JPS6140035B2 - - Google Patents

Info

Publication number
JPS6140035B2
JPS6140035B2 JP7093881A JP7093881A JPS6140035B2 JP S6140035 B2 JPS6140035 B2 JP S6140035B2 JP 7093881 A JP7093881 A JP 7093881A JP 7093881 A JP7093881 A JP 7093881A JP S6140035 B2 JPS6140035 B2 JP S6140035B2
Authority
JP
Japan
Prior art keywords
gas
reaction
laminar flow
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7093881A
Other languages
Japanese (ja)
Other versions
JPS57187033A (en
Inventor
Seiichi Iwamatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suwa Seikosha KK
Original Assignee
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suwa Seikosha KK filed Critical Suwa Seikosha KK
Priority to JP7093881A priority Critical patent/JPS57187033A/en
Publication of JPS57187033A publication Critical patent/JPS57187033A/en
Publication of JPS6140035B2 publication Critical patent/JPS6140035B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は気相から基体表面に光化学反応により
生成した物質の被膜を成長させる、いわゆる光気
相化学成長装置に関し、主として気相化学成長
(以下CVDと称する)Si3N4膜、SiO2膜およびSi膜
等の形成方法を対象とする。 トランジスタやICのごとき半導体装置の製造
において、半導体基板上にSi3N4膜、SiO2膜およ
びアモルフアSi膜のごとき膜を形成するのに気相
化学反応を用いて上記膜を形成するが、反応をよ
り低温で行なわせるために反応ガスに紫外線等の
光エネルギを与え、400℃乃至800℃程度の低温化
を計り、上記膜を常温乃至300℃程度の低温成長
を光CVD法により行なわせる事がある。 しかしながらこのような光化学反応を主要条件
とする方法では、光の反応ガスへの効率良い照射
と、反応生成物の効率良い被着を要するるるるる
ことになり、従来の如く、例えば石英管内に反応
ガスをキヤリヤガスと同時に吹き込み、石英管内
に設置した基板の表面から石英管を通して光を照
射する方法による光CVD法では、反応ガスが光
を吸収し、光が基板表面に到達し反応生成物を被
着する以前に、反応生成物が生成され、キヤリヤ
ガスにより運び去られたり、あるいは反応生成物
が石英管壁に被着するために、該被着膜が光の吸
収を起こす等して、必ずしも効率良い光CVD膜
の成長が行なえなかつた。 そこで、本願発明者においては、極めて薄い反
応ガス層を基板表面に形成し、その他の反応管内
に非活性で光通過性のキヤリヤガス層を形成する
ことにより効率の良い光CVD膜形成が可能であ
ると考え、本発明が生まれたのである。 よつて本発明の目的は光気相化学反応を効率よ
く行なう方法、装置を提供することである。 上記目的を達成するための基本的方法は、気相
から基板表面に光化学反応による生成する物質の
被膜を沈着する装置に関し、基板表面には反応ガ
スを層流にて供給する反応ガス供給ノズルを具備
し、反応ガス層流以外の部分に光を透過させ、且
つ反応ガスよりも軽いか又は重いキヤリヤガスを
層流にて供給するキヤリヤガス・ノズルを具備す
ることを特徴とする。 以下、実施例にそつて具体的に説明する。 第1図は本発明の一実施例の光のCVD装置の
要部の断面図を示すものである。1はSiウエー
ハ、2はCVD膜、3はSiウエーハを真空チヤツ
クにより支持する支持壁、4は石英窓、5は紫外
光照射光を示し、6は反応ガスのノズル、7はキ
ヤリヤ・ガスのノズル、8は排ガス口である。反
応ガスのノズル6より供給されたSiH4とNH4のガ
スは層流となりウエーハ表面を流れ、キヤリヤ・
ガス・ノズル7より供給されたXeガスは反応ガ
スより重く、ガスは石英窓4に沿つて流れ、2つ
のガスは排ガス方向に層流となつて流れる。紫外
線5は石英窓4、およびXeガス層流を通過し、
SiH4とNH4の層流ガスを照射することにより、
The present invention relates to a so-called photo-vapor phase chemical growth apparatus that grows a film of a substance generated by a photochemical reaction on the surface of a substrate from a gas phase, and mainly grows a film of a substance produced by vapor phase chemical growth (hereinafter referred to as CVD) such as Si 3 N 4 film, SiO 2 film. and methods of forming Si films, etc. In the manufacture of semiconductor devices such as transistors and ICs, films such as Si 3 N 4 films, SiO 2 films and amorphous Si films are formed on semiconductor substrates using vapor phase chemical reactions. In order to carry out the reaction at a lower temperature, light energy such as ultraviolet rays is applied to the reaction gas, the temperature is lowered to about 400°C to 800°C, and the above film is grown at a low temperature of about room temperature to about 300°C by optical CVD method. Something happened. However, such a method that relies on a photochemical reaction as the main condition requires efficient irradiation of the reaction gas with light and efficient deposition of the reaction product. In the optical CVD method, in which a gas is injected simultaneously with a carrier gas and light is irradiated from the surface of the substrate placed in the quartz tube through the quartz tube, the reaction gas absorbs the light, and the light reaches the substrate surface and covers the reaction products. Reaction products may be generated and carried away by the carrier gas, or the reaction products may adhere to the quartz tube wall, causing the film to absorb light, resulting in a reduction in efficiency. It was not possible to grow a good photo-CVD film. Therefore, the inventors of the present application have found that efficient photo-CVD film formation is possible by forming an extremely thin reaction gas layer on the substrate surface and forming an inactive and light-transmissive carrier gas layer inside the other reaction tubes. With this in mind, the present invention was born. Therefore, an object of the present invention is to provide a method and apparatus for efficiently carrying out photo-vapor phase chemical reactions. The basic method for achieving the above objective involves a device that deposits a film of a substance produced by a photochemical reaction on the substrate surface from the gas phase, and a reaction gas supply nozzle is installed on the substrate surface to supply the reaction gas in a laminar flow. It is characterized by comprising a carrier gas nozzle that transmits light to a portion other than the laminar flow of the reactant gas and supplies a carrier gas that is lighter or heavier than the reactant gas in a laminar flow. Hereinafter, a detailed description will be given along with examples. FIG. 1 shows a sectional view of a main part of an optical CVD apparatus according to an embodiment of the present invention. 1 is a Si wafer, 2 is a CVD film, 3 is a support wall that supports the Si wafer with a vacuum chuck, 4 is a quartz window, 5 is an ultraviolet light irradiation light, 6 is a reaction gas nozzle, and 7 is a carrier gas nozzle. , 8 is an exhaust gas port. The SiH 4 and NH 4 gases supplied from the reaction gas nozzle 6 form a laminar flow and flow over the wafer surface, forming a carrier gas.
The Xe gas supplied from the gas nozzle 7 is heavier than the reaction gas, and the gas flows along the quartz window 4, and the two gases flow in a laminar flow in the direction of the exhaust gas. The ultraviolet rays 5 pass through the quartz window 4 and the Xe gas laminar flow,
By irradiating with laminar flow gases of SiH4 and NH4 ,

【表】 の反応によつてSiウエーハ表面にCVD.Si3N4膜2
が形成される。 第2図は本発明の他の実施例であり、11はSi
ウエーハ、12はCVD膜、13はSiウエーハの
支持壁、14は石英窓、15は紫外線照射光を示
し、16は反応ガスのノズル、17はキヤリヤ・
ガスのノズル、18は排ガス口である。反応ガス
のノズル16より供給されたSiH4とNH4のガスは
層流となりウエーハ裏面を流れ、キヤリヤ・ガ
ス・ノズル17より供給されたHeガスやH2ガス
等反応ガスより軽いガス石英窓14に沿つて流
れ、2つのガスは排ガス方向に層流となつて流れ
る。紫外線15は石英窓14およびHeガス層流
と通過し、SiH4とNH4の層流ガスを照射すること
により、前記反応と同反応によつてSiウエーハ表
面にCVD・Si3N4膜12が形成される。 以上の実施例で述べたような本発明によれば、
下記のようにその目的が達成できる。 照射光は石英窓を通して、光透過キヤリヤ・ガ
スを通過し、反応ガス層を照射して反応を起すた
め、反応生成物は、Siウエーハの極く近傍で生成
し、Siウエーハ表面に付着し、石英窓を曇もらせ
て、光透過効率を下げることもなく、効率良く光
CVD反応によるCVD膜被着を行なわせることが
できる。 本発明によれば、常温のみならず、基板加熱に
よる低温CVDも可能である。
[Table] CVD.Si 3 N 4 film 2 is formed on the surface of the Si wafer by the reaction of
is formed. FIG. 2 shows another embodiment of the present invention, and 11 is a Si
wafer, 12 is a CVD film, 13 is a support wall for the Si wafer, 14 is a quartz window, 15 is an ultraviolet irradiation light, 16 is a reaction gas nozzle, and 17 is a carrier.
The gas nozzle 18 is an exhaust gas port. The SiH 4 and NH 4 gases supplied from the reaction gas nozzle 16 form a laminar flow and flow on the back side of the wafer, and the gases lighter than the reaction gas such as He gas and H 2 gas supplied from the carrier gas nozzle 17 quartz window 14 . The two gases flow in a laminar flow in the exhaust gas direction. The ultraviolet rays 15 pass through the quartz window 14 and the laminar flow of He gas, and by irradiating the laminar flow gases of SiH 4 and NH 4 , a CVD Si 3 N 4 film 12 is formed on the surface of the Si wafer by the same reaction as described above. is formed. According to the present invention as described in the above embodiments,
The purpose can be achieved as follows. The irradiation light passes through the light-transmitting carrier gas through the quartz window and irradiates the reaction gas layer to cause a reaction, so reaction products are generated very close to the Si wafer and adhere to the Si wafer surface. Allows light to flow efficiently without fogging up the quartz window and reducing light transmission efficiency.
CVD film deposition can be performed by CVD reaction. According to the present invention, not only normal temperature but also low-temperature CVD by substrate heating is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施形態を示す装置の縦断
面図、第2図は本発明の他の実施形態を示す装置
の縦断面図である。 1,11…基板、2,12…CVD膜、3,1
3…支持壁、4,14…石英窓、5,15…紫外
線、6,16…反応ガス・ノズル、7,17…キ
ヤリヤ・ガス・ノズル、8,18…排ガス口。
FIG. 1 is a longitudinal sectional view of an apparatus showing one embodiment of the invention, and FIG. 2 is a longitudinal sectional view of an apparatus showing another embodiment of the invention. 1,11...Substrate, 2,12...CVD film, 3,1
3... Support wall, 4, 14... Quartz window, 5, 15... Ultraviolet light, 6, 16... Reaction gas nozzle, 7, 17... Carrier gas nozzle, 8, 18... Exhaust gas port.

Claims (1)

【特許請求の範囲】[Claims] 1 気相から基板表面に光化学反応により生成す
る物質の被膜を沈着する装置に関し、上記光化学
反応を基板表面にて進行させるために、基板表面
には反応ガスを層流にて供給する反応ガス供給ノ
ズルを具備し反応ガスを層流部以外の部分には光
化学反応に供する光波長を透過させ、且つ反応ガ
スよりも軽いか又は重いキヤリヤガスを層流にて
供給するキヤリヤ・ガス・ノズルを具備すること
を特徴とする気相化学成長装置。
1 Regarding an apparatus for depositing a film of a substance generated by a photochemical reaction on the surface of a substrate from a gas phase, a reaction gas is supplied to the surface of the substrate in a laminar flow in order to allow the photochemical reaction to proceed on the surface of the substrate. A carrier gas nozzle is provided, which transmits a light wavelength used for a photochemical reaction through a portion other than the laminar flow portion of the reactant gas, and supplies a carrier gas that is lighter or heavier than the reactant gas in a laminar flow. A vapor phase chemical growth apparatus characterized by:
JP7093881A 1981-05-12 1981-05-12 Vapor phase chemical growth device Granted JPS57187033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7093881A JPS57187033A (en) 1981-05-12 1981-05-12 Vapor phase chemical growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7093881A JPS57187033A (en) 1981-05-12 1981-05-12 Vapor phase chemical growth device

Publications (2)

Publication Number Publication Date
JPS57187033A JPS57187033A (en) 1982-11-17
JPS6140035B2 true JPS6140035B2 (en) 1986-09-06

Family

ID=13445941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7093881A Granted JPS57187033A (en) 1981-05-12 1981-05-12 Vapor phase chemical growth device

Country Status (1)

Country Link
JP (1) JPS57187033A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119336A (en) * 1982-01-08 1983-07-15 Ushio Inc Apparatus for vapor deposition by photochemical reaction
JPS59129771A (en) * 1983-01-18 1984-07-26 Ushio Inc Photochemical vapor deposition device
JPS6050168A (en) * 1983-08-29 1985-03-19 Yoshihiro Hamakawa Production of thin solid film by photo cvd method
JPS6050918A (en) * 1983-08-31 1985-03-22 Wakomu:Kk Semiconductor processor
JPS60167317A (en) * 1984-02-09 1985-08-30 Mitsubishi Electric Corp Optically excited chemical vapor deposition device
JPS60261129A (en) * 1984-06-07 1985-12-24 Teru Saamuko Kk Optical cvd device
JPS6179771A (en) * 1984-09-26 1986-04-23 Applied Material Japan Kk Method and device for vapor growth
JPS6193830A (en) * 1984-10-15 1986-05-12 Nec Corp Optical gaseous phase growing method
JPS61208213A (en) * 1985-03-12 1986-09-16 Tokyo Erekutoron Kk Photochemical vapor deposition apparatus
JPS6274079A (en) * 1985-09-27 1987-04-04 Applied Materials Japan Kk Vapor growth device
JPS6274078A (en) * 1985-09-27 1987-04-04 Applied Materials Japan Kk Vapor growth device
JPS6280272A (en) * 1985-10-02 1987-04-13 Applied Materials Japan Kk Vapor growth method
JPS6280271A (en) * 1985-10-02 1987-04-13 Applied Materials Japan Kk Vapor growth method
JPS62129060U (en) * 1986-02-10 1987-08-15
JPH04240987A (en) * 1991-01-25 1992-08-28 Matsushita Electric Ind Co Ltd Catv subscriber terminal equipment
JPH04122695U (en) * 1991-04-23 1992-11-04 四国化成工業株式会社 Solid disinfectant dissolving device

Also Published As

Publication number Publication date
JPS57187033A (en) 1982-11-17

Similar Documents

Publication Publication Date Title
JPS6140035B2 (en)
US4702936A (en) Gas-phase growth process
JPH049369B2 (en)
JPS61127121A (en) Formation of thin film
JPH02258689A (en) Method for forming crystalline thin film
KR850001974B1 (en) Improved photochemical vapor deposition apparatus and method
JPS5982732A (en) Manufacture for semiconductor device
JPS6138269B2 (en)
JPH02208925A (en) Formation of semiconductor film
JPH01280323A (en) Vapor phase epitaxial growth system
JPS6140034B2 (en)
JPS5953674A (en) Chemical vapor deposition method
JPH0360918B2 (en)
JPH0431391A (en) Epitaxial growth
JP2517705B2 (en) Selective vapor deposition method for thin films
JPS6118125A (en) Thin film forming apparatus
JPS60206446A (en) Photochemical gaseous phase growing apparatus
JPH0357189B2 (en)
JPS61183920A (en) Apparatus for treating semiconductor or metal with laser beam or light
JPH01158721A (en) Method and apparatus for light irradiation type low temperature mocvd
JPH0340423A (en) Optical cvd device
JPS59163831A (en) Manufacture of semiconductor device and manufacturing apparatus therefor
JP3554032B2 (en) Film formation method from low-temperature condensed phase
JPS59124125A (en) Manufacture of semiconductor device
JPS6075328A (en) Process and device for photo gaseous phase reaction