JPS6176677A - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JPS6176677A
JPS6176677A JP20024484A JP20024484A JPS6176677A JP S6176677 A JPS6176677 A JP S6176677A JP 20024484 A JP20024484 A JP 20024484A JP 20024484 A JP20024484 A JP 20024484A JP S6176677 A JPS6176677 A JP S6176677A
Authority
JP
Japan
Prior art keywords
film
mask
reaction
gas
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20024484A
Other languages
Japanese (ja)
Other versions
JPH0357189B2 (en
Inventor
Kazuo Maeda
和夫 前田
Toku Tokumasu
徳 徳増
Toshihiko Fukuyama
福山 敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Japan Inc
Original Assignee
Applied Materials Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Japan Inc filed Critical Applied Materials Japan Inc
Priority to JP20024484A priority Critical patent/JPS6176677A/en
Priority to US06/778,004 priority patent/US4702936A/en
Publication of JPS6176677A publication Critical patent/JPS6176677A/en
Publication of JPH0357189B2 publication Critical patent/JPH0357189B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth

Abstract

PURPOSE:To form a dense film having a uniform thickness at a low temp. by irradiating UV rays to an orgl. silane-O2 reactive gas and growing selectively the film on the surface of a material to be treated through the pattern of a mask. CONSTITUTION:Gaseous N2 is introduced into the org. silane in a quartz bubble 10 and is evaporated. The gas is introduced through a flow rate control valve 12 into a reaction vessel 14. The gaseous N2 is introduced into the org. phosphorus in a quartz bubbler 16 and is evaporated. The gas is introduced through a flow rate control valve 18 into the vessel 14. The gaseous O2 is introduced through a flow rate control valve 20 into the vessel 14. The UV rays are irradiated on the surface of a water 26 by an Hg lamp 22 in the vessel 14 to convert part of the gaseous O2 to O3, by which the org. silane is oxidized at <=500 deg.C reaction temp. The film conforming to the pattern of the mask 30 is selectively grown on the wafer 26 when the mask 30 is disposed on the surface of the wafer 26 apart at a slight spacing therefrom.

Description

【発明の詳細な説明】 本発明は気相成長方法に関し、一層詳細には、反応ガス
源として有機シラン−眞系を用いるとともに、紫外線を
照射することによって、反応系が光励起され、400℃
以下での低温気相成長が可能となるのみならず、マスク
を用いることによって皮膜の選択成長を行わせることが
でき、さらにはパーティクルの発生がほとんどなく、ま
たステップカバリッジにもすぐれる気相成長方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor phase growth method, and more specifically, the reaction system is photoexcited by using an organic silane-shin system as a reaction gas source and irradiating ultraviolet rays, and the reaction system is grown at 400°C.
Not only is it possible to perform low-temperature vapor phase growth at a It is about how to grow.

CV D (Chemical Vapor Depo
sition )法は、配線の終了したデバイス上に絶
縁保護膜を形成する場合などに広く実用化されている。
CVD (Chemical Vapor Depot)
The method has been widely put into practical use, such as when forming an insulating protective film on a device where wiring has been completed.

この場合に絶縁保i3j膜が被処理物表面に所望のパタ
ーンに選択成長させることができれば便宜である。
In this case, it would be convenient if the insulating i3j film could be selectively grown in a desired pattern on the surface of the object to be treated.

従来においては、例えば5iOz膜を被処理物表面全面
に成長させ、化学的エツチング等によって、5iOz膜
のパターン形成をしているが煩わしく、また工数が増大
してコスト高となる難点があった。
In the past, for example, a 5iOz film was grown on the entire surface of the object to be treated, and a pattern of the 5iOz film was formed by chemical etching or the like, but this was troublesome and had the disadvantage of increasing the number of steps and increasing costs.

また上記の絶縁保護膜などを形成する場合においては、
アルミニウム配線等を高熱から保護するために、反応温
度はできる限り低温(4oO°C程度)であることが望
ましい。
In addition, when forming the above-mentioned insulating protective film, etc.,
In order to protect aluminum wiring and the like from high heat, it is desirable that the reaction temperature be as low as possible (about 40°C).

従来400℃程度の温度で良質な5ioL膜、PSG膜
等を得るには、5i)lイーOz系で行うが、あるいは
プラズマCVD1を用いるしかなかった。
Conventionally, in order to obtain a high-quality 5ioL film, PSG film, etc. at a temperature of about 400° C., it was necessary to use a 5i)lEOz system or plasma CVD1.

しかしながら、前者においては反応が気相中での熱分解
反応であるため、気相中で粒子が成長して落下し、成長
皮膜上に付着するなど、いわゆるパーティクルの発生を
伴ったり、ステノプカバリノジ(均一被着性)に劣ると
いう難点がある。
However, in the former case, since the reaction is a thermal decomposition reaction in the gas phase, particles grow in the gas phase, fall, and adhere to the grown film, resulting in so-called particle generation and stenop recovery. It has the disadvantage of poor adhesiveness (uniform adhesion).

また後者のプラズマCVD法によるときは、いわゆるラ
ディエイション ダメソジ(radiationdam
age)が問題となり、またステノプカバリソジにもす
くれないため、現在のところ幅広くは実用されていない
In addition, when using the latter plasma CVD method, so-called radiation damage method is used.
This method is not widely used at present because it poses problems such as age) and is not suitable for stenope coverage.

本発明は上記難点に鑑みてなされたものであり、その目
的とするところは、皮膜の選択成長が容易かつ確実に行
え、パーティクルの発生が少なく、ステンプカバリソジ
にもすぐれミかつ低温での反応が可能な新たな気相成長
方法を提供するにあり、その特徴は、有機シランと0ム
ガスとを反応容器中に導入し、反応容器中に載置した被
処理物には、被処理物表面から離間した位置に適宜なマ
スクを配置し、500°C以下の反応温度に保つととも
に紫外線を前記被処理物表面に照射して、被処理物表面
上に前記マスクのパターン通りに皮膜を選択成長させる
ところにある。
The present invention has been made in view of the above-mentioned difficulties, and its objectives are to enable selective growth of a film easily and reliably, to generate fewer particles, to provide excellent stamp coverage and at low temperatures. The purpose is to provide a new vapor phase growth method that enables the reaction of A suitable mask is placed at a position away from the surface of the object, the reaction temperature is kept at 500°C or less, and the surface of the object to be treated is irradiated with ultraviolet rays to form a film on the surface of the object according to the pattern of the mask. It's about choosing and growing.

従来有機シラン系のCVDの場合には、700“C以上
の高温の反応温度でなければ分解反応も酸化反応も起こ
さないところから、有機シラン系を用いた低温CVDは
不可能であった。
Conventionally, in the case of organic silane-based CVD, low-temperature CVD using organic silane systems has been impossible because neither decomposition nor oxidation reactions occur unless the reaction temperature is high, 700"C or higher.

発明者は、有機シラン−02系の反応ガスに紫外線を照
射するごとによって反応系が光励起され((bの一部が
0)になる)、有機シランの酸化反応が低温(400℃
以下)でも進行することを見出した。
The inventor discovered that each time the organic silane-02-based reaction gas is irradiated with ultraviolet rays, the reaction system is photoexcited ((a part of b becomes 0)), and the oxidation reaction of the organic silane occurs at a low temperature (400°C).
(below) was also found to progress.

しかも実験の結果、上記の酸化反応は主として被処理物
の表面で起こる表面反応であることが判明した。この結
果被処理物に凹凸があっても、凹部にも凸部と変わりな
く皮膜が均一厚さに成長し、ステソプカバリソジに極め
てすぐれるものとなった。また表面反応であることから
、従来のように気相中で成長した粒子が落下して成長皮
膜上に付着したり、反応容器壁に付着した粒子が落下し
て成長皮膜上に付着する、いわゆるパーティクルの発生
もほとんどな(、さらには成長皮膜も緻密でピンホール
も少なく、理想的な表面状態の皮膜が得られる。
Moreover, as a result of experiments, it has been found that the above-mentioned oxidation reaction is mainly a surface reaction that occurs on the surface of the object to be treated. As a result, even if the object to be treated has irregularities, the film grows to a uniform thickness on the concave portions as well as on the convex portions, resulting in an extremely excellent stethoscope coverage method. In addition, since it is a surface reaction, particles grown in the gas phase may fall and adhere to the grown film, or particles that have adhered to the wall of the reaction vessel may fall and adhere to the grown film, unlike conventional methods. Almost no particles are generated (furthermore, the grown film is dense and has few pinholes, and a film with an ideal surface condition can be obtained.

さらに、紫外線が照射された部分のみが選択的に光励起
され、紫外線照射範囲の被処理物表面上のみに選択的に
皮膜が成長する。
Furthermore, only the portions irradiated with ultraviolet rays are selectively photoexcited, and a film selectively grows only on the surface of the object to be treated in the area irradiated with ultraviolet rays.

したがって適宜なマスクを使用することによって、被処
理物表面上に所望のパターンの皮膜を形成することがで
きる。したがって従来のように、例えば5iOz絶縁膜
に化学的エツチングを施すなどの工程が省け、極めて有
用である。
Therefore, by using an appropriate mask, a film with a desired pattern can be formed on the surface of the object to be treated. Therefore, the conventional process of chemically etching the 5iOz insulating film, for example, can be omitted, which is extremely useful.

有機シラン(テトラエトキシシラン)は常温で液体であ
るから取扱い上も安全である。
Organic silane (tetraethoxysilane) is a liquid at room temperature, so it is safe to handle.

第1図は反応装置の概要を示す説明図である。FIG. 1 is an explanatory diagram showing an outline of the reaction apparatus.

有機ンランは石英バブラー10中に収容され、NLガス
をキャリアガスとして石英バブラー1o中で気化され、
流量制御弁12を経由して反応容器14中に導入される
The organic lanthanide is contained in a quartz bubbler 10, and is vaporized in the quartz bubbler 1o using NL gas as a carrier gas.
It is introduced into the reaction vessel 14 via the flow control valve 12.

16は有機リンを収納する石英バブラーであり、を機リ
ンは、石英バブラー16中で気化されて、NZガスをキ
ャリアガスとして流量制御弁18を経由して反応容器1
4中に導入される。有機リンでなく無機リン(PIIA
)を用いてもよい。5iOL膜を得る場合にはもちろん
リン系ガスは不要である。
16 is a quartz bubbler that stores organic phosphorus, and the organic phosphorus is vaporized in the quartz bubbler 16 and sent to the reaction vessel 1 via a flow control valve 18 using NZ gas as a carrier gas.
It will be introduced during 4th. Inorganic phosphorus (PIIA) rather than organic phosphorus
) may be used. Of course, when obtaining a 5iOL film, phosphorous gas is not necessary.

Olガスは流量制御弁20を介して反応容器14中に導
入される。
Ol gas is introduced into the reaction vessel 14 via the flow control valve 20.

22はHgランプであり、反応容器14外部に配置され
、サセプタ24上に載置したウェハー26の表面を照射
する。
Reference numeral 22 denotes an Hg lamp, which is placed outside the reaction vessel 14 and irradiates the surface of the wafer 26 placed on the susceptor 24.

28はヒータであり、サセプタ24を加温し、サセプタ
24上に載置したウェハー26を約400℃に昇温する
A heater 28 heats the susceptor 24 and raises the temperature of the wafer 26 placed on the susceptor 24 to about 400°C.

しかして各反応ガスを流量制御弁を介して反応容器14
中に導入し1、l1gランプ22によって紫外線をウェ
ハー26表面上に照射すると、0□ガスの一部が01に
変換し、01の強力な酸化力によって有機シランが40
0°C以下でも酸化され、所望の皮膜を成長させること
ができる。
In this way, each reaction gas is supplied to the reaction vessel 14 via a flow rate control valve.
When the surface of the wafer 26 is irradiated with ultraviolet rays by the 1, l1g lamp 22, a part of the 0□ gas is converted to 01, and the strong oxidizing power of 01 converts the organic silane into 40
It is oxidized even at temperatures below 0°C, and a desired film can be grown.

また第2図に示すように、ウェハー26表面上から若干
離間した位置にマスク30を配置することによって、マ
スク30に形成したパターン通りに、皮膜をウェハー2
6上に選択成長させることができる。マスク30の素材
としては石英ガラス等の紫外線を透過するものを用い、
クロム蒸着等によって紫外線の非通過部を形成し、紫外
線の透過部をもって、皮膜形成のパターンとすることが
できる。該透過部を透過した紫外線によってOzガスの
一部が03に変換し、主として表面反応ゆえに、′皮膜
をマスク30のパターン通りに選択成長させることがで
きる。
Further, as shown in FIG. 2, by placing the mask 30 at a position slightly apart from the surface of the wafer 26, the film can be applied to the wafer 26 according to the pattern formed on the mask 30.
6 can be selectively grown. As the material of the mask 30, a material that transmits ultraviolet rays, such as quartz glass, is used.
A pattern for forming a film can be formed by forming a UV-blocking area by chromium vapor deposition or the like and having an UV-transmissive area. A portion of the Oz gas is converted to 03 by the ultraviolet rays transmitted through the transmitting portion, and the film can be selectively grown according to the pattern of the mask 30 mainly due to the surface reaction.

以下に実施例を示す。Examples are shown below.

実施例1 テトラエトキシシランを80℃、600CCZ分、OL
ガスを600cc/分、キャリアガスとしてN4ガスを
0.82/分で反応容器中に導入し、Hgランプ(波長
184.9nm 、254.Or+m )で反応容器外
部からウェハー上を照射し、反応温度400°Cで反応
させたところ、5iO−皮膜が1000人/分で得られ
た。
Example 1 Tetraethoxysilane at 80°C, 600CCZ minutes, OL
Gas was introduced into the reaction vessel at a rate of 600 cc/min and N4 gas was introduced as a carrier gas at a rate of 0.82/min, and the wafer was irradiated from outside the reaction vessel with an Hg lamp (wavelength 184.9 nm, 254.Or+m) to maintain the reaction temperature. When the reaction was carried out at 400°C, a 5iO film was obtained at a rate of 1000 per minute.

パーティクルの発生はみられず、ステップカハリソジも
良好であった。
No particles were observed, and the step strength was good.

またウェハー表面から若干離してマスクをおき、マスク
を通して紫外線を照射したところ、マスクのパターン通
りに皮膜をウェハー上に選択成長させることができた。
Furthermore, when a mask was placed a little distance from the wafer surface and ultraviolet rays were irradiated through the mask, a film could be selectively grown on the wafer according to the pattern of the mask.

実施例2 上記と同条件で、さらに有機リンを流量200cc/分
で反応容器中に導入したところ、PSG皮膜が1000
人/分で得られた。
Example 2 Under the same conditions as above, organic phosphorus was further introduced into the reaction vessel at a flow rate of 200 cc/min.
Obtained in people/minute.

パーティクルの発生もみられず、ステノプ力ハリソジも
良好であった。またマスクを用いて同様にウェハー上に
皮膜を選択成長させることができた。
No particles were observed, and the stenop force was good. Furthermore, we were able to selectively grow a film on the wafer using a mask.

以上のように本発明方法によるときは、紫外線を照射す
ることによって、有機リン系反応ガスを低温で反応させ
ることができるとともに、適宜なマスクを用いて、マス
クのパターン通りに皮膜を選択成長させることができる
。またパルティクルの発生もほとんどなく、ステノプ力
ハリソジも良好であるという著効を奏する。
As described above, when using the method of the present invention, by irradiating ultraviolet rays, the organic phosphorus-based reactive gas can be reacted at a low temperature, and by using an appropriate mask, a film can be selectively grown according to the pattern of the mask. be able to. In addition, there is almost no generation of particulates, and the stenop force is also good.

以上本発明につき好適な実施例を挙げて種々説明したが
、本発明はこの実施例に固定されるものではなく、発明
の精神を逸説しない範囲内で多くの改変を施し得るのは
もちろんのことである。
Although the present invention has been variously explained above with reference to preferred embodiments, the present invention is not limited to these embodiments, and it goes without saying that many modifications can be made without departing from the spirit of the invention. That's true.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は反応装置の概要を示す説明図、第2図はマスク
を用いて皮膜をウェハー上に選択成長させる場合を示す
説明図である。 IO・・・石英バブラー、   12・・・流量制御弁
、  14・・・反応容器、  16・・・石英バブラ
ー、   18.20・・・流量制御弁。 22・・・11gランプ、  24・・・サセプタ12
6・・・ウェハー、  28・・・ヒータ。 30・・・マスク。
FIG. 1 is an explanatory diagram showing an outline of a reaction apparatus, and FIG. 2 is an explanatory diagram showing a case where a film is selectively grown on a wafer using a mask. IO...Quartz bubbler, 12...Flow rate control valve, 14...Reaction container, 16...Quartz bubbler, 18.20...Flow rate control valve. 22...11g lamp, 24...susceptor 12
6...Wafer, 28...Heater. 30...Mask.

Claims (1)

【特許請求の範囲】[Claims] 1、有機シランとO_2ガスとを反応容器中に導入し、
反応容器中に載置した被処理物には、被処理物表面から
離間した位置に適宜なマスクを配置し、500℃以下の
反応温度に保つとともに紫外線を前記被処理物表面に照
射して、被処理物表面上に前記マスクのパターン通りに
皮膜を選択成長させることを特徴とする気相成長方法。
1. Introducing organic silane and O_2 gas into a reaction vessel,
A suitable mask is placed on the object to be processed placed in the reaction vessel at a position separated from the surface of the object to be processed, the reaction temperature is maintained at 500° C. or less, and the surface of the object to be processed is irradiated with ultraviolet rays. A vapor phase growth method characterized by selectively growing a film on the surface of an object to be processed according to the pattern of the mask.
JP20024484A 1984-09-20 1984-09-25 Vapor growth method Granted JPS6176677A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP20024484A JPS6176677A (en) 1984-09-25 1984-09-25 Vapor growth method
US06/778,004 US4702936A (en) 1984-09-20 1985-09-20 Gas-phase growth process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20024484A JPS6176677A (en) 1984-09-25 1984-09-25 Vapor growth method

Publications (2)

Publication Number Publication Date
JPS6176677A true JPS6176677A (en) 1986-04-19
JPH0357189B2 JPH0357189B2 (en) 1991-08-30

Family

ID=16421186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20024484A Granted JPS6176677A (en) 1984-09-20 1984-09-25 Vapor growth method

Country Status (1)

Country Link
JP (1) JPS6176677A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190074A (en) * 1985-02-15 1986-08-23 Sharp Corp Formation of thin oxide film
US6814790B2 (en) 2001-12-21 2004-11-09 Benq Corporation Multicolor dye set and inkjet ink composition with high chroma

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953674A (en) * 1982-09-17 1984-03-28 Seiko Epson Corp Chemical vapor deposition method
JPS59215731A (en) * 1983-05-24 1984-12-05 Semiconductor Energy Lab Co Ltd Manufacture of silicon oxide film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953674A (en) * 1982-09-17 1984-03-28 Seiko Epson Corp Chemical vapor deposition method
JPS59215731A (en) * 1983-05-24 1984-12-05 Semiconductor Energy Lab Co Ltd Manufacture of silicon oxide film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190074A (en) * 1985-02-15 1986-08-23 Sharp Corp Formation of thin oxide film
JPH0420982B2 (en) * 1985-02-15 1992-04-07 Shaapu Kk
US6814790B2 (en) 2001-12-21 2004-11-09 Benq Corporation Multicolor dye set and inkjet ink composition with high chroma

Also Published As

Publication number Publication date
JPH0357189B2 (en) 1991-08-30

Similar Documents

Publication Publication Date Title
US4702936A (en) Gas-phase growth process
US4421592A (en) Plasma enhanced deposition of semiconductors
JPH06330326A (en) Production of thin silica film
JPS6140035B2 (en)
JPS6177695A (en) Vapor growth method
JPS6176677A (en) Vapor growth method
JPH0360918B2 (en)
JPS5936927A (en) Vapor phase growth apparatus for semiconductor
JPS6280271A (en) Vapor growth method
US4609424A (en) Plasma enhanced deposition of semiconductors
JPS61234531A (en) Formation of silicon oxide
WO1986003228A1 (en) Method for deposition of gallium arsenide from vapor phase gallium-arsenic complexes
JPS61127119A (en) Method of growing silicon crystal
JPH0340920A (en) Production of thin zirconia film
JPS61117824A (en) Vapor phase reaction container
JPS61103538A (en) Vapor growth method
JPH01313395A (en) Method for growing silicon in vapor phase
JPH04125930A (en) Manufacture of semiconductor device
JP3554032B2 (en) Film formation method from low-temperature condensed phase
JPH0657611B2 (en) Method for producing quartz glass thin film
JPH06191997A (en) Formation of sic crystal film
JPS62278194A (en) Apparatus for diamond synthesis
JPS61198733A (en) Method of forming thin-film
JPS61121324A (en) Vapor growth equipment
JPS595622A (en) Vapor growth method for semiconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees