayon fibers and vinylon fibers, which have a long history, and are significantly inferior in fatigue resistance compared to general-purpose polyamide fibers, which have a long history. Improvement is important.

これらの点が改良されれば、ポリエステル繊維はレーヨ
ン繊維、ビニロン繊維、ポリアミド繊維よりコスト/パ
フォーマンスの優れた繊維として産資用素材としての位
置付けが益々高くなる。
If these points are improved, polyester fiber will be positioned as a material for industrial use as a fiber with better cost/performance than rayon fiber, vinylon fiber, and polyamide fiber.

産資用繊維に要求される高強度を発現させるためには、
例えば特公昭41−7892号公報、特公昭53−13
67号公報に開示されているような高重合度ポリエステ
ルを使用し紡糸段階で分子配向を抑制し、延伸段階で出
来るだけ延伸低率を増大させる方法が知られている。し
かしながら、この方法では強度、タフネスの高いものが
得難い。更に、収縮率を低下するためには、特公昭58
−51524号公報に開示されているように、多段延伸
後、高温で低張力熱処理する方法が知られている。しか
しなから、この方法も上記2つの方法と同様に耐疲労性
の低いものしか得られない。
In order to achieve the high strength required for industrial fibers,
For example, Japanese Patent Publication No. 41-7892, Japanese Patent Publication No. 53-13
A method is known in which a high degree of polymerization polyester is used as disclosed in Japanese Patent No. 67, molecular orientation is suppressed in the spinning stage, and the stretching ratio is increased as much as possible in the stretching stage. However, with this method, it is difficult to obtain products with high strength and toughness. Furthermore, in order to reduce the shrinkage rate,
As disclosed in Japanese Patent No. 51524, a method is known in which multistage stretching is followed by heat treatment at high temperature and low tension. However, like the above two methods, this method also provides only a product with low fatigue resistance.

低収縮性で且つ耐疲労性を向上せしめるには、例えば特
開昭53−58031号公報、同53−58032号公
報には、延伸糸の分子配向度を低下し且つ仕事損失を小
さくして耐疲労性を改善することを目的としたポリエス
テルコード及びその製造方法が提案されている。この方
法では、紡糸口金下で10〜60℃のガス雰囲気で急冷
することを特徴とするが、高強度にするのに糸の切断寸
前まで延伸を行うため伸度が極めて小さく、また延伸時
の糸切れが多発して安定した製造が困難であるという欠
点を有している。
In order to achieve low shrinkage and improve fatigue resistance, for example, Japanese Patent Application Laid-open Nos. 53-58031 and 53-58032 disclose that the degree of molecular orientation of drawn yarn is reduced and the work loss is reduced to improve durability. Polyester cords and methods for manufacturing the same have been proposed with the aim of improving fatigue properties. This method is characterized by rapid cooling in a gas atmosphere of 10 to 60°C under a spinneret, but the degree of elongation is extremely small because the yarn is stretched to the point of cutting to achieve high strength. It has the disadvantage that thread breakage occurs frequently and stable production is difficult.

C1発明の目的 本発明者は、産資用ポリエステル繊維として、高強度で
、レーヨンやビニロン並の低収縮、レーヨンやビニロン
より優れた耐疲労性を同時に兼ね備え、且つ延伸性良好
なポリエステル繊維を提供せんとして鋭意検討の結果、
特定の重合度を有し、非晶部分と結晶部分が特定の状態
にあるときのみ、高強度で低収縮、耐疲労性が良好で延
伸性も良好であることを見い出し、本発明に到達したの
である。
C1 Purpose of the Invention The present inventor provides a polyester fiber for property use that has high strength, low shrinkage comparable to rayon and vinylon, fatigue resistance superior to rayon and vinylon, and has good drawability. As a result of careful consideration,
We have discovered that high strength, low shrinkage, good fatigue resistance, and good stretchability can be achieved only when the amorphous portion and crystalline portion are in a specific state with a specific degree of polymerization, and have arrived at the present invention. It is.

d3発明の構成 即ち本発明はエチレンテレフレタートを主たる繰返単位
とし極限粘度が0.9以上のポリエステルよりなり、非
晶配向度が0.3〜0.55で、かつ結晶融点が265
℃以上であるポリエステル繊維を提供する。
d3 Structure of the invention, that is, the present invention is made of polyester having ethylene terephrate as a main repeating unit and having an intrinsic viscosity of 0.9 or more, an amorphous orientation degree of 0.3 to 0.55, and a crystalline melting point of 265.
To provide a polyester fiber having a temperature of at least ℃.

第1図は、本発明の実施例及び比較例で得られたいくつ
かの繊維の温度−収縮率曲線を示すグラフである。
FIG. 1 is a graph showing temperature-shrinkage rate curves of some fibers obtained in Examples and Comparative Examples of the present invention.

第2図は、本発明の実施例で得られたい(つかの繊維の
温度−熱応力曲線を示すグラフである。
FIG. 2 is a graph showing a temperature-thermal stress curve of some fibers obtained in an example of the present invention.

本発明のポリエステル繊維を構成するポリマーは、分子
鎖中にエチレンテレフタレート繰返し単位を90モル%
以上、好ましくは95モル%以上含むポリエステルであ
る。かかるポリエステルとしてはポリエチレンテレフタ
レートが好適であるが、10モル%未満、好ましくは5
モル%未満の割合で他の共重合成分を含んでも差しつか
え−ない。このような共重合成分としては例えばイソフ
タル酸。
The polymer constituting the polyester fiber of the present invention contains 90 mol% of ethylene terephthalate repeating units in the molecular chain.
As mentioned above, polyester preferably contains 95 mol% or more. Polyethylene terephthalate is suitable as such polyester, but it contains less than 10 mol%, preferably 5
Other copolymer components may be included in a proportion less than mol %. An example of such a copolymer component is isophthalic acid.

ナフタレンジカルボン酸、アジピン酸、オキシ安息香酸
、ジエチレングリコール、プロピレングリコール、トリ
メリット酸、ペンタエリスリトール等があげられる。又
これらのポリエステルには安定剤、@色剤等の添加剤を
含んでも差しつかえない。
Examples include naphthalene dicarboxylic acid, adipic acid, oxybenzoic acid, diethylene glycol, propylene glycol, trimellitic acid, and pentaerythritol. These polyesters may also contain additives such as stabilizers and coloring agents.

本発明のポリエステル繊維は、25℃0−クロロフェノ
ール溶液から求めた極限粘度が0.90以上であること
が必要である。極限粘度が0.90未満では低収縮、耐
疲労性を維持しながら高強度なポリエステル繊維が得ら
れない。極限粘度としては、0.9〜1.3が好ましい
The polyester fiber of the present invention needs to have an intrinsic viscosity of 0.90 or more as determined from a 0-chlorophenol solution at 25°C. If the intrinsic viscosity is less than 0.90, a polyester fiber with high strength while maintaining low shrinkage and fatigue resistance cannot be obtained. The limiting viscosity is preferably 0.9 to 1.3.

本発明で特定する非晶配向度は、得られる延伸繊維の収
縮率と強度に主として関連する。本発明の繊維において
、非晶配向度は0.30〜0.55、好ましくは0.3
5〜0.50の範囲にある。この値が0.55を超える
と所望の収縮率が得られず、一方0.30未満では用途
に見合うに十分な強度が得られない。
The degree of amorphous orientation specified in the present invention is mainly related to the shrinkage rate and strength of the drawn fibers obtained. In the fiber of the present invention, the degree of amorphous orientation is 0.30 to 0.55, preferably 0.3
It is in the range of 5 to 0.50. If this value exceeds 0.55, the desired shrinkage rate cannot be obtained, while if it is less than 0.30, sufficient strength for the intended use cannot be obtained.

また、結晶融点は、得られる延伸m維を、そのまままた
は布帛に形成後に、高温処理(乾熱又は湿熱)したとき
の残存強力に関連する。本発明のIjltMにおいては
、結晶融点は265℃以上、好ましくは270℃以上で
ある。265℃未満では、高温処理時における強力劣化
が大きく、実用的ではない。
Further, the crystal melting point is related to the remaining strength when the obtained drawn m-fiber is subjected to high temperature treatment (dry heat or wet heat) as it is or after being formed into a fabric. In IjltM of the present invention, the crystal melting point is 265°C or higher, preferably 270°C or higher. If the temperature is less than 265°C, the strength will deteriorate significantly during high-temperature treatment, making it impractical.

本発明のポリエステル1eftは、好ましくは4.0×
10×105Å3以上の結晶体積を有する。結晶体積が
4、OX 10×105Å3未満であると、ポリエステ
ル繊維を製編織後の後加工工程で、例えば熱処理を受け
た場合、強力劣化が起り易く不適当である場合である。
The polyester 1ef of the present invention is preferably 4.0×
It has a crystal volume of 10×105 Å3 or more. If the crystal volume is less than 4, OX 10 x 105 Å3, when the polyester fiber is subjected to heat treatment in a post-processing step after weaving, for example, strength deterioration tends to occur, which is inappropriate.

本発明のポリエステルm維は、また、好ましくは210
℃における乾熱収縮率が6%以下、更に好ましくは4%
以下である。乾熱収縮率は、延伸繊維を、そのままある
は布帛に形成した後に、使用する場合における高温処理
時の形態安定性に関連する。6%を超えると、この形態
安定性が不良であり、布帛の場合はしわになったりして
、品位や後加工性に劣ることとなる。
The polyester m fiber of the present invention is also preferably 210
Dry heat shrinkage rate at °C is 6% or less, more preferably 4%
It is as follows. The dry heat shrinkage rate is related to the shape stability during high temperature treatment when the drawn fiber is used as it is or after being formed into a fabric. If it exceeds 6%, this morphological stability is poor, and in the case of fabric, it becomes wrinkled, resulting in poor quality and post-processability.

本発明の繊維は、更に、好ましくは10g/de以下、
更に好ま−しくは9g/de以下のターミナルモデュラ
スを有する。ターミナルモデュラスは延伸繊維を有撚状
態で用いる場合に、撚糸時おける残存強力に関連する。
The fiber of the present invention further preferably has a weight of 10 g/de or less,
More preferably, it has a terminal modulus of 9 g/de or less. Terminal modulus is related to the residual strength during twisting when drawn fibers are used in a twisted state.

この値が10g/deを超えると、撚糸時の強力損失が
大きく、いたずらに延伸繊維の強度を上げることが必要
になる。
If this value exceeds 10 g/de, the strength loss during twisting will be large and it will be necessary to unnecessarily increase the strength of the drawn fibers.

本発明のポリエステル繊維は、その非晶部分が、力学的
損失弾性率の温度分散挙動から以下の■〜■を同時に満
足することが好ましい。
In the polyester fiber of the present invention, it is preferable that the amorphous portion simultaneously satisfies the following conditions (1) to (4) from the temperature dispersion behavior of the mechanical loss modulus.

■ 力学的損失弾性率の温度分散に現われる主成分の半
価巾が45℃以下。
■ The half value width of the main component that appears in the temperature dispersion of the mechanical loss modulus is 45°C or less.

■該主分散のピーク温度が125℃以下。■The peak temperature of the main dispersion is 125°C or less.

この半価巾は非晶領域における非晶配向度の分布を示す
ものであり、半価巾が小さい程分布が小さいといえる。
This half width indicates the distribution of the degree of amorphous orientation in the amorphous region, and it can be said that the smaller the half width, the smaller the distribution.

半価巾が45℃を越えると、繊維に応力が働いた時には
、非晶領域における特定の分子鎖に応力集中が起き、分
子鎖が切断され易くなるため、耐疲労性が劣り不適であ
る。また、主分数のピーク温度は、非晶領域の分子配向
度を示すものであり、ピーク温度が低い程配向度が低い
といえる。ピーク温度が125℃を越えると配向度が高
く、高強度にはなるが低収縮、耐疲労性を同時に満足す
るものにならない。
If the half width exceeds 45°C, stress concentration occurs on specific molecular chains in the amorphous region when stress is applied to the fibers, making the molecular chains easy to break, resulting in poor fatigue resistance and is therefore unsuitable. Furthermore, the peak temperature of the main fraction indicates the degree of molecular orientation in the amorphous region, and it can be said that the lower the peak temperature, the lower the degree of orientation. If the peak temperature exceeds 125° C., the degree of orientation is high and the strength is high, but it is not possible to simultaneously satisfy low shrinkage and fatigue resistance.

本発明のポリエステル繊維は、非晶配向度はそれ程高く
なくても極限粘度で表わされる分子鎖長が長く、非晶配
向度の分布が低く、且つ後述する結晶部分との兼ね合い
により所望の強度と優れた収縮性、耐疲労性を兼ね備え
たものになる。
Although the polyester fiber of the present invention does not have a very high degree of amorphous orientation, it has a long molecular chain length expressed by the intrinsic viscosity, has a low distribution of the degree of amorphous orientation, and has the desired strength due to the balance with the crystalline portion described below. It has both excellent shrinkability and fatigue resistance.

更に、本発明の繊維は、160Å以上の長周期間隔を有
するのが好ましい。
Further, the fibers of the present invention preferably have a long period spacing of 160 Å or more.

本発明の繊維は、また、好ましくは非晶部分と結晶部分
に起因する特定の繊維構造を有る。即ち、熱応力曲線に
おいて100〜180℃と180℃以上の温度範囲の各
々に熱応力ピークを有する(第2図参照)。前者の熱応
力ピークは繊維構造における非晶部分に関連するもので
あり、後者の熱応力ピークは結晶部分に関連するもので
ある。
The fibers of the present invention also preferably have a specific fiber structure due to amorphous and crystalline parts. That is, the thermal stress curve has thermal stress peaks in each of the temperature ranges of 100 to 180°C and 180°C or higher (see FIG. 2). The former thermal stress peak is associated with the amorphous portion of the fiber structure, and the latter thermal stress peak is associated with the crystalline portion.

本発明のポリエステル繊維は、強度6.0g/de以上
と産資用途には充分な高強度と伸度10%以上好ましく
は20%以上と高タフネス、高耐久性を示す。
The polyester fiber of the present invention has a strength of 6.0 g/de or more, which is sufficient for industrial uses, and an elongation of 10% or more, preferably 20% or more, which shows high toughness and high durability.

本発明のポリエステル繊維は例えば以下の方法で得られ
る。
The polyester fiber of the present invention can be obtained, for example, by the following method.

エチレンテレフタレートを主たる繰返単位とする極限粘
度が0.95〜1.5のポリエステル又は極限粘度が0
.7〜0.9のポリエステルに重合度促進剤を反応させ
て常法により溶融輸送し、紡糸口金より、延伸後の繊度
が1〜20de、全デニール500〜200deになる
如く糸条に吐出し、吐出後直ちに急冷するが、融点以下
結晶化開始温度までの温度に保温するか、又は、融点以
上の温度の加熱雰囲気中に、ある時間さらして遅延冷朗
を行う。その後、糸条を冷却固化させるが、その際以下
の条件のもとて冷却固化させることが有用である。
Polyester containing ethylene terephthalate as the main repeating unit and having an intrinsic viscosity of 0.95 to 1.5 or an intrinsic viscosity of 0
.. 7 to 0.9 polyester is reacted with a degree of polymerization accelerator, melted and transported by a conventional method, and discharged from a spinneret into yarn so that the fineness after drawing is 1 to 20 de and the total denier is 500 to 200 de, Immediately after discharge, it is rapidly cooled, but it is kept warm at a temperature below the melting point and up to the temperature at which crystallization begins, or delayed cooling is performed by exposing it to a heated atmosphere at a temperature above the melting point for a certain period of time. Thereafter, the yarn is cooled and solidified, and it is useful to cool and solidify it under the following conditions.

400≦(xxf「)/Q≦1900 [Xは紡糸口金面から冷却風(室温)の吹出し面までの
距離で450Im以下、yは冷却風の吹出し長さで10
0〜500InIR9Qは冷却風の吹出し量で2〜6N
yd/分、1次いで、上記の如く冷却固化させた後、油
剤を付与後3000m /分収上の速度で引取る。油剤
付与は例えばオイリングローラ一方式、スプレ一方式な
ど、随意の方式で可能である。また、油剤は、必要に応
じて任意の繊維用油剤を適用することが可能である。こ
の際、l11Mの用途としてゴムとの接着性が重視され
る分野では、接着性を付与するために、表面処理剤を付
与することが有用である。
400≦(xxf'')/Q≦1900 [X is the distance from the spinneret surface to the blowing surface of the cooling air (room temperature) and is 450 Im or less, y is the blowing length of the cooling air and is 10
0-500InIR9Q has a cooling air blowing amount of 2-6N.
yd/min, 1 Then, after cooling and solidifying as described above, the oil agent was applied and then taken off at a speed of 3000 m/min. The oil can be applied by any method such as an oiling roller method or a spray method. Further, as the oil agent, any textile oil agent can be applied as needed. At this time, in fields where adhesion with rubber is important as a use of l11M, it is useful to apply a surface treatment agent to impart adhesion.

上述の条件を随時に選択することにより、極限粘度が0
.90以上で切断伸度が150%以下の結晶正未延伸繊
維であって、結晶化度XX複屈折率△nがX 2.4x
102 xΔn+4ここで××はX線口角回折による結
集化度 Δnは複屈折率で0.06以上 の関係を満足し、複屈折率が0.06以上の未延伸繊維
が得られる。
By selecting the above conditions as needed, the intrinsic viscosity becomes 0.
.. A crystalline, undrawn fiber with a cutting elongation of 90 or more and a cutting elongation of 150% or less, with a crystallinity XX and a birefringence △n of X 2.4x
102 xΔn+4 Here, XX is the degree of aggregation Δn determined by X-ray aperture angle diffraction, and the birefringence satisfies the relationship of 0.06 or more, and an undrawn fiber with a birefringence of 0.06 or more is obtained.

このような未延伸繊維は、また、紡糸口金から吐出後引
取までの吐出繊維のドラフト率を300〜1000とし
、紡糸口金のオリフィス径を0.55〜2.5M11と
し、かつ引取速度を2000〜6000TrL/分とす
ることによっても得ることができる。ここで、ドラフト
率はポリマーの吐出線速度(オリフィス出口速度)に対
する繊維の引取速度の比である。
In addition, such undrawn fibers have a draft rate of 300 to 1000, an orifice diameter of 0.55 to 2.5M11, and a take-up speed of 2000 to 1000. It can also be obtained by setting the rate to 6000TrL/min. Here, the draft rate is the ratio of the fiber take-up speed to the polymer discharge linear speed (orifice exit speed).

本発明においては、上記の如き速度で引き取った上記特
性を有する未延伸繊維を、紡糸に続いて連続して延伸し
ても、一旦捲き取った後別工程で延伸してもよい。紡糸
に続いて連続して延伸する場合には、先に提案した特願
昭57−88927号の方法に準拠して行うことが出来
る。また、紡糸後一旦捲取ってから延伸する場合には、
先に提案した特願昭57−189094号の方法に準拠
して行うことが出来る。延伸時の延伸歪みや熱処理歪み
を少くする点では後者の延伸方法が好ましい。即ち、未
延伸I維を1g+15〜T(]+50℃(ここでTgは
該繊維のガラス転移温度)で少くとも0,5秒予熱後全
延伸倍率の75%以下の倍率で第1段延伸して未延伸繊
維の複屈折率の1.2〜3.3倍の複屈折率とする。次
いで1段延伸糸条を更に多段熱処理する。
In the present invention, the undrawn fibers having the above-mentioned properties taken at the above-mentioned speed may be drawn continuously after spinning, or may be drawn in a separate step after being wound up once. When the spinning is followed by continuous drawing, it can be carried out in accordance with the method proposed earlier in Japanese Patent Application No. 88927/1983. In addition, when the yarn is wound up once after spinning and then stretched,
This can be carried out in accordance with the method proposed earlier in Japanese Patent Application No. 189094/1982. The latter stretching method is preferred in terms of reducing stretching strain during stretching and heat treatment strain. That is, after preheating 1g of undrawn I fiber at +15~T(]+50°C (here, Tg is the glass transition temperature of the fiber) for at least 0.5 seconds, the first step is drawn at a draw ratio of 75% or less of the total draw ratio. The birefringence is set to 1.2 to 3.3 times the birefringence of the undrawn fiber.The single-stage drawn yarn is then further heat-treated in multiple stages.

この際、延伸繊維をコード化せず、そのままで使用す産
資用途においては、多段延伸後繊維の融解温度−50℃
から融解温度−110℃の範囲で0.4〜1.5秒間保
持しながら10〜20%の弛緩熱処理を行なうのが好ま
しい。
At this time, in industrial applications where the drawn fibers are used as they are without being coded, the melting temperature of the fibers after multi-stage drawing is -50°C.
It is preferable to carry out a relaxation heat treatment of 10 to 20% while maintaining the melting temperature for 0.4 to 1.5 seconds in the range of −110° C. to melting temperature.

このようにして得たポリエステル繊維は、そのままで製
編織した後そのまま又は熱処理されてい資産用に使用さ
れる。この際、その優れた繊維特性はそのまま発現し、
楊めて有効である。また、常法に従ってコードとなし、
接着剤を付与し、熱処理してゴム構造物に適用すること
もできる。なお、ゴム構造物とは、例えばホース、■−
ベルト。
The polyester fibers obtained in this way are used as is after knitting or weaving or after being heat-treated for use in assets. At this time, the excellent fiber properties are expressed as they are,
It is clearly effective. In addition, according to common law, the code and
It can also be applied to rubber structures by applying an adhesive and heat treating. Note that the rubber structure is, for example, a hose, ■-
belt.

コンベアベルトの如き天然ゴム、合成ゴムよりなる構造
物全てを指す。特に、本発明のy&維は、ゴム補強用織
物の緯糸、樹脂ホース又はゴムホースの補強材、電気絶
縁材1重量物量上用ベルト補強材2樹脂補強材、及び光
フアイバー補強剤として有用である。
Refers to all structures made of natural rubber or synthetic rubber, such as conveyor belts. In particular, the Y& fiber of the present invention is useful as a weft of a rubber reinforcing fabric, a reinforcing material for a resin hose or a rubber hose, an electrical insulating material (1), a belt reinforcing material (2) for heavy weight, (2) a resin reinforcing material, and an optical fiber reinforcing agent.

本発明において引用する緒特性は、以下の如き方法によ
り測定したものである。
The characteristics cited in the present invention were measured by the following methods.

■ 非晶配向度faはロバート・ジエー・サミニル(R
obert、  J、 Samuel )の論文記載の
方法(J 、 P olymer S cience 
A 2,10.1972)により算出した。
■ The degree of amorphous orientation fa is determined by Robert J. Saminil (R
J. Obert, J., Samuel) method of writing a paper (J., Polymer Science
A 2, 10.1972).

即ち△n =Xfc△nc+ (1−X) faΔna
ここで△nはフィラメント中の分子の配向度を示すパラ
メーターであって浸漬液にブロムナフタリンを用いペレ
ツクコンベンセーターを用いてリターデーション法によ
り求めた。詳細な説明は井守出版[高分子実験学講座・
高分子の物性■]を参照されたい。
That is, △n =Xfc△nc+ (1-X) faΔna
Here, Δn is a parameter indicating the degree of orientation of molecules in the filament, and was determined by the retardation method using bromonaphthalene as the immersion liquid and a Pellec convensator. Detailed explanation is available at Imori Publishing [Polymer Experimental Course/
Please refer to Physical Properties of Polymers (■).

fcは結晶配向度で口角X線回折で測定される平均配向
角θから常法により求めた。
fc is the degree of crystal orientation and was determined by a conventional method from the average orientation angle θ measured by mouth angle X-ray diffraction.

Xは結晶化度で密度より常法により求めた。X is the degree of crystallinity, which was determined from the density using a conventional method.

△nc、△naは結晶、無定形の固有複屈折率でポリエ
チレンテレフタレートでは各々 0,220゜0.27
5である。
△nc and △na are crystalline and amorphous intrinsic birefringences, and for polyethylene terephthalate, they are 0.220° and 0.27, respectively.
It is 5.

■ 結晶融点は、パーキンエルマー社製DSC−1型を
用いて昇温速度20℃/分で測定し、吸熱ピーク値をも
って結晶融点とした。
(2) The crystal melting point was measured using a PerkinElmer Model DSC-1 at a heating rate of 20° C./min, and the endothermic peak value was taken as the crystal melting point.

■ 210℃乾熱収縮率はJ I S  L 1017
−1963(5,12)に準拠した。
■ 210℃ dry heat shrinkage rate is JIS L 1017
- Compliant with 1963 (5, 12).

■ 結晶体積= a軸方向結晶サイズ×b軸方向結晶すイズ×艮周期間隔
×結晶化度 ここで結晶サイズは(010)  (100)面の干渉
ピーク半価中を求めてシェラ−の式から算出した。
■Crystal volume = crystal size in a-axis direction x crystal size in b-axis direction x periodic interval x crystallinity, where crystal size is (010) Find the half value of the interference peak of the (100) plane and use Scherrer's equation. Calculated.

結晶化度は桜田、温品方により算出した。The degree of crystallinity was calculated by Sakurada and Natsushinakata.

■ ターミナルモデュラス 繊維の荷重−伸度曲線における切断伸度より2.4%を
ひいた曲線上における応力の増分を2.4X10−2で
除した値。
(2) The value obtained by dividing the stress increment on the load-elongation curve of the terminal modulus fiber by subtracting 2.4% from the cutting elongation by 2.4X10-2.

尚荷重−伸曲線はJ ) 3 11017−1963(
5,4)に準拠した。
The load-extension curve is J) 3 11017-1963 (
5, 4).

■ 力学的損失弾性率 力学的損失弾性率は、岩本製作所製スペクトロメーター
VES=F型を用いて長さ3αのサンプルに0.25 
g/de荷重をかけて、0.17%の振幅で周波数10
HZ 、昇温速度1.6℃/分の条件で測定したもので
ある。主成分の半価巾とは主成分のピーク値の1/2を
示すピークの温度1】である。
■ Mechanical loss modulus The mechanical loss modulus is 0.25 for a sample of length 3α using a spectrometer VES=F type manufactured by Iwamoto Seisakusho.
frequency 10 with an amplitude of 0.17% with a g/de load applied.
Measured under conditions of HZ and temperature increase rate of 1.6° C./min. The half width of the main component is the peak temperature 1 which indicates 1/2 of the peak value of the main component.

■ 長周期 長周期間隔は、X線小角散乱測定装置を用い、従来公知
の方法、即ち波長1.54人のCuKα線を線原とし、
lI維軸に直角に照射して得られる午後線干渉の回折線
りブラッグの式を用いて算出した。
■ The long-period long-period interval was measured using a conventionally known method using a small-angle X-ray scattering measurement device, that is, using CuKα rays of wavelength 1.54 as a radiation source.
Diffraction lines of afternoon ray interference obtained by irradiating at right angles to the lI fiber axis were calculated using Bragg's equation.

■ 熱応力曲線 熱応力曲線は従来公知の製造により、初荷重50g昇温
速度4℃/分で測定したものである。
(2) Thermal Stress Curve The thermal stress curve was measured using a conventionally known manufacturing method at an initial load of 50 g and a temperature increase rate of 4° C./min.

以下本実施例をあげて本発明を更に詳述する。The present invention will be explained in further detail by referring to Examples below.

なお、実施例中の部は全て重量部を示す。処理コードの
特性値は以下の方法により測定した。
Note that all parts in the examples indicate parts by weight. The characteristic values of the treated cord were measured by the following method.

(1)荷重−荷伸曲線はL I S  L  1017
−1963(5,4)に準拠した。
(1) The load-stretching curve is L I S L 1017
- Compliant with 1963 (5, 4).

(2]  チl−フ寿fiBハJIs  L  101
7−1963゜1.3.2.IA法に準拠した。但し曲
げ角度を90℃とした。
(2) Chief L 101
7-1963゜1.3.2. Compliant with IA law. However, the bending angle was 90°C.

(3)  耐熱協力は生コードをRFL接着液に浸漬し
、張力下245℃で2分間熱処理した。この処理コード
を加硫モールド中に埋め込み170℃、圧力50に9/
ciで120分間促進加硫した後処理コードを取り出し
協力を測定した。
(3) For heat resistance, the raw cord was immersed in RFL adhesive solution and heat treated at 245°C for 2 minutes under tension. Embed this processing cord in a vulcanization mold at 170°C and a pressure of 50°C.
After accelerated vulcanization with ci for 120 minutes, the treated cord was taken out and its cooperation was measured.

実施例1 ジメチルテレフタレート97部、エチレングリコール6
9部、酢酸カルシウム1水塩0.034部及び三酸化ア
ンチモン0.025部をオートクレーブに仕込み、窒素
をゆるやかに通じならが180〜230℃でエステル交
換の結果生成するメタノール除去したの、H3POaの
50%水溶液を0.05部加えて加熱温度を280℃ま
で常温させると共に徐々に減圧に移行し、約1時間50
分重合反応を続けて固有粘度0,80 、末端カルボキ
シル基量28当rJ / 10Gグラムポリマーの重合
体を得た。
Example 1 97 parts of dimethyl terephthalate, 6 parts of ethylene glycol
9 parts of calcium acetate monohydrate, and 0.025 parts of antimony trioxide were placed in an autoclave, and the methanol produced as a result of transesterification was removed at 180-230°C by slowly passing nitrogen through the autoclave. Add 0.05 part of a 50% aqueous solution, raise the heating temperature to 280°C, gradually reduce the pressure, and heat for about 1 hour at 50°C.
The partial polymerization reaction was continued to obtain a polymer having an intrinsic viscosity of 0.80 and a terminal carboxyl group weight of 28 equivalent rJ/10 G gram polymer.

この重合体チップ100部に2,2′ −ごス(2−オ
キサゾリン>(CE)を第1表に示す量トライブレンド
した後、約300℃で溶融輸送し、孔径0.6#l11
1孔数250個を有する紡糸口金より吐出後、吐出糸条
を第1表記載の冷却条件に保持し、その少25℃の冷却
風を300Mに亘って4ONTrL3/分吹きつけなが
ら冷却固化さしめた後オイリングローラ−で油剤を付与
後筒1表記載の引取速度で捲取った。得られた未延伸繊
維の特性を第1表に示した。
100 parts of this polymer chip was triblended with 2,2'-gos(2-oxazoline>(CE)) in the amount shown in Table 1, and then melted and transported at about 300°C.
After being discharged from a spinneret having 250 holes, the discharged yarn was maintained under the cooling conditions listed in Table 1, and cooled and solidified while blowing cooling air at 25°C over 300M at 4ONTrL3/min. After applying an oil agent with an oiling roller, the tube was rolled up at the take-up speed shown in Table 1. The properties of the obtained undrawn fibers are shown in Table 1.

この未延伸IMI[を85℃に加熱されたロールに供給
し、引取ロールとの間で第1表記載の倍率(DR+)で
第1段延伸後325℃に加熱された気体浴を介して表記
数の倍率(DR2)で第2段延伸した。その後130℃
の加熱ローラ、330℃の気体浴を表記数のように使用
又は使用せずに表記数の倍率SR3で緊張熱処理した。
This unstretched IMI [is supplied to a roll heated to 85°C, and after the first stage stretching is performed between it and a take-up roll at the ratio (DR+) listed in Table 1, it is passed through a gas bath heated to 325°C. Second stage stretching was carried out at a magnification of 100 mL (DR2). Then 130℃
Tension heat treatment was carried out at a magnification of SR3 according to the number indicated, with or without using a heating roller at 330°C and a gas bath at 330°C as indicated.

得られた延伸糸の性能を第1表に併記した。The performance of the obtained drawn yarn is also listed in Table 1.

次にこれらの延伸糸の一部について490回/IIlの
7撚を与えた後これを2本合わせて490回/mのS撚
を与えて1000dex 2本の生コードとした。
Next, some of these drawn yarns were given 7 twists of 490 turns/IIl, and then two of these were combined and given S twists of 490 turns/m to form two raw cords of 1000 dex.

この生コードを接着剤(RFL液)に浸漬し、245℃
で2分間緊張熱処理した。この処理コードの特性及びゴ
ム中に埋込み加硫してチューブ疲労性、耐熱強力を測定
した。その結果を第1表に併記した。
This raw cord was immersed in adhesive (RFL liquid) and heated to 245°C.
The sample was subjected to tension heat treatment for 2 minutes. The characteristics of this treated cord, as well as tube fatigue resistance and heat resistance strength after embedding it in rubber and vulcanizing it, were measured. The results are also listed in Table 1.

(以下余白) 実施例2 実施例1において2,2′−ビス(2−オキサゾリン)
の添加量を0.15wt%とし、孔径1.50M、口金
上保温筒の長さ100#、保温温度230℃、冷却風の
吹出距離1201M、引取速度2500771/分とす
る以外は実施例1と同様に行って下記の未延伸繊維を得
た。
(Left below) Example 2 In Example 1, 2,2'-bis(2-oxazoline)
Same as Example 1 except that the amount of addition was 0.15 wt%, the hole diameter was 1.50 M, the length of the heat insulating cylinder on the cap was 100 #, the insulating temperature was 230°C, the cooling air blowing distance was 1201 M, and the take-up speed was 2500771/min. The following undrawn fibers were obtained in the same manner.

極限粘度          0.92末端力ルボキシ
ル基濃度  8.0当間/トン複屈折率       
  0.0707結晶化度         28.4
   %次いで該未延伸muをDR+ =  1.3、
DRz =1.50 、 DR3= 1.05とする以
外は実施例1と同様に行って下記の延伸繊維を得た。
Intrinsic viscosity: 0.92 Terminal carboxylic group concentration: 8.0 per ton Birefringence
0.0707 Crystallinity 28.4
%, then the unstretched mu is DR+ = 1.3,
The following drawn fibers were obtained in the same manner as in Example 1 except that DRz = 1.50 and DR3 = 1.05.

繊度          1005   de強度  
         7.4 g/de伸度      
     10.1  %長周期         1
65   人210℃乾熱収縮率     5.1  
%融点          273   ℃結晶体積 
        5,3x 10×105Å3非晶配向
度       0 .50また、得られたディップコードの物性は以下の通
りであった。
Fineness 1005 de strength
7.4 g/de elongation
10.1% long period 1
65 people 210℃ dry heat shrinkage rate 5.1
%Melting point 273℃Crystal volume
5,3x 10x105Å3 Degree of amorphous orientation 0. 50 Furthermore, the physical properties of the obtained dip cord were as follows.

強力           14.OK94.5Kg荷
伸         3.5  %切断伸度     
    15.2  %175℃乾収        
2.3  %耐熱強力維持率      67   %
実施例3 ジメチルテレフタレート97部、エチレングリコール6
9部、酢酸カルシウム1水塩0.034部及び三酸化ア
ンチモン0.025部をオートクレーブに仕込み、窒素
をゆるやかに通じながら 180〜230℃でエステル
交換の結果生成するメタノールを除去したのら、H3P
O4の50%水溶液を0.05部加えて加熱温度を28
0℃まで上昇させると共に徐々に減圧に移行し、約1時
間を要して反応系の圧力を0 、2mInHLJにして
1時間50分重合反応を続けて固有粘度0.80、末端
カルボキシル基量28当聞/10Gグラムポリマーの重
量体を得た。
Powerful 14. OK94.5Kg load elongation 3.5% cutting elongation
15.2% 175℃ dry yield
2.3% Heat resistance strength retention rate 67%
Example 3 97 parts of dimethyl terephthalate, 6 parts of ethylene glycol
9 parts of calcium acetate monohydrate, 0.034 parts of antimony trioxide, and 0.025 parts of antimony trioxide were placed in an autoclave, and methanol produced as a result of transesterification was removed at 180 to 230°C while slowly passing nitrogen.
Add 0.05 part of 50% aqueous solution of O4 and raise the heating temperature to 28.
While raising the temperature to 0°C, the pressure was gradually reduced, and it took about 1 hour to reduce the pressure of the reaction system to 0.2 mInHLJ, and the polymerization reaction was continued for 1 hour and 50 minutes, resulting in an intrinsic viscosity of 0.80 and a terminal carboxyl group weight of 28. A weight of 10G/10G polymer was obtained.

この重合体チップ100部に2,2′ −ビス(2−オ
キサゾリン)(CE)を第2表に示す量トライブレンド
した後、約300℃で溶融輸送し、孔径0.6.、孔数
250個を有する紡糸口金より吐出後、吐出糸条を第2
表記載の冷却風を300調に亘って、4、ONm37分
吹きつけながら冷却固化せしめた後オイリングローラ−
で油剤を付与復、第2表記載の引取速度で捲取った。得
られた未延伸繊維の特性を第2表に示した。
100 parts of this polymer chip was triblended with 2,2'-bis(2-oxazoline) (CE) in the amount shown in Table 2, and then melted and transported at about 300°C, with a pore size of 0.6. After being discharged from a spinneret having 250 holes, the discharged yarn is passed through a second spinneret.
After cooling and solidifying while blowing the cooling air listed in the table at 300 tones for 4, ONm and 37 minutes, oiling roller
An oil agent was applied thereto, and the film was rolled up at the take-up speed shown in Table 2. The properties of the obtained undrawn fibers are shown in Table 2.

この未延伸繊維を85℃に加熱されたロールに供給し、
引取ロールとの間で第2表記載の倍率(DRl)で第1
段延伸後325℃に加熱された気体浴を介して表記載の
倍率(DR2)で第2段延伸した。その後130℃の加
熱ローラ、330℃の気体浴を使用して表記載の倍率O
R3で弛緩熱処理した。
This undrawn fiber is supplied to a roll heated to 85°C,
between the take-up roll and the first one at the magnification (DRl) listed in Table 2.
After the stage stretching, a second stage stretching was carried out at the magnification (DR2) shown in the table through a gas bath heated to 325°C. After that, using a heating roller at 130℃ and a gas bath at 330℃, the magnification is O as specified in the table.
Relaxation heat treatment was performed at R3.

得られた延伸糸の性能を第2表に併記した。The performance of the obtained drawn yarn is also listed in Table 2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例及び比較例で得られたいくつ
かの繊維の温度−収縮率曲線を示すグラフであり、第2
図は、本発明の実施例で得られたいくつかの!INの温
度−熱応力曲線を示すグラフである。
FIG. 1 is a graph showing temperature-shrinkage rate curves of some fibers obtained in Examples and Comparative Examples of the present invention;
The figure shows some results obtained in the embodiments of the present invention! It is a graph showing a temperature-thermal stress curve of IN.

Claims (1)

【特許請求の範囲】 1、エチレンテレフタレートを主たる繰返単位として極
限粘度が0.9以上のポリエステルよりなり、非晶配向
度が0.3〜0.55で且つ結晶融点が265℃である
ポリエステル繊維。 2、結晶体積が4.0×10^5Å^3以上である特許
請求の範囲第1項記載のポリエステル繊維。 3、210℃における乾熱収縮率が6%以下である特許
請求の範囲第1項又は第2項記載のポリエステル繊維。 4、ターミナルモジュラスが10g/de以下である特
許請求の範囲第1項〜第3項のいずれか1項記載のポリ
エステル繊維 5、力学的損失弾性率の温度分散に現われる主分散のピ
ーク温度が125℃以下である特許請求の範囲第1項〜
第4項のいずれか1項記載のポリエステル繊維 6、長周期間隔が160Å以上である特許請求の範囲第
1項〜第5項のいずれか1項記載のポリエステル繊維。 7、エチレンテレフタレートを主たる繰返単位とし極限
粘度が0.9以上のポリエステルよりなり、切断伸度が
150%以下で且つ下記式 Xx=2.4×10^2×Δn+4 (式中、XxはX線広角回折による結晶化度であり、Δ
nは複屈折率で0.06以上である。)を満足するポリ
エステル繊維を延伸した後20〜20%の緊張下熱処理
して得られる特許請求の範囲第1項〜第6項のいずれか
1項記載ポリエステル繊維。 8、力学的損失弾性率の温度分散に現われる主分散の半
価巾が45℃以下である特許請求の範囲第1項〜第7項
のいずれか1項記載のポリエステル繊維。 9、熱応力曲線において100〜180℃と180℃以
上の温度範囲の夫々に熱応力ピークを有する特許請求の
範囲第1項〜第8項のいずれか1項記載のポリエステル
繊維。
[Scope of Claims] 1. A polyester containing ethylene terephthalate as a main repeating unit and having an intrinsic viscosity of 0.9 or more, an amorphous orientation degree of 0.3 to 0.55, and a crystalline melting point of 265°C. fiber. 2. The polyester fiber according to claim 1, which has a crystal volume of 4.0×10^5 Å^3 or more. 3. The polyester fiber according to claim 1 or 2, which has a dry heat shrinkage rate of 6% or less at 210°C. 4. The polyester fiber according to any one of claims 1 to 3, which has a terminal modulus of 10 g/de or less; ℃ or less Claim 1~
The polyester fiber 6 according to any one of claim 4, and the polyester fiber according to any one of claims 1 to 5, wherein the long period interval is 160 Å or more. 7. Made of polyester containing ethylene terephthalate as the main repeating unit and having an intrinsic viscosity of 0.9 or more, having a breaking elongation of 150% or less, and having the following formula: Xx=2.4×10^2×Δn+4 (wherein, Xx is Crystallinity by wide-angle X-ray diffraction, Δ
n is a birefringence index of 0.06 or more. 7. The polyester fiber according to any one of claims 1 to 6, which is obtained by drawing a polyester fiber that satisfies the following conditions and then heat-treating it under tension of 20 to 20%. 8. The polyester fiber according to any one of claims 1 to 7, wherein the half value width of the main dispersion appearing in the temperature dispersion of the mechanical loss modulus is 45°C or less. 9. The polyester fiber according to any one of claims 1 to 8, which has thermal stress peaks in the temperature ranges of 100 to 180°C and 180°C or higher, respectively, in the thermal stress curve.
JP20529585A 1985-09-19 1985-09-19 Polyester fiber Pending JPS6269819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20529585A JPS6269819A (en) 1985-09-19 1985-09-19 Polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20529585A JPS6269819A (en) 1985-09-19 1985-09-19 Polyester fiber

Publications (1)

Publication Number Publication Date
JPS6269819A true JPS6269819A (en) 1987-03-31

Family

ID=16504603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20529585A Pending JPS6269819A (en) 1985-09-19 1985-09-19 Polyester fiber

Country Status (1)

Country Link
JP (1) JPS6269819A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282306A (en) * 1988-05-09 1989-11-14 Toray Ind Inc Industrial polyester fiber
JPH04222215A (en) * 1990-04-06 1992-08-12 Asahi Chem Ind Co Ltd Polyester fiber and production thereof
US5242645A (en) * 1989-11-15 1993-09-07 Toray Industries, Inc. Rubber-reinforcing polyester fiber and process for preparation thereof
US5547627A (en) * 1990-04-06 1996-08-20 Asahi Kasei Kogyo Kabushiki Kaisha Method of making polyester fiber
JP2008274480A (en) * 2007-04-27 2008-11-13 Teijin Fibers Ltd Polyester fiber for reinforcing heat-resistant water hose
JP2010530480A (en) * 2007-06-20 2010-09-09 コーロン インダストリーズ,インコーポレイテッド Polyethylene terephthalate drawn yarn, polyethylene terephthalate tire cord, manufacturing method thereof, and tire including the same
JP2010530481A (en) * 2007-06-20 2010-09-09 コーロン インダストリーズ,インコーポレイテッド Polyethylene terephthalate drawn yarn, polyethylene terephthalate tire cord, manufacturing method thereof, and tire including the same
JP2011058145A (en) * 2009-09-14 2011-03-24 Teijin Fibers Ltd Tension member and high tension voltage cable using the same
JP2011529140A (en) * 2008-07-22 2011-12-01 コーロン インダストリーズ インク Polyethylene terephthalate tire cord and tire including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327367A (en) * 1976-08-26 1978-03-14 Nippon Telegr & Teleph Corp <Ntt> Polisher
JPS57154410A (en) * 1981-03-13 1982-09-24 Toray Ind Inc Polyethylene terephthalate fiber and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327367A (en) * 1976-08-26 1978-03-14 Nippon Telegr & Teleph Corp <Ntt> Polisher
JPS57154410A (en) * 1981-03-13 1982-09-24 Toray Ind Inc Polyethylene terephthalate fiber and its production

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282306A (en) * 1988-05-09 1989-11-14 Toray Ind Inc Industrial polyester fiber
US5242645A (en) * 1989-11-15 1993-09-07 Toray Industries, Inc. Rubber-reinforcing polyester fiber and process for preparation thereof
JPH04222215A (en) * 1990-04-06 1992-08-12 Asahi Chem Ind Co Ltd Polyester fiber and production thereof
US5547627A (en) * 1990-04-06 1996-08-20 Asahi Kasei Kogyo Kabushiki Kaisha Method of making polyester fiber
US5558935A (en) * 1990-04-06 1996-09-24 Asahi Kasei Kogyo Kabushiki Kaisha Polyester fiber and method of manufacturing the same
JP2008274480A (en) * 2007-04-27 2008-11-13 Teijin Fibers Ltd Polyester fiber for reinforcing heat-resistant water hose
JP2010530480A (en) * 2007-06-20 2010-09-09 コーロン インダストリーズ,インコーポレイテッド Polyethylene terephthalate drawn yarn, polyethylene terephthalate tire cord, manufacturing method thereof, and tire including the same
JP2010530481A (en) * 2007-06-20 2010-09-09 コーロン インダストリーズ,インコーポレイテッド Polyethylene terephthalate drawn yarn, polyethylene terephthalate tire cord, manufacturing method thereof, and tire including the same
US9005752B2 (en) 2007-06-20 2015-04-14 Kolon Industries, Inc. Drawn poly(ethyleneterephthalate) fiber, poly(ethyleneterephthalate) tire-cord, their preparation method and tire comprising the same
US9347154B2 (en) 2007-06-20 2016-05-24 Kolon Industries, Inc. Drawn poly(ethyleneterephthalate) fiber, poly(ethyleneterephthalate) tire-cord, their preparation method and tire comprising the same
JP2011529140A (en) * 2008-07-22 2011-12-01 コーロン インダストリーズ インク Polyethylene terephthalate tire cord and tire including the same
US9062394B2 (en) 2008-07-22 2015-06-23 Kolon Industries, Inc. Poly(ethyleneterephthalate) tire cord, and tire comprising the same
JP2011058145A (en) * 2009-09-14 2011-03-24 Teijin Fibers Ltd Tension member and high tension voltage cable using the same

Similar Documents

Publication Publication Date Title
EP0169415B1 (en) Polyester fiber
US6967058B2 (en) Polyester multifilament yarn for rubber reinforcement and method of producing the same
JP5727675B2 (en) Polyethylene terephthalate drawn yarn manufacturing method, polyethylene terephthalate drawn yarn and tire cord
PL184254B1 (en) Yarn made of continuous polyester monofilaments, polyester tyre reinforcement cord and method of making them
US6511624B1 (en) Process for preparing industrial polyester multifilament yarn
JPH0210243B2 (en)
JPS6269819A (en) Polyester fiber
JPS6141320A (en) Polyester fiber
JPS6119812A (en) Polyester fiber
JPH0663128B2 (en) Polyester fiber for reinforcing rubber structure and method for producing the same
JPH0261109A (en) Polyester fiber
US5049339A (en) Process for manufacturing industrial yarn
JPH06136614A (en) Polyester fiber having improved dimensional stability and its production
JPH0450407B2 (en)
JP2839817B2 (en) Manufacturing method of polyester fiber with excellent thermal dimensional stability
JPH0323644B2 (en)
JPS61289115A (en) Polyester fiber
JPH06136612A (en) Production of polyester fiber having improved dimensional stability
JPS62162016A (en) Production of polyester fiber
EP0295147A2 (en) High strength polyester yarn
KR960002887B1 (en) High strength and low shrinkage polyester fiber and the method for manufacturing thereof
JPS61132616A (en) Polyester fiber
JPH0321647B2 (en)
JPH0147575B2 (en)
JPH04163314A (en) Polyester fiber and production thereof