JPH0357189B2 - - Google Patents

Info

Publication number
JPH0357189B2
JPH0357189B2 JP59200244A JP20024484A JPH0357189B2 JP H0357189 B2 JPH0357189 B2 JP H0357189B2 JP 59200244 A JP59200244 A JP 59200244A JP 20024484 A JP20024484 A JP 20024484A JP H0357189 B2 JPH0357189 B2 JP H0357189B2
Authority
JP
Japan
Prior art keywords
film
mask
workpiece
reaction
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59200244A
Other languages
Japanese (ja)
Other versions
JPS6176677A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP20024484A priority Critical patent/JPS6176677A/en
Priority to US06/778,004 priority patent/US4702936A/en
Publication of JPS6176677A publication Critical patent/JPS6176677A/en
Publication of JPH0357189B2 publication Critical patent/JPH0357189B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は気相成長方法に関し、一層詳細には、
反応ガス源として有機シラン−O2系を用いると
ともに、紫外線を照射することによつて、反応系
が光励起され、400℃以下での低温気相成長が可
能となるのみならず、マスクを用いることによつ
て皮膜の選択成長を行わせることができ、さらに
はパーテイクルの発生がほとんどなく、またステ
ツプカバリツジにもすぐれる気相成長方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor phase growth method, and more particularly, to
By using an organosilane- O2 system as a reactive gas source and irradiating it with ultraviolet light, the reaction system is photoexcited, making it possible not only to perform low-temperature vapor phase growth below 400℃, but also to use a mask. The present invention relates to a vapor phase growth method that enables selective growth of a film by using a method of oxidation, and furthermore, hardly generates particles and has excellent step coverage.

CVD(Chemical Vapor Deposition)法は、配
線の終了したデバイス上に絶縁保護膜を形成する
場合などに広く実用化されている。
The CVD (Chemical Vapor Deposition) method is widely put into practical use, such as when forming an insulating protective film on a device where wiring has been completed.

この場合に絶縁保護膜が被処理物表面に所望の
パターンに選択成長させることができれば便宜で
ある。
In this case, it would be convenient if the insulating protective film could be selectively grown in a desired pattern on the surface of the object to be treated.

従来においては、例えばSiO2膜を被処理物表
面全面に成長させ、化学的エツチング等によつ
て、SiO2膜のパターン形成をしているが煩わし
く、また工数が増大してコスト高となる難点があ
つた。
Conventionally, for example, a SiO 2 film is grown on the entire surface of the object to be processed, and the pattern of the SiO 2 film is formed by chemical etching, etc., but this is troublesome and has the disadvantage of increasing the number of steps and increasing costs. It was hot.

また上記の絶縁保護膜などを形成する場合にお
いては、アルミニウム配線等を高熱から保護する
ために、反応温度はできる限り低温(400℃程度)
であることが望ましい。
In addition, when forming the above-mentioned insulating protective film, etc., the reaction temperature is kept as low as possible (approximately 400℃) in order to protect the aluminum wiring etc. from high heat.
It is desirable that

従来400℃程度の温度で良質なSiO2膜、PSG膜
等を得るには、SiH4−O2系で行うか、あるいは
プラズマCVD法を用いるしかなかつた。
Conventionally, the only way to obtain high-quality SiO 2 films, PSG films, etc. at temperatures of about 400°C was to use SiH 4 -O 2 systems or plasma CVD.

しかしながら、前者においては反応が気相中で
の熱分解反応であるため、気相中で粒子が成長し
て落下し、成長皮膜上に付着するなど、いわゆる
パーテイクルの発生を伴つたり、ステツプカバリ
ツジ(均一被着性)に劣るという難点がある。
However, in the former case, since the reaction is a thermal decomposition reaction in the gas phase, particles grow in the gas phase, fall, and adhere to the grown film, resulting in the generation of so-called particles, and step coverage. It has the disadvantage of being inferior in uniform adhesion.

また後者のプラズマCVD法によるときは、い
わゆるラデイエイシヨン ダメツジ(radiation
damage)が問題となり、またステツプカバリツ
ジにもすぐれないため、現在のところ幅広くは実
用されていない。
Furthermore, when using the latter plasma CVD method, so-called radiation
damage) and lack of good step coverage, so it is not widely used at present.

本発明は上記難点に鑑みてなされたものであ
り、その目的とするところは、皮膜の選択成長が
容易かつ確実に行え、パーテイクルの発生が少な
く、ステツプカバリツジにもすぐれ、かつ低温で
の反応が可能な新たな気相成長方法を提供するに
あり、その特徴は、有機シランとO2ガスとを反
応容器中に導入し、反応容器中に載置した被処理
物には、被処理物表面から離間した位置に適宜な
マスクを配置し、500℃以下の反応温度に保ちと
ともに紫外線を前記被処理物表面に照射して、被
処理物表面上に前記マスクのパターン通りに皮膜
を選択成長させるところにある。
The present invention has been made in view of the above-mentioned difficulties, and its objectives are to provide a film that can be easily and reliably grown selectively, has few particles, has excellent step coverage, and is capable of reacting at low temperatures. The purpose is to provide a new vapor phase growth method that allows organic silane and O 2 gas to be introduced into a reaction vessel, and to A suitable mask is placed at a distance from the surface, the reaction temperature is maintained at 500°C or less, and ultraviolet rays are irradiated onto the surface of the object to be treated, thereby selectively growing a film on the surface of the object according to the pattern of the mask. It's about letting them do it.

また本発明の他の特徴は、有機シランとO2
スとを反応容器中に導入し、反応容器中に載置し
た被処理物には、被処理物表面から離間した位置
に適宜なマスクを配置し、500℃以下の反応温度
に保つとともに紫外線を前記被処理物表面に照射
して、被処理物表面上に前記マスクのパターン通
りにPSG皮膜を選択成長させるところにある。
Another feature of the present invention is that organic silane and O 2 gas are introduced into a reaction vessel, and the workpiece placed in the reaction vessel is covered with an appropriate mask at a position away from the surface of the workpiece. The PSG film is selectively grown on the surface of the workpiece according to the pattern of the mask by irradiating the surface of the workpiece with ultraviolet rays while maintaining the reaction temperature at 500° C. or lower.

従来有機シラン系のCVDの場合には、700℃以
上の高温の反応温度でなければ分解反応も酸化反
応も起こさないところから、有機シラン系を用い
た低温CVDは不可能であつた。
Conventionally, in the case of organic silane-based CVD, low-temperature CVD using organic silane systems has been impossible because decomposition and oxidation reactions do not occur unless the reaction temperature is high, 700°C or higher.

発明者は、有機シラン−O2系の反応ガスに紫
外線を照射することによつて反応系が光励起され
(O2の一部がO3になる)、有機シランの酸化反応
が低温(400℃以下)でも進行することを見出し
た。
The inventor discovered that by irradiating an organosilane-O 2 -based reaction gas with ultraviolet light, the reaction system is photoexcited (part of O 2 becomes O 3 ), and the oxidation reaction of organosilane occurs at a low temperature (400°C). (below) was also found to progress.

しかも実験の結果、上記の酸化反応は主として
被処理物の表面で起こる表面反応であることが判
明した。この結果被処理物に凹凸があつても、凹
部にも凸部と変わりなく皮膜が均一厚さに成長
し、ステツプカバリツジに極めてすぐれるものと
なつた。また表面反応であることから、従来のよ
うに気相中で成長した粒子が落下して成長皮膜上
に付着したり、反応容器壁に付着した粒子が落下
して成長皮膜上に付着する。いわゆるパーテイク
ルの発生もほとんどなく、さらには成長皮膜も緻
密でピンホールも少なく、理想的な表面状態の皮
膜が得られる。
Moreover, as a result of experiments, it has been found that the above-mentioned oxidation reaction is mainly a surface reaction that occurs on the surface of the object to be treated. As a result, even if the object to be treated has irregularities, the film grows to a uniform thickness on the concave parts as well as on the convex parts, resulting in extremely excellent step coverage. Furthermore, since it is a surface reaction, particles grown in the gas phase fall and adhere to the grown film, as in the conventional case, and particles adhering to the walls of the reaction vessel fall and adhere to the grown film. There is almost no generation of so-called particles, and furthermore, the grown film is dense and has few pinholes, and a film with an ideal surface condition can be obtained.

さらに、紫外線が照射された部分のみが選択的
に光励起され、紫外線照射範囲の被処理物表面上
のみに選択的に皮膜が成長する。
Furthermore, only the portions irradiated with ultraviolet rays are selectively photoexcited, and a film selectively grows only on the surface of the object to be treated in the area irradiated with ultraviolet rays.

したがつて適宜なマスクを使用することによつ
て、被処理物表面上に所望のパターンの皮膜を形
成することができる。したがつて従来のように、
例えばSiO2絶縁膜に化学的エツチングを施すな
どの工程が省け、極めて有用である。
Therefore, by using an appropriate mask, it is possible to form a film in a desired pattern on the surface of the object to be treated. Therefore, as before,
For example, the process of chemically etching the SiO 2 insulating film can be omitted, making it extremely useful.

有機シラン(テトラエトキシシラン)は常温で
液体であるから取扱い上も安全である。
Organic silane (tetraethoxysilane) is a liquid at room temperature, so it is safe to handle.

第1図は反応装置の概要を示す説明図である。 FIG. 1 is an explanatory diagram showing an outline of the reaction apparatus.

有機シランは石英バブラー10中に収容され、
N2ガスをキヤリアガスとして石英バブラー10
中で気化され、流量制御弁12を経由して反応容
器14中に導入される。
The organosilane is contained in a quartz bubbler 10,
Quartz bubbler 10 with N2 gas as carrier gas
It is vaporized inside and introduced into the reaction vessel 14 via the flow control valve 12.

16は有機リンを収納する石英バブラーであ
り、有機リンは、石英バブラー16中で気化され
て、N2ガスをキヤリアガスとして流量制御弁1
8を経由して反応容器14中に導入される。有機
リンでなく無機リン(PH3)を用いてもよい。
SiO2膜を得る場合にはもちろんリン系ガスは不
要である。
16 is a quartz bubbler that stores organic phosphorus, and the organic phosphorus is vaporized in the quartz bubbler 16 and then passed through the flow control valve 1 using N2 gas as a carrier gas.
8 into the reaction vessel 14. Inorganic phosphorus (PH 3 ) may be used instead of organic phosphorus.
Of course, phosphorous gas is not necessary when obtaining a SiO 2 film.

O2ガスは流量制御弁20を介して反応容器1
4中に導入される。
O 2 gas is supplied to the reaction vessel 1 via the flow control valve 20.
It will be introduced during 4th.

22はHgランプであり、反応容器14外部に
配置され、サセプタ24上に載置したウエハー2
6の表面を照射する。
Reference numeral 22 denotes an Hg lamp, which is placed outside the reaction vessel 14 and is used to illuminate the wafer 2 placed on the susceptor 24.
Irradiate the surface of 6.

28はヒータであり、サセプタ24を加温し、
サセプタ24上に載置したウエハー26を約400
℃に昇温する。
28 is a heater that heats the susceptor 24;
Approximately 400 wafers 26 placed on the susceptor 24
Increase temperature to ℃.

しかして各反応ガスを流量制御弁を介して反応
容器14中に導入し、Hgランプ22によつて紫
外線をウエハー26表面上に照射すると、O2
スの一部がO3に変換し、O3の強力な酸化力によ
つて有機シランが400℃以下でも酸化され、所望
の皮膜を成長させることができる。
When each reaction gas is introduced into the reaction vessel 14 through the flow control valve and the surface of the wafer 26 is irradiated with ultraviolet rays by the Hg lamp 22, a portion of the O 2 gas is converted to O 3 and O The strong oxidizing power of No. 3 oxidizes organic silane even at temperatures below 400°C, allowing the desired film to grow.

また第2図に示すように、ウエハー26表面上
から若干離間した位置にマスク30を配置するこ
とによつて、マスク30に形成したパターン通り
に、皮膜をウエハー26上に選択成長させること
ができる。マスク30の素材としては石英ガラス
等の紫外線を透過するものを用い、クロム蒸着等
によつて紫外線の非透過部を形成し、紫外線の透
過部をもつて、皮膜形成のパターンとすることが
できる。該透過部を透過した紫外線によつてO2
ガスの一部がO3に変換し、主として表面反応ゆ
えに、皮膜をマスク30のパターン通りに選択成
長させることができる。
Furthermore, as shown in FIG. 2, by placing the mask 30 at a position slightly apart from the surface of the wafer 26, a film can be selectively grown on the wafer 26 according to the pattern formed on the mask 30. . As the material of the mask 30, a material that transmits ultraviolet rays such as quartz glass can be used, and a pattern for forming a film can be formed by forming a part that does not transmit ultraviolet rays by chromium deposition or the like and having a part that transmits ultraviolet rays. . O 2
Part of the gas is converted to O 3 and a film can be selectively grown according to the pattern of the mask 30 mainly due to the surface reaction.

以下に実施例を示す。 Examples are shown below.

実施例 1 テトラエトキシシランを80℃、600cc/分、O2
ガスを600cc/分、キヤリアガスとしてN2ガスを
0.8/分で反応容器中に導入し、Hgランプ(波
長184.9nm、254.0nm)で反応容器外部からシリ
コンのウエハー上を照射し、反応温度400℃で反
応させたところ、SiO2皮膜が1000Å/分で得ら
れた。
Example 1 Tetraethoxysilane at 80°C, 600cc/min, O 2
Gas at 600cc/min, N2 gas as carrier gas
When the silicon wafer was irradiated with a Hg lamp (wavelength 184.9nm, 254.0nm) from outside the reaction vessel and reacted at a reaction temperature of 400°C, the SiO 2 film was 1000Å/min. Got it in minutes.

SiO2皮膜は最終的にウエハー上に約1μmの厚
さで成長させた。
The SiO 2 film was finally grown on the wafer to a thickness of about 1 μm.

パーテイクルの発生はみられず、ステツプカバ
リツジも良好であつた。
No particles were observed, and step coverage was good.

またウエハー表面から若干離してマスクをお
き、マスクを通して紫外線を照射したところ、マ
スクのパターン通りに皮膜をウエハー上に選択成
長させることができた。
Furthermore, when a mask was placed slightly away from the wafer surface and ultraviolet rays were irradiated through the mask, a film could be selectively grown on the wafer according to the pattern of the mask.

実施例 2 上記と同条件で、さらに有機リンを流量
200cc/分で反応容器中に導入したところ、PSG
皮膜が1000Å/分で得られた。
Example 2 Under the same conditions as above, the flow rate of organic phosphorus was further increased.
When introduced into the reaction vessel at 200cc/min, PSG
Films were obtained at 1000 Å/min.

PSG皮膜は最終的にシリコンのウエハー上に
約1μmの厚さで成長させた。
The PSG film was finally grown on a silicon wafer to a thickness of approximately 1 μm.

パーテイクルの発生もみられず、ステツプカバ
リツジも良好であつた。またマスクを用いて同様
にウエハー上に皮膜を選択成長させることができ
た。
No particles were observed, and step coverage was good. Furthermore, a film could be selectively grown on the wafer using a mask.

以上のように本発明によれば次のような顕著な
作用効果を奏する。
As described above, the present invention provides the following remarkable effects.

デバイス上の絶縁保護膜をデバイスを損傷す
ることなく形成できる。
An insulating protective film on a device can be formed without damaging the device.

本発明において起こる反応はほとんど完全な
表面反応であるから、被処理物の凹部内にも皮
膜が均一に形成され、ステツプカバリツジに優
れる。
Since the reaction that occurs in the present invention is almost a complete surface reaction, a film is uniformly formed even within the recesses of the object to be treated, resulting in excellent step coverage.

また表面反応であるから、いわゆるパーテイ
クルの発生が抑止され、品質の優れた皮膜を得
ることができる。
Furthermore, since it is a surface reaction, the generation of so-called particles is suppressed, and a film of excellent quality can be obtained.

表面反応であるから、適宜なマスクを用いれ
ばマスクのパターン通りに皮膜を選択成長させ
ることができる。
Since this is a surface reaction, if an appropriate mask is used, the film can be selectively grown according to the pattern of the mask.

有機シランは液体であるので取扱いが容易で
あり、また無機シランのように発火する危険性
がないので極めて安全である。
Since organic silane is a liquid, it is easy to handle, and unlike inorganic silane, there is no risk of ignition, so it is extremely safe.

以上本発明につき好適な実施例を挙げて種々説
明したが、本発明はこの実施例に限定されるもの
ではなく、発明の精神を逸脱しない範囲内で多く
の改変を施し得るのはもちろんのことである。
Although the present invention has been variously explained above with reference to preferred embodiments, the present invention is not limited to these embodiments, and it goes without saying that many modifications can be made without departing from the spirit of the invention. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は反応装置の概要を示す説明図、第2図
はマスクを用いて皮膜をウエハー上に選択成長さ
せる場合を示す説明図である。 10……石英バブラー、12……流量制御弁、
14……反応容器、16……石英バブラー、1
8,20……流量制御弁、22……Hgランプ、
24……サセプタ、26……ウエハー、28……
ヒータ、30……マスク。
FIG. 1 is an explanatory diagram showing an outline of a reaction apparatus, and FIG. 2 is an explanatory diagram showing a case where a film is selectively grown on a wafer using a mask. 10...Quartz bubbler, 12...Flow control valve,
14... Reaction container, 16... Quartz bubbler, 1
8, 20...Flow control valve, 22...Hg lamp,
24...Susceptor, 26...Wafer, 28...
Heater, 30...Mask.

Claims (1)

【特許請求の範囲】 1 有機シランとO2ガスとを反応容器中に導入
し、反応容器中に載置した被処理物には、被処理
物表面から離間した位置に適宜なマスクを配置
し、500℃以下の反応温度に保つとともに紫外線
を前記被処理物表面に照射して、被処理物表面上
に前記マスクのパターン通りにSiO2皮膜を選択
成長させることを特徴とする気相成長方法。 2 有機シランとO2ガスとリン化合物とを反応
容器中に導入し、反応容器中に載置した被処理物
には、被処理物表面から離間した位置に適宜なマ
スクを配置し、500℃以下の反応温度に保つとと
もに紫外線を前記被処理物表面に照射して、被処
理物表面上に前記マスクのパターン通りにPSG
皮膜を選択成長させることを特徴とする気相成長
方法。
[Claims] 1. Organic silane and O 2 gas are introduced into a reaction vessel, and an appropriate mask is placed on the workpiece placed in the reaction vessel at a position spaced apart from the surface of the workpiece. , a vapor phase growth method characterized by selectively growing a SiO 2 film on the surface of the workpiece according to the pattern of the mask by maintaining the reaction temperature at 500°C or less and irradiating the surface of the workpiece with ultraviolet rays. . 2. Introduce organic silane, O 2 gas, and phosphorus compound into a reaction vessel, place an appropriate mask on the workpiece placed in the reaction vessel at a distance from the surface of the workpiece, and heat the workpiece at 500°C. While maintaining the reaction temperature below, the surface of the object to be treated is irradiated with ultraviolet rays, and PSG is applied on the surface of the object to be treated according to the pattern of the mask.
A vapor phase growth method characterized by selectively growing a film.
JP20024484A 1984-09-20 1984-09-25 Vapor growth method Granted JPS6176677A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP20024484A JPS6176677A (en) 1984-09-25 1984-09-25 Vapor growth method
US06/778,004 US4702936A (en) 1984-09-20 1985-09-20 Gas-phase growth process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20024484A JPS6176677A (en) 1984-09-25 1984-09-25 Vapor growth method

Publications (2)

Publication Number Publication Date
JPS6176677A JPS6176677A (en) 1986-04-19
JPH0357189B2 true JPH0357189B2 (en) 1991-08-30

Family

ID=16421186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20024484A Granted JPS6176677A (en) 1984-09-20 1984-09-25 Vapor growth method

Country Status (1)

Country Link
JP (1) JPS6176677A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190074A (en) * 1985-02-15 1986-08-23 Sharp Corp Formation of thin oxide film
TWI271424B (en) 2001-12-21 2007-01-21 Benq Corp Multicolor dye set and inkjet ink composition with high chroma

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953674A (en) * 1982-09-17 1984-03-28 Seiko Epson Corp Chemical vapor deposition method
JPS59215731A (en) * 1983-05-24 1984-12-05 Semiconductor Energy Lab Co Ltd Manufacture of silicon oxide film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953674A (en) * 1982-09-17 1984-03-28 Seiko Epson Corp Chemical vapor deposition method
JPS59215731A (en) * 1983-05-24 1984-12-05 Semiconductor Energy Lab Co Ltd Manufacture of silicon oxide film

Also Published As

Publication number Publication date
JPS6176677A (en) 1986-04-19

Similar Documents

Publication Publication Date Title
US4702936A (en) Gas-phase growth process
JPS6140035B2 (en)
US5795396A (en) Apparatus for forming crystalline film
JPH0329297B2 (en)
JPH0357189B2 (en)
JPS6177695A (en) Vapor growth method
JPS5936927A (en) Vapor phase growth apparatus for semiconductor
JPH0360918B2 (en)
KR20040084741A (en) Method for manufacturing insulation layer embedded-type single crystal silicon carbide substrate and its manufacturing apparatus
JPS6280271A (en) Vapor growth method
JPS6138269B2 (en)
JPH0491428A (en) Chemical vapor growth apparatus and semiconductor growth method by means of said apparatus
JPS60206446A (en) Photochemical gaseous phase growing apparatus
JPH0118149B2 (en)
JPS6140034B2 (en)
JPS6338430B2 (en)
JPS61117824A (en) Vapor phase reaction container
JPS60224783A (en) Production of silicon carbide coating
JPS61198733A (en) Method of forming thin-film
JPS6125213B2 (en)
JPH0657611B2 (en) Method for producing quartz glass thin film
JPH0891994A (en) Formation of crystalline silicon
JPH06191997A (en) Formation of sic crystal film
JPH01313394A (en) Method for growing silicon
JPH071753B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees