JP2776003B2 - Method for producing polyester fiber - Google Patents

Method for producing polyester fiber

Info

Publication number
JP2776003B2
JP2776003B2 JP17351590A JP17351590A JP2776003B2 JP 2776003 B2 JP2776003 B2 JP 2776003B2 JP 17351590 A JP17351590 A JP 17351590A JP 17351590 A JP17351590 A JP 17351590A JP 2776003 B2 JP2776003 B2 JP 2776003B2
Authority
JP
Japan
Prior art keywords
strength
polymer
stretching
drawn
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17351590A
Other languages
Japanese (ja)
Other versions
JPH0465514A (en
Inventor
克典 二井
笹本  太
威彦 三吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TORE KK
Original Assignee
TORE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TORE KK filed Critical TORE KK
Priority to JP17351590A priority Critical patent/JP2776003B2/en
Publication of JPH0465514A publication Critical patent/JPH0465514A/en
Application granted granted Critical
Publication of JP2776003B2 publication Critical patent/JP2776003B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は産業用ポリエステル繊維の製造方法に関す
る。さらに詳しくは、タイヤコード用途、あるいはシー
トベルト用途など高強度、高タフネス、高耐久性の要求
される用途に好適なポリエステル繊維を製造する方法に
関する。
The present invention relates to a method for producing an industrial polyester fiber. More specifically, the present invention relates to a method for producing a polyester fiber suitable for applications requiring high strength, high toughness and high durability, such as tire cord applications or seat belt applications.

[従来の技術] ポリエステル繊維は優れた機械的性質を有することか
ら、産業用途、中でもタイヤコード用途、シートベルト
用途に多量に利用されている。これら産業用原糸に対し
ては高強度、高耐久性の要望が常に存在しており、様々
な手法が検討されている。このうちポリマを高重合度化
していくと、強度、耐久性が向上することから、近年、
例えば特公昭50−16446号公報に記載されているよう
に、高重合度のポリマを使用するようになってきてい
る。
[Prior Art] Polyester fibers have excellent mechanical properties and are therefore widely used in industrial applications, particularly in tire cord applications and seat belt applications. There is always a demand for high strength and high durability for these industrial yarns, and various methods are being studied. Of these, as the degree of polymerization of the polymer is increased, the strength and durability are improved.
For example, as described in JP-B-50-16446, polymers having a high degree of polymerization have been used.

[発明が解決しようとする課題] しかしながら、通常の溶融紡糸方法では、ポリマの重
合度をあるレベル以上まで上げていくと、強度の上昇が
しにくくなり、極端な場合は、逆に強度低下をしてしま
うことから、ポリマの高重合度化には限界があることが
わかった。
[Problems to be Solved by the Invention] However, in the ordinary melt spinning method, when the polymerization degree of the polymer is increased to a certain level or more, it becomes difficult to increase the strength, and in extreme cases, the strength decreases. Therefore, it has been found that there is a limit in increasing the degree of polymerization of the polymer.

本発明者らはこの強度低下の現象について鋭意研究を
行なった結果、その原因の一つが、高重合度未延伸糸を
延伸する際の分子量低下にあることを見出した。
The present inventors have conducted intensive studies on this phenomenon of strength reduction, and as a result, have found that one of the causes is a decrease in the molecular weight when drawing an undrawn yarn having a high degree of polymerization.

すなわち、ポリマの重合度をあるレベルを超えて高く
していくと、延伸の際の分子量低下が大きくなり、この
ため強度が低下してしまうのである。したがって、高性
能化のためには高重合度の未延伸糸を分子量の低下を極
力抑えながら延伸する必要がある。
In other words, when the degree of polymerization of the polymer is increased beyond a certain level, the molecular weight decreases during stretching, and the strength is reduced. Therefore, in order to improve the performance, it is necessary to stretch an undrawn yarn having a high degree of polymerization while minimizing a decrease in molecular weight.

本発明の目的は、上記知見に基づき、産業用途に適す
る高強度、高タフネス、高耐久性を備えたポリエステル
繊維の製造方法を提供するものである。
An object of the present invention is to provide a method for producing a polyester fiber having high strength, high toughness, and high durability suitable for industrial use based on the above findings.

[課題を解決するための手段] 本発明の目的は、エチレンテレフタレートを主たる繰
り返し単位とするポリエステルを溶融紡糸し、延伸して
強度7.0g/d以上の延伸糸を得るに際して、下記A、B、
C式を満足するポリエステルを、溶融紡糸して得た下記
D式を満足する未延伸糸を、下記E式を満たすように延
伸することを特徴とするポリエステル繊維の製造方法に
より達成できる。
[Means for Solving the Problems] An object of the present invention is to melt-spin a polyester containing ethylene terephthalate as a main repeating unit and stretch it to obtain a drawn yarn having a strength of 7.0 g / d or more.
A polyester fiber satisfying the formula C is melt-spun, and an undrawn yarn satisfying the following formula D is drawn so as to satisfy the following formula E.

A.Tc≧160℃ B.Tm≦260℃ C.[η]PO≧0.90 D.[η]UY≧0.80 E.△[η]≦0.020 本発明のポリエステルはエチレンテレフタレートを主
たる繰り返し単位とするポリエステルであり、通常使用
される添加剤、第3成分等を含有しないホモポリエステ
ルであることが好ましい。
A.Tc ≧ 160 ℃ B.Tm ≦ 260 ℃ C. [η] PO ≧ 0.90 D. [η] UY ≧ 0.80 E. △ [η] ≦ 0.020 The polyester of the present invention is a polyester containing ethylene terephthalate as a main repeating unit, and is preferably a homopolyester containing no commonly used additives, third components and the like.

本発明者らは、高重合度未延伸糸の延伸過程について
研究を進め、延伸過程での分子量の低下、すなわち固有
粘度[η]の低下を抑制する方法について鋭意検討を進
めた。その結果ポリマの結晶性と延伸時の[η]低下の
度合との間に相関があることを見出し、ポリマの結晶性
を、ある特定の範囲内とし、結晶化を遅くすることで延
伸時の[η]低下が抑制できることを見出した。
The present inventors have conducted research on the drawing process of the undrawn yarn having a high degree of polymerization, and have conducted intensive studies on a method for suppressing a decrease in the molecular weight during the drawing process, that is, a decrease in the intrinsic viscosity [η]. As a result, they found that there was a correlation between the crystallinity of the polymer and the degree of the decrease in [η] at the time of stretching. It has been found that the decrease in [η] can be suppressed.

ポリマの結晶性は、DSC(示差走査熱量計)の測定値
で示すことができるが、このうち、ポリマの結晶化速度
を示す2nd runの昇温結晶化ピーク温度Tcが160℃以上
で、かつ結晶サイズに対応する1st runの融解ピーク温
度Tmが260℃以下である場合、延伸時の[η]低下を著
しく抑制できることがわかった。
The crystallinity of the polymer can be indicated by a DSC (differential scanning calorimeter) measurement value. Among them, the temperature rise crystallization peak temperature Tc of the 2nd run indicating the crystallization rate of the polymer is 160 ° C. or higher, and It was found that when the melting peak temperature Tm of the first run corresponding to the crystal size was 260 ° C. or less, the decrease in [η] during stretching could be significantly suppressed.

Tcが160℃未満、あるいはTmが260℃を超えるポリマで
は、延伸時の[η]低下が大きく、延伸糸の強度、耐久
性が低下してしまう。この原因として、Tcが160℃未
満、つまり結晶化速度が比較的速いポリマの場合、紡糸
過程の冷却時に微結晶が生じ、未延伸糸中に微結晶が存
在するものと考えられる。
In the case of a polymer having a Tc of less than 160 ° C. or a Tm of more than 260 ° C., the [η] at the time of stretching is large, and the strength and durability of the drawn yarn are reduced. As a cause, it is considered that in the case of a polymer having a Tc of less than 160 ° C., that is, a polymer having a relatively high crystallization rate, microcrystals are generated during cooling in the spinning process, and microcrystals are present in the undrawn yarn.

また、Tmが260℃を超える、つまりポリマ中の結晶サ
イズが大きい場合、溶融紡糸時に加えられる熱によっ
て、この結晶が完全に溶けず、未延伸糸中に残ってしま
うと考えられる。
When the Tm exceeds 260 ° C., that is, when the crystal size in the polymer is large, it is considered that the crystals are not completely melted and remain in the undrawn yarn due to heat applied during melt spinning.

このように、未延伸糸中に微結晶、あるいは結晶の溶
け残りの部分がある場合、延伸の際、この部分に応力の
集中が起こり分子鎖の切断が生じ易いのではないか、と
推測される。このためTcは160℃以上である必要があ
り、170℃以上であることがより好ましく、180℃以上で
あることがさらに好ましい。また、Tmは260℃以下であ
る必要があり、258℃以下であることが好ましい。
In this way, if there is a microcrystal or undissolved portion of the crystal in the undrawn yarn, it is presumed that during drawing, concentration of stress occurs in this portion and molecular chains are likely to be cut. You. Therefore, Tc needs to be 160 ° C. or higher, more preferably 170 ° C. or higher, and further preferably 180 ° C. or higher. Further, Tm needs to be 260 ° C. or lower, and preferably 258 ° C. or lower.

本発明で用いるポリエステルの供給ポリマの固有粘度
[η]POは0.90以上である必要がある。本発明の目的は
ポリマの高分子量化による、繊維の高強度化、耐久性向
上にあり、[η]POが0.90未満では強度、耐久性の面で
不足である。このため供給ポリマの固有粘度[η]PO
0.95以上であることが好ましい。
The intrinsic viscosity [η] PO of the polyester supply polymer used in the present invention must be 0.90 or more. An object of the present invention is to increase the strength and durability of the fiber by increasing the molecular weight of the polymer. When [η] PO is less than 0.90, the strength and durability are insufficient. Therefore, the intrinsic viscosity [η] PO of the supplied polymer is
It is preferably 0.95 or more.

同様の理由で、本発明の未延伸糸の固有粘度[η]UY
は0.80以上である必要がある。例えば紡糸温度を高くす
るなどの方法で未延伸糸の[η]UYを下げると、延伸時
の[η]の低下を少なくすることができるが、高分子量
化による高強度化、耐久性向上という本来の目的を果た
せない。このため未延伸糸の[η]UYは0.85以上である
ことが好ましい。本発明で得られる延伸糸の強度は7.0g
/d以上である必要があり、延伸過程での分子量低下の尺
度である[η]UY−[η]DY、すなわち△[η]は0.02
0以下にする必要がある。強度が7.0g/d未満では産業用
途の糸として強度が不足である。このため延伸糸の強度
は8.0g/d以上であることが好ましい。
For the same reason, the intrinsic viscosity [η] of the undrawn yarn of the present invention UY
Must be at least 0.80. For example, when the [η] UY of the undrawn yarn is reduced by a method such as raising the spinning temperature, the decrease in [η] during drawing can be reduced, but it is said that the high molecular weight increases the strength and improves the durability. It cannot fulfill its intended purpose. For this reason, [η] UY of the undrawn yarn is preferably 0.85 or more. The strength of the drawn yarn obtained in the present invention is 7.0 g
/ d or more, and [η] UY − [η] DY , which is a measure of molecular weight reduction in the stretching process, that is, △ [η] is 0.02
Must be 0 or less. If the strength is less than 7.0 g / d, the strength is insufficient as a yarn for industrial use. Therefore, the strength of the drawn yarn is preferably 8.0 g / d or more.

また、延伸過程での△[η]が0.020を超えると、延
伸糸の強度、耐久性が低下してしまう。強度が同じ延伸
糸であっても、△[η]の大きいものは、繊維構造的に
欠陥の多いものとなり、耐久性の点で劣ってしまう。延
伸過程での△[η]は0..15以下であることが好まし
く、0.010以下であることがさらに好ましい。
If ま た [η] in the drawing process exceeds 0.020, the strength and durability of the drawn yarn are reduced. Even if the drawn yarns have the same strength, a yarn having a large △ [η] has many defects in fiber structure and is inferior in durability. △ [η] in the stretching step is preferably 0.15 or less, more preferably 0.010 or less.

本発明で用いる延伸方法としては、多段延伸であるこ
とが好ましい。一段で全延伸を行なうより多段に分けて
延伸を行なうことが△[η]を小さくする上で有効であ
る。また加熱手段としては、通常のピン加熱、ホットロ
ーラ加熱では△[η]が大きくなるため、非接触加熱を
行なうことが好ましい。プラズマ雰囲気中で延伸を行な
うことも△[η]を小さくする方法の一つである。
The stretching method used in the present invention is preferably a multi-stage stretching. Stretching in multiple stages is more effective in reducing 全 [η] than stretching in one stage. As the heating means, non-contact heating is preferably performed because た め [η] increases with normal pin heating and hot roller heating. Stretching in a plasma atmosphere is also one of the methods for reducing △ [η].

また、本発明者らの検討により、△[η]の大小は延
伸時の応力に影響されることがわかった。延伸応力が高
いものほど△[η]は大きくなるので、延伸応力はでき
るだけ低く抑えることが肝要である。このため延伸応力
は3.5g/d以下であることが好ましく、3.0g/d以下である
ことがさらに好ましい。前記した非接触加熱による延
伸、あるいはプラズマ雰囲気中での延伸は、延伸応力を
下げる有効な手法である。なお、延伸応力とは、延伸張
力を延伸後の繊維の繊度で除したものである。
Further, the present inventors have found that the magnitude of △ [η] is affected by the stress during stretching. Since 延伸 [η] increases as the stretching stress increases, it is important to keep the stretching stress as low as possible. For this reason, the stretching stress is preferably 3.5 g / d or less, and more preferably 3.0 g / d or less. The above-described stretching by non-contact heating or stretching in a plasma atmosphere is an effective method for lowering the stretching stress. The drawing stress is obtained by dividing the drawing tension by the fineness of the drawn fiber.

[実施例] 以下実施例により本発明をさらに詳細に説明する。な
お実施例中の物性は次のようにして求めた。
[Examples] Hereinafter, the present invention will be described in more detail with reference to Examples. The physical properties in the examples were determined as follows.

A.Tm、Tc パーキンエルマー社製DSC4型を用い、試料10mg、N2
囲気中、昇温速度16℃/分で50℃から280℃まで昇温しD
SC曲線を求める(1st run)。この時の結晶の融解吸熱
ピーク温度をTmとする。また1st runに引き続いて、試
料を280℃で5分間放置後室温まで急冷し、再度N2雰囲
気中、昇温速度16℃/分で50℃から280℃まで昇温し、D
SC曲線を求める(2nd run)。この時の結晶化発熱のピ
ーク温度をTcとする。
A.Tm, Tc Perkin Elmer DSC4 type, sample 10 mg, in a N 2 atmosphere, the temperature from 50 ° C. at a heating rate 16 ° C. / min up to 280 ° C. was raised D
Find the SC curve (1st run). The melting endothermic peak temperature of the crystal at this time is defined as Tm. Further, following the first run, the sample was left at 280 ° C. for 5 minutes, rapidly cooled to room temperature, and again heated from 50 ° C. to 280 ° C. in a N 2 atmosphere at a rate of 16 ° C./min.
Find the SC curve (2nd run). The peak temperature of the heat of crystallization at this time is defined as Tc.

B.固有粘度[η] オルソクロロフェノール10mlに試料0.1gを溶解し、オ
ストワルド粘度計を用いて25℃で測定した。
B. Intrinsic Viscosity [η] A sample (0.1 g) was dissolved in orthochlorophenol (10 ml) and measured at 25 ° C. using an Ostwald viscometer.

C.強伸度 東洋ボールドウィン社製テンシロン引張試験機を用
い、試長25cm、引張速度30cm/分で強伸度曲線(S−S
曲線)を求め、強伸度を計算した。
C. Strong elongation Using a Toyo Baldwin Tensilon tensile tester, a strong elongation curve (SS) with a test length of 25 cm and a tensile speed of 30 cm / min.
Curve), and the elongation was calculated.

D.耐疲労性(GY疲労寿命) GY疲労試験(グッドイヤーマロリーファティーグテス
ト)はASTM−D885に準じ、チューブが破裂するまでの時
間を求めた。チューブ内へのコード打込み本数は1イン
チ当り30本であり、160℃で20分間加硫した。測定は次
の条件で行なった。
D. Fatigue Resistance (GY Fatigue Life) In the GY fatigue test (Goodyear Mallory Fatigue Test), the time until the tube bursts was determined according to ASTM-D885. The number of cords injected into the tube was 30 per inch, and vulcanization was performed at 160 ° C. for 20 minutes. The measurement was performed under the following conditions.

チューブ内圧:3.5kg/cm2G 回転速度 :850rpm チューブ角度:90度 300分以上は良好であり、250分以上300分未満はやや
不良であり、250分未満は不良である。
Tube inner pressure: 3.5 kg / cm 2 G Rotation speed: 850 rpm Tube angle: 90 degrees Good for more than 300 minutes, slightly bad for more than 250 minutes to less than 300 minutes, bad for less than 250 minutes.

実施例1 テレフタル酸ジメチル100部とエチレングリコール50.
2部に、酢酸マンガン4水塩0.04部を添加し、常法によ
りエステル交換反応を行なった。
Example 1 100 parts of dimethyl terephthalate and 50 parts of ethylene glycol.
To 2 parts, 0.04 part of manganese acetate tetrahydrate was added, and a transesterification reaction was carried out by a conventional method.

次いで得られた生成物にリン酸を0.02部加えた後、二
酸化ゲルマニウム0.03部を加えて重合温度285℃で3時
間5分重合反応を行なった。得られたポリマを160℃で
5時間予備乾燥後、225℃で固相重合し、固有粘度
[η]PO=1.07のポリマを得た。得られたポリマのTcは
189℃、Tmは256.5℃であった。
Next, after adding 0.02 part of phosphoric acid to the obtained product, 0.03 part of germanium dioxide was added, and a polymerization reaction was performed at a polymerization temperature of 285 ° C. for 3 hours and 5 minutes. The obtained polymer was preliminarily dried at 160 ° C. for 5 hours, and then subjected to solid-phase polymerization at 225 ° C. to obtain a polymer having an intrinsic viscosity [η] PO = 1.07. The Tc of the resulting polymer is
189 ° C and Tm were 256.5 ° C.

このポリマをエクストルーダ型紡糸機で紡糸温度295
℃にて紡糸した。口金は孔径0.6mmφ、240ホールのもの
を用いた。口金から吐出した糸を長さ15cm、内径25cm
φ、温度300℃の加熱筒を通した後、チムニー冷却風を
あて冷却固化させ、給油した後、紡糸速度2000m/分で引
取った。得られた未延伸糸を倍率2.49倍、2.78倍、2.96
倍でそれぞれ延伸し実験No.1〜3の延伸糸を得た。延伸
は二段延伸を行ない、一段目の延伸は加熱したホットロ
ーラで行ない、二段目の延伸は一段目の延伸に連続して
加熱したオーブン中で行なった。紡糸時の吐出量を変更
することで、延伸糸の繊度は、略1000デニールとした。
The polymer is extruded at an extruder spinning temperature of 295.
Spun at ℃. The cap used had a hole diameter of 0.6 mmφ and 240 holes. The thread discharged from the mouthpiece is 15cm long and 25cm inside diameter
After passing through a heating cylinder having a diameter of 300 ° C., the mixture was cooled and solidified by applying chimney cooling air, and after lubrication, it was taken out at a spinning speed of 2000 m / min. The obtained undrawn yarn is 2.49 times, 2.78 times, 2.96 times.
Each of the yarns was drawn by a factor of 2 to obtain drawn yarns of Experiment Nos. 1 to 3. The stretching was performed in two steps, the first step was performed with a heated hot roller, and the second step was performed in an oven that was heated continuously to the first step. By changing the discharge amount during spinning, the fineness of the drawn yarn was set to approximately 1000 denier.

得られた延伸糸の強度、および延伸時の[η]の低下
量△[η]を表1に示した。
Table 1 shows the strength of the obtained drawn yarn and the amount of decrease [η] in [η] during drawing.

表1からわかるように、実験No.1〜3はいずれも△
[η]が小さく、本発明の要件を満足している。この延
伸糸に49T/10cmの下撚りをS方向にかけた後、2本合糸
し49T/10cmの上撚りをZ方向にかけ生コードとした。こ
の生コードに接着剤を付与し、熱処理を処すことで処理
コードとした。接着剤を付与して熱処理を施して処理コ
ードとなすに際して、接着剤はレゾルシン−フォルマリ
ン−ラテックスおよびパルナックス社製の“パルカポン
ドE"を主成分としたものを用い、該接着剤液中を通過さ
せた。接着剤(処理液)濃度は20%とし、接着剤付与量
は3%となるように調整した。
As can be seen from Table 1, all of Experiment Nos.
[Η] is small and satisfies the requirements of the present invention. The drawn yarn was twisted at 49 T / 10 cm in the S direction and then twined to form a raw cord at 49 T / 10 cm in the Z direction. An adhesive was applied to the raw cord, and a heat treatment was performed to obtain a treated cord. When a heat treatment is performed by applying an adhesive to form a treatment code, the adhesive is mainly composed of resorcinol-formalin-latex and “Parka Pond E” manufactured by Parnax Corporation. Let it pass. The concentration of the adhesive (treatment liquid) was adjusted to 20%, and the amount of the applied adhesive was adjusted to 3%.

また、接着剤を付与したのち160℃加熱炉中で60秒間
定長状態で処理し、引続き処理コードの中間伸度が、略
3.5%となるように伸長率を変えて245℃の加熱炉中で70
秒間伸長熱処理を施し、次いで1%の弛緩を与えながら
245℃の加熱炉中で70秒間弛緩熱処理を施して処理コー
ドとした。処理コードの耐疲労性を表1実験No.1〜3に
として示したが、どの水準も良好な耐疲労性であった。
After the adhesive was applied, it was treated in a heating furnace at 160 ° C. for 60 seconds in a constant length state.
Change the elongation rate to 3.5% and heat in a heating furnace at 245 ° C.
Subjected to elongation heat treatment for 2 seconds, and then while giving 1% relaxation
A relaxation heat treatment was performed for 70 seconds in a heating furnace at 245 ° C. to obtain a treatment code. The fatigue resistance of the treated cord is shown in Table 1, Experiment Nos. 1 to 3, and all levels showed good fatigue resistance.

実施例2 テレフタル酸ジメチル100部とエチレングリコール50.
2部に酢酸マンガン4水塩0.035部を添加し、常法により
エステル交換反応を行なった。次いで、得られた生成物
にリン酸を0.009部加えた後二酸化ゲルマニウム0.0025
部を加え、さらに三酸化アンチモン0.0125部を加えて重
合温度285℃で3時間15分重合反応を行なった。得られ
たポリマを実施例1と同様に乾燥、固相重合、紡糸を行
ない未延伸糸を得た。なお、固相重合後のポリマのTc、
Tmはそれぞれ185℃、255.5℃であり[η]は1.06であっ
た。得られた未延伸糸を延伸倍率2.49倍、2.78倍、2.85
倍でそれぞれ延伸を行ない実験No.4〜6の延伸糸を得
た。延伸方法は実施例1に準じた。得られた延伸糸の強
度、延伸による△[η]を表1に示した。
Example 2 100 parts of dimethyl terephthalate and 50 parts of ethylene glycol.
0.035 parts of manganese acetate tetrahydrate was added to 2 parts, and transesterification was carried out by a conventional method. Next, 0.009 parts of phosphoric acid was added to the obtained product, and then germanium dioxide 0.0025 part was added.
, And 0.0125 parts of antimony trioxide was further added, and a polymerization reaction was performed at a polymerization temperature of 285 ° C for 3 hours and 15 minutes. The obtained polymer was dried, solid-phase polymerized and spun in the same manner as in Example 1 to obtain an undrawn yarn. The Tc of the polymer after solid-phase polymerization,
Tm was 185 ° C and 255.5 ° C, respectively, and [η] was 1.06. The obtained undrawn yarn is drawn at a draw ratio of 2.49 times, 2.78 times, 2.85 times.
In each case, the drawn yarns of Experiment Nos. 4 to 6 were obtained. The stretching method was the same as in Example 1. Table 1 shows the strength of the obtained drawn yarn and △ [η] by drawing.

表1から明らかなように、実験No.4〜6は、強度、△
[η]ともに満足なものであった。実施例1に準じ、延
伸糸に接着剤を付与し、熱処理を施すことで処理コード
とした。処理コードの耐疲労性は、どの水準も良好なも
のであった。
As is clear from Table 1, in Experiments Nos. 4 to 6, the strength, Δ
[Η] were both satisfactory. According to Example 1, an adhesive was applied to the drawn yarn, and a heat treatment was performed to obtain a treated cord. All levels of the fatigue resistance of the treated cord were good.

比較実施例 テレフタル酸ジメチル100部とエチレングリコール50.
2部に酢酸マンガン4水塩0.03部を添加し、常法により
エステル交換反応を行なった。次いで得られた生成物に
リン酸を0.015部加えた後、三酸化アンチモンを0.04部
加えて重合温度285℃で3時間10分重合反応を行なっ
た。
Comparative Example 100 parts of dimethyl terephthalate and 50 parts of ethylene glycol.
0.03 parts of manganese acetate tetrahydrate was added to 2 parts, and a transesterification reaction was performed by a conventional method. Next, 0.015 parts of phosphoric acid was added to the obtained product, and 0.04 parts of antimony trioxide was added, and a polymerization reaction was performed at a polymerization temperature of 285 ° C. for 3 hours and 10 minutes.

得られたポリマを実施例1と同様に乾燥、固相重合を
行ない、固相重合時間を変え、2種類の固相重合ポリマ
を得た。得られた固相重合ポリマのTc/Tmはそれぞれ15
2.5℃/261.5℃および154.5℃/262℃であった。これらの
固相重合ポリマを実施例1に準じて紡糸、延伸を行ない
実験No.7〜9および10〜12の延伸糸を得た。各延伸糸の
強度、延伸過程での△[η]を表2に示す。また実施例
1、2に準じ、延伸糸に接着剤を付与し、熱処理を処す
ことで処理コードとした。処理コードの耐疲労性を表2
に示す。
The obtained polymer was dried and subjected to solid-phase polymerization in the same manner as in Example 1, and the solid-phase polymerization time was changed to obtain two types of solid-phase polymerization polymers. Tc / Tm of the obtained solid-phase polymerized polymer is 15
2.5 ° C / 261.5 ° C and 154.5 ° C / 262 ° C. These solid-phase polymerized polymers were spun and drawn according to Example 1 to obtain drawn yarns of Experiment Nos. 7 to 9 and 10 to 12. Table 2 shows the strength of each drawn yarn and △ [η] in the drawing process. In addition, according to Examples 1 and 2, an adhesive was applied to the drawn yarn, and a heat treatment was performed to obtain a treated cord. Table 2 shows the fatigue resistance of the treated cord.
Shown in

表2からわかるように、△[η]が0.02以下である実
験No.7および10は耐久性は比較的良好であるが、強度は
7.0g/d未満である。一方実験No.8、9および12は、強度
は十分であるが△[η]は0.020を超えており、耐疲労
性の面で劣っている。実験No.11は強度、耐疲労性とも
に不足している。
As can be seen from Table 2, in Experiments Nos. 7 and 10 in which η [η] was 0.02 or less, the durability was relatively good, but the strength was
It is less than 7.0 g / d. On the other hand, in Experiments Nos. 8, 9 and 12, although the strength was sufficient, △ [η] exceeded 0.020, which was inferior in fatigue resistance. In Experiment No. 11, both strength and fatigue resistance were insufficient.

[発明の効果] 以上に述べた如く、結晶性を特定の範囲に限定した高
重合度ポリマを用い、延伸過程での固有粘度[η]の低
下を一定値以下に制御することで、高重合度でかつ高強
度、高耐久性のポリエステル繊維を得ることができる。
このような高強度、高耐久性のポリエステル繊維は産業
用途に最適なものである。
[Effects of the Invention] As described above, by using a polymer having a high degree of polymerization whose crystallinity is limited to a specific range and controlling the decrease in intrinsic viscosity [η] in the stretching process to a certain value or less, high polymerization is achieved. A high-strength, high-durability polyester fiber can be obtained.
Such a high-strength, high-durability polyester fiber is optimal for industrial use.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エチレンテレフタレートを主たる繰り返し
単位とするポリエステルを溶融紡糸し、延伸して強度7.
0g/d以上の延伸糸を得るに際して、下記A、B、C式を
満足するポリエステルを、溶融紡糸して得た下記D式を
満足する未延伸糸を、下記E式を満たすように延伸する
ことを特徴とするポリエステル繊維の製造方法。 A.Tc≧160℃ B.Tm≦260℃ C.[η]PO≧0.90 D.[η]UY≧0.80 E.△[η]≦0.020
A polyester having ethylene terephthalate as a main repeating unit is melt-spun and stretched to obtain a strength of 7.
When obtaining a drawn yarn of 0 g / d or more, an undrawn yarn satisfying the following formula D obtained by melt-spinning a polyester satisfying the following formulas A, B and C is drawn so as to satisfy the following formula E. A method for producing a polyester fiber. A.Tc ≧ 160 ℃ B.Tm ≦ 260 ℃ C. [η] PO ≧ 0.90 D. [η] UY ≧ 0.80 E. △ [η] ≦ 0.020
JP17351590A 1990-06-29 1990-06-29 Method for producing polyester fiber Expired - Fee Related JP2776003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17351590A JP2776003B2 (en) 1990-06-29 1990-06-29 Method for producing polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17351590A JP2776003B2 (en) 1990-06-29 1990-06-29 Method for producing polyester fiber

Publications (2)

Publication Number Publication Date
JPH0465514A JPH0465514A (en) 1992-03-02
JP2776003B2 true JP2776003B2 (en) 1998-07-16

Family

ID=15961956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17351590A Expired - Fee Related JP2776003B2 (en) 1990-06-29 1990-06-29 Method for producing polyester fiber

Country Status (1)

Country Link
JP (1) JP2776003B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105111424B (en) * 2015-08-10 2017-03-29 中国纺织科学研究院 A kind of high viscous melt process units
CN113430656B (en) * 2021-06-25 2022-05-06 江苏恒力化纤股份有限公司 Method for preparing ultra-high strength polyester industrial yarn

Also Published As

Publication number Publication date
JPH0465514A (en) 1992-03-02

Similar Documents

Publication Publication Date Title
JPH0627366B2 (en) Polyvinyl alcohol fiber, tire cord made of the fiber, and methods for producing the same
EP0454868B1 (en) Rubber-reinforcing polyester fiber and process for preparation thereof
JPS6141320A (en) Polyester fiber
KR20150097125A (en) Dimensionally stable polyethyleneterephthalate dipped cord, method of manufacturing the same and tire including the same
KR101602387B1 (en) Method of manufacturing polyethyleneterephthalate tire cord with high modulus and polyethyleneterephthalate tire cord manufactured by the same method
KR20150097126A (en) Dimensionally stable polyethyleneterephthalate dipped cord, method of manufacturing the same and tire including the same
JP2776003B2 (en) Method for producing polyester fiber
KR20010094489A (en) Polyester fiber and preparation thereof
KR0140230B1 (en) Manufacturing method of dimensional stability polyester yarn
JP3649215B2 (en) Method for producing high-strength polybutylene terephthalate fiber
KR20170091968A (en) Manufacturing method of polyethylene terephthalate cord having excellent fatigue resistance
JPH0428806B2 (en)
KR101551421B1 (en) Process for preparing polyester multifilament for tire cord
JPH0323644B2 (en)
KR100505018B1 (en) Polyethylene-2,6-naphthalate fibers having excellent processability, and process for preparing the same
JPH0450407B2 (en)
KR930010802B1 (en) Method for preparation of polyester tyre cord or tyre cord yarn
JPH055212A (en) Production of polyester fiber
KR20120077363A (en) Process for preparing polyester multifilament having an abrasion resistance
JPH10251919A (en) Polyester fiber and its production
KR20170085880A (en) Manufacturing method of polyethylene terephthalate having high strength and low shrinkage
JPH0532491B2 (en)
JPH11124726A (en) Low elongation polyester fiber and its production
KR100595991B1 (en) Polyethylene-2,6-naphthalate fibers
JP4736274B2 (en) Energy absorbing polyester fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees