JPH0340920A - Production of thin zirconia film - Google Patents

Production of thin zirconia film

Info

Publication number
JPH0340920A
JPH0340920A JP17443789A JP17443789A JPH0340920A JP H0340920 A JPH0340920 A JP H0340920A JP 17443789 A JP17443789 A JP 17443789A JP 17443789 A JP17443789 A JP 17443789A JP H0340920 A JPH0340920 A JP H0340920A
Authority
JP
Japan
Prior art keywords
zirconia
regulated
pipe
thin film
alkoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17443789A
Other languages
Japanese (ja)
Other versions
JPH0776090B2 (en
Inventor
Toshio Omura
敏夫 大村
Kuniaki Kobayashi
小林 邦明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAIMUZU KK
Original Assignee
RAIMUZU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAIMUZU KK filed Critical RAIMUZU KK
Priority to JP1174437A priority Critical patent/JPH0776090B2/en
Publication of JPH0340920A publication Critical patent/JPH0340920A/en
Publication of JPH0776090B2 publication Critical patent/JPH0776090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve adhesive strength by carrying out decomposition by a chemical vapor deposition process at a specific temp. or below by using Zr alkoxide as raw material. CONSTITUTION:As a carrier gas, an inert gas, etc., such as Ar, are regulated to about 100cc/min by means of a mass flow controller 6b and supplied to a vaporizer 10. On the other hand, Ar gas flow is regulated to about 5l/min by means of a mass flow controller 6a in a pipe 7a. By the above procedures, a gaseous mixture of the vapor of Zr alkoxide, such as Zr tertiary butoxide, and Ar is further diluted with Ar regulated to about 5l/min and is then introduced via a pipe 7c and a nozzle 5 into a reaction vessel 1. Subsequently, mirror-finished substrates 4 made of SUS304, etc., in the reaction vessel 1 are heated to <=500 deg.C and pressure in the vessel 1 is maintained at about 75Torr to carry out film formation for about 1hr, by which transparent cubic ZrO2 films of 10-20mg are deposited on the substrates 4, respectively.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ジルコニア薄膜の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a zirconia thin film.

[従来の技術と課題] 周知の如く、ジルコニアは融点が高く高温材料として利
用されているが、純粋なジルコニアでは約1000℃で
低温型の単斜晶から正方品への移転が起こり、この転位
の際の体積変化から破壊が起こる。そのため、イツトリ
ウム(Y)やカルシウム(Ca)等を添加して高温相の
立方晶を広い温度域で安定化した安定化ジルコニアある
いは部分安定化ジルコニアとして用いられている。
[Prior art and issues] As is well known, zirconia has a high melting point and is used as a high-temperature material, but pure zirconia undergoes a transition from a low-temperature monoclinic crystal to a tetragonal crystal at approximately 1000°C, and this dislocation occurs. Destruction occurs from the volume change during . Therefore, it is used as stabilized zirconia or partially stabilized zirconia in which the high-temperature cubic crystal is stabilized over a wide temperature range by adding yttrium (Y), calcium (Ca), or the like.

ところで、ジルコニアを薄膜化する場合でも、高温で使
用する用途の物については安定化剤が添加される。薄膜
化技術の一つである気相化学反応法(CVD)によりジ
ルコニア薄膜を作成する場合には、一般にはジルコニウ
ム及び安定化剤のハロゲン化物を原料とした反応が用い
られているか、この反応では反応温度として約1000
℃の高温を要する。また、反応副生成物として腐食性ガ
スが生成し装置や基板を腐食するという問題がある。
By the way, even when making zirconia into a thin film, a stabilizer is added if the product is used at high temperatures. When creating a zirconia thin film using the vapor phase chemical reaction method (CVD), which is one of the thin film forming technologies, a reaction using zirconium and a stabilizer halide as raw materials is generally used. Approximately 1000 as reaction temperature
Requires high temperature of ℃. Further, there is a problem that corrosive gas is generated as a reaction by-product and corrodes the device and the substrate.

このようなことから、低温で分解でき、かつ腐食性ガス
の生成しない有機系ジルコニウム化合物及び安定化剤の
有機系化合物を用いたCVDが試みられている。こうし
た有機系化合物としては、アセチルアセトン錯体に代表
されるβ−ジケトン錯体といわれる化合物群が用いられ
ている。また、その他の有機系化合物としては、ジルコ
ニウムのアルコキシドが用いられている( J our
nal ofCrystal  Crows 74巻4
09頁1986年)。
For this reason, CVD using an organic zirconium compound and an organic compound as a stabilizer, which can be decomposed at low temperatures and do not generate corrosive gas, has been attempted. As such organic compounds, a group of compounds called β-diketone complexes, typified by acetylacetone complexes, are used. In addition, zirconium alkoxides are used as other organic compounds (Jour
nal of Crystal Crows Volume 74 4
09 p. 1986).

しかし、こうしたジルコニア有機化合物を用いた研究は
行なわれているが、これらの研究ではすべての安定化剤
を添加した安定化ジルコニア膜を目的とした物である。
However, although studies have been conducted using such zirconia organic compounds, all of these studies have aimed at stabilized zirconia films to which stabilizers have been added.

しかるに、安定化剤の原料となるYやCaの有機系化合
物には蒸気圧の高いものが少なく気相化学蒸着に用いる
場合に気化させるのに特別の工夫が必要となる。
However, few organic compounds such as Y and Ca that are raw materials for stabilizers have high vapor pressures, and special measures are required to vaporize them when used in vapor phase chemical vapor deposition.

また、ジルコニアを含めた酸化物薄膜の気相化学析出で
は、基板としてのシリコンなどの単結晶や石英等が用い
られている。金属基板を用いた場合には、金属と酸化物
の熱膨脹係数の差が大きいため、作成した膜の内部応力
により膜が剥離してしまう恐れがある。
Furthermore, in vapor phase chemical deposition of oxide thin films including zirconia, single crystals such as silicon, quartz, etc. are used as substrates. When a metal substrate is used, since there is a large difference in coefficient of thermal expansion between the metal and the oxide, there is a risk that the film will peel off due to internal stress in the film.

本発明は上記事情に鑑みてなされたもので、広い温度域
で安定で、しかも金属基板上に密着性よく形成しえるジ
ルコニア薄膜及びその製造方法を(是供することを目的
とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a zirconia thin film that is stable over a wide temperature range and can be formed with good adhesion on a metal substrate, and a method for manufacturing the same.

[課題を解決するための手段] 本願第1の発明は、安定化剤を添加しない立方晶ジルコ
ニア薄膜を高温で熱処理することを特徴とするジルコニ
ア薄膜の製造方法である。
[Means for Solving the Problems] The first invention of the present application is a method for producing a zirconia thin film, characterized in that a cubic zirconia thin film to which no stabilizer is added is heat-treated at a high temperature.

本願第1の発明において、熱処理温度は500℃以上に
する必要がある。これは、500℃未満では立方晶への
転位が起こらないか、あるいは転移が起きたとしてもそ
の速度は非常に遅く実際的ではないからである。
In the first invention of the present application, the heat treatment temperature needs to be 500° C. or higher. This is because at temperatures below 500° C., no transition to cubic crystals occurs, or even if the transition occurs, the rate is extremely slow and impractical.

本願第2の発明は、ジルコニウムのアルコキシドを原料
として化学気相成長析出法において500℃以下で分解
することを特徴とするジルコニア薄膜の製造方法である
The second invention of the present application is a method for producing a zirconia thin film, which is characterized by using a zirconium alkoxide as a raw material and decomposing it at 500° C. or lower in a chemical vapor deposition method.

本願第2の発明に係るジルコニウムのアルコキシドとし
ては例えばジルコニウムエトキシド、ジルコニウムイソ
プロキシド、ジルコニウムターシャリブトキシド等が挙
げられるが、化学気相析出法に用いる場合には蒸気圧が
高いジルコニウムターシャリブトキシドが好ましい。こ
こに、ジルコニウムターシャリブトキシドを用いた場合
には約250℃から分解反応が起こるが、500℃以上
の温度では安定相の単斜晶あるいは正方晶のジルコニア
が生威し好ましくない。
Examples of the zirconium alkoxide according to the second invention of the present application include zirconium ethoxide, zirconium isoprooxide, and zirconium tert-butoxide, but when used in chemical vapor deposition, zirconium tert-butoxide has a high vapor pressure. preferable. When zirconium tertiary butoxide is used, a decomposition reaction occurs from about 250°C, but at temperatures above 500°C, monoclinic or tetragonal zirconia, which is a stable phase, grows, which is not preferable.

前記ジルコニウムターシャリブトキシドのアルコキシド
の分解反応についてはこの化合物単独での熱分解反応、
あるいはこの原料に酸素等の酸化剤を添加した条件での
酸化分解反応、もしくは水蒸気を添加した加水分解等が
含まれる。
Regarding the decomposition reaction of the alkoxide of zirconium tert-butoxide, a thermal decomposition reaction of this compound alone,
Alternatively, it includes an oxidative decomposition reaction in which an oxidizing agent such as oxygen is added to the raw material, or a hydrolysis reaction in which water vapor is added.

化学気相析出法により上記ジルコニムのアルコキシドを
原料とした場合に混合されるガスとしては、窒素、アル
ゴン、ヘリウム等の不活性気体、水素等の還元性気体、
酸素、二酸化炭素、あるいは水蒸気等の酸化性気体等の
単独あるいは混合ガスが用いられる。
When the above-mentioned zirconium alkoxide is used as a raw material by chemical vapor deposition, the gases to be mixed include inert gases such as nitrogen, argon, and helium, reducing gases such as hydrogen,
Single or mixed gases such as oxygen, carbon dioxide, or oxidizing gases such as water vapor are used.

化学気相析出法により上記反応を行う場合の圧力として
は、常圧あるいは減圧条件が用いられる。
When the above reaction is carried out by chemical vapor deposition, normal pressure or reduced pressure conditions are used.

化学気相析出法により上記ジルコニア薄膜を作成する場
合の基板としては、セラミックスの焼結体、シリコン等
の単結晶、ガラス等のアモルファス材料、及びステンレ
ス鋼等の金属が挙げられる。
Examples of the substrate for producing the zirconia thin film by chemical vapor deposition include sintered ceramics, single crystals such as silicon, amorphous materials such as glass, and metals such as stainless steel.

[作用] 本願第1の発明によるジルコニア薄膜はベースとなる立
方晶ジルコニア薄膜が安定化剤を添加しないため、温度
の上昇により単斜晶、正方品、及び立方晶への転位が生
じるが、その際の体積変化による膜の破壊が生じない。
[Function] In the zirconia thin film according to the first invention of the present application, since no stabilizer is added to the cubic zirconia thin film serving as the base, dislocation to monoclinic, tetragonal, and cubic crystals occurs due to an increase in temperature; The membrane does not break due to volume changes during the process.

これは、化学気相析出法により作成した膜の構造が焼結
体とは異なり、相転位の際の応力が膜の内部に働かない
ためと思われる。このことは、熱膨張係数がジルコニア
と大きく異なる金属を基板とした場合にも膜の剥離が起
きず、金属材料の表面改質としての実用面での価値が大
きい事を意味する。
This is probably because the structure of the film created by chemical vapor deposition is different from that of a sintered body, and stress during phase transition does not act inside the film. This means that even when a metal with a thermal expansion coefficient significantly different from that of zirconia is used as a substrate, the film does not peel off, and it has great practical value as a surface modification of metal materials.

本願第2の発明により作成したジルコニア薄膜は低温で
作製したにもかかわらず、2000℃以上で安定に存在
する立方晶ジルコニアとなる(このことはX線回折によ
り確認できる)。これは、アルコキシド化合物の分解機
構と関係すると思われる。
Although the zirconia thin film produced according to the second invention of the present application was produced at a low temperature, it becomes a cubic zirconia that exists stably at a temperature of 2000° C. or higher (this can be confirmed by X-ray diffraction). This seems to be related to the decomposition mechanism of alkoxide compounds.

先に示したJ ournal of Crystal 
 Crows 74巻409頁1986年出はジルコニ
ウムターシャリブトキシドの単独での反応も行っている
が、ここでの析出物は正方晶あるいは単斜晶であった。
The Journal of Crystal shown earlier
Crows Vol. 74, p. 409, published in 1986, also conducted a reaction of zirconium tert-butoxide alone, but the precipitates there were tetragonal or monoclinic.

[実施例] 以下、本発明の一実施例について説明する。[Example] An embodiment of the present invention will be described below.

まず、本発明方法に用いられる製膜装置について第1図
を参照して説明する。
First, a film forming apparatus used in the method of the present invention will be explained with reference to FIG.

図中の1は、反応容器である。この反応容器1内にはヒ
ータ2を内臓したサセプタ3が配置されている。このサ
セプタ3は、図中矢印Xの如く回転するようになってい
る。前記サセプタ3上には、複数の基板4が後記ノズル
の直下に載置されている。前記基板4は、所定の温度に
加熱される。
1 in the figure is a reaction container. A susceptor 3 containing a heater 2 is disposed within the reaction vessel 1 . This susceptor 3 is designed to rotate as indicated by an arrow X in the figure. A plurality of substrates 4 are placed on the susceptor 3 directly below the nozzles described below. The substrate 4 is heated to a predetermined temperature.

前記反応容器1の上部にはノズル4が取付けられ、この
ノズル4にはマスフローコントローラ6aを取付けた第
1配管7aとマスフローコントーク6b。
A nozzle 4 is attached to the upper part of the reaction vessel 1, and the nozzle 4 is connected to a first pipe 7a to which a mass flow controller 6a is attached and a mass flow controller 6b.

バルブ8aを取付けた第2配管7bが第3配管7Cを介
して連通されている。前記マスフローコントローラ6b
の下流側の第2配管7bのバイパス配管9には、バルブ
8b、 8cを介してジルコニウムターシャリブトキシ
ドを収容した気化器10が設けられている。
A second pipe 7b to which a valve 8a is attached is communicated via a third pipe 7C. The mass flow controller 6b
A vaporizer 10 containing zirconium tert-butoxide is provided in the bypass pipe 9 of the second pipe 7b on the downstream side of the pipe 7b via valves 8b and 8c.

この気化器lOは、恒温槽11により例えば90℃に保
たれる。
This vaporizer IO is maintained at, for example, 90° C. by a constant temperature bath 11.

前記反応容器1の排気孔12には、排気ライン13を介
して真空ポンプ14が連通している。この真空ポンプ(
4により反応ガスが排気される。ここに、排気ライン1
3の途中で排気ガスに窒素を混合することにより、排気
速度を調整し、反応容器1内の圧力は一定圧力に保たれ
る。
A vacuum pump 14 is connected to the exhaust hole 12 of the reaction vessel 1 via an exhaust line 13 . This vacuum pump (
4, the reaction gas is exhausted. Here, exhaust line 1
By mixing nitrogen with the exhaust gas during step 3, the exhaust speed is adjusted and the pressure inside the reaction vessel 1 is maintained at a constant pressure.

次に、上記製膜装置を用いた本発明方法について説明す
る。即ち、 まず、第2配管7bのバルブ8aを“閉”、バイパスラ
イン9のバルブ8b、 8cを夫々“開°にする。
Next, the method of the present invention using the above film forming apparatus will be explained. That is, first, the valve 8a of the second pipe 7b is "closed," and the valves 8b and 8c of the bypass line 9 are each "opened."

次に、搬送ガスとしてのArガスがマスコントローラ6
bにより毎分100ccに調節し、気化器lOへ供給ス
る。一方、第1配管7aのマスフローコントローラ6a
では、A「ガスを毎分5gに調節する。これにより、ジ
ルコニウムターシャリブトキシドの蒸気とアルゴンの混
合ガスを、毎分5ρに調節されたArガスにより更に希
釈し、第3配管7e、 ノズル5を介して反応容器1内
に導入する。反応容器1内の基板4は、例えば350℃
に加熱する。ここに、基板4としては、例えば20川m
X 20mnX 2 +nmのサイズのコーニング70
59ガラス、S U S 304、Mo及び鏡面研磨し
たS U S 304を用いた。また、反応容器1内の
圧力は75T orrに保持した。
Next, Ar gas as a carrier gas is transferred to the mass controller 6.
Adjust the flow rate to 100 cc per minute using b and supply it to the vaporizer IO. On the other hand, the mass flow controller 6a of the first pipe 7a
Then, A' gas is adjusted to 5 g per minute. As a result, the mixed gas of zirconium tert-butoxide vapor and argon is further diluted with Ar gas adjusted to 5 p per minute, and the third pipe 7e, nozzle 5 The substrate 4 in the reaction container 1 is heated at, for example, 350°C.
Heat to. Here, as the substrate 4, for example, 20 meters
Corning 70 with size x 20mnX 2 +nm
59 glass, SUS 304, Mo, and mirror-polished SUS 304 were used. Further, the pressure inside the reaction vessel 1 was maintained at 75 Torr.

こうした条件下で1時間の成膜を行ったところ、各々の
基板には10〜201gの白色の膜が析出したが、特に
鏡面研磨したS U S 304上では透明な膜が得ら
れた。X線回折の結果、各々の基板上にの膜はすべて立
方晶ジルコニアである事が確認された。
When the film was formed for 1 hour under these conditions, 10 to 201 g of a white film was deposited on each substrate, but a transparent film was obtained especially on the mirror-polished SUS 304. As a result of X-ray diffraction, it was confirmed that all the films on each substrate were cubic zirconia.

また、MOを基板としたサンプルについては、さらに裏
面に同様の被膜を形成し全面を被覆した後、環状炉によ
り空気中1300℃で3時間熱処理を行った。熱処理後
のサンプルには剥離は認められなかった。X線回折の結
果、単斜晶ジルコニアである事が確認された。このサン
プルを更に環状炉により1400℃で1時間、900℃
で1時間の熱サイクルを5回繰り返し室濫に戻したが、
膜の剥離が認められなかった。
Further, for the sample using MO as a substrate, a similar film was further formed on the back surface to cover the entire surface, and then heat treatment was performed in air at 1300° C. for 3 hours in an annular furnace. No peeling was observed in the sample after heat treatment. As a result of X-ray diffraction, it was confirmed that it was monoclinic zirconia. This sample was further heated to 1400°C for 1 hour in a circular furnace and heated to 900°C.
I repeated the 1 hour heat cycle 5 times and returned to room temperature.
No peeling of the film was observed.

[発明の効果コ 以上詳述した如く本発明によれば、広い温度域で安定で
、しかも金属基板上に密着性よく形成でき、金属等の耐
熱保護膜や光学膜として利用可能なジルコニア薄膜を製
造する方法を提供できる。
[Effects of the Invention] As detailed above, the present invention provides a zirconia thin film that is stable over a wide temperature range, can be formed with good adhesion on metal substrates, and can be used as a heat-resistant protective film for metals or as an optical film. We can provide a manufacturing method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いられる成膜装置の説明図である。 1・・・反応容器、2・・・ヒータ、3・・・サセプタ
、4・・M板、5・・・ノズル、8a、 6b・・・マ
スフローコントローラ、7a、 7b、 7cm=配管
、8a、 l1lb、 8cm・・バルブ、lO・・・
気化器、il・・・恒温槽、12・・・排気孔、14・
・・真空ポンプ。
FIG. 1 is an explanatory diagram of a film forming apparatus used in the present invention. DESCRIPTION OF SYMBOLS 1... Reaction container, 2... Heater, 3... Susceptor, 4... M plate, 5... Nozzle, 8a, 6b... Mass flow controller, 7a, 7b, 7cm=piping, 8a, l1lb, 8cm...bulb, lO...
Vaporizer, IL... constant temperature bath, 12... exhaust hole, 14.
··Vacuum pump.

Claims (2)

【特許請求の範囲】[Claims] (1)安定化剤を添加しない立方晶ジルコニア薄膜を高
温で熱処理することを特徴とするジルコニア薄膜の製造
方法。
(1) A method for producing a zirconia thin film, which comprises heat-treating a cubic zirconia thin film without adding a stabilizer at a high temperature.
(2)ジルコニウムのアルコキシドを原料として化学気
相成長析出法において500℃以下で分解することを特
徴とするジルコニア薄膜の製造方法。
(2) A method for producing a zirconia thin film, which comprises using zirconium alkoxide as a raw material and decomposing it at 500° C. or lower in a chemical vapor deposition method.
JP1174437A 1989-07-06 1989-07-06 Method for manufacturing zirconia thin film Expired - Lifetime JPH0776090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1174437A JPH0776090B2 (en) 1989-07-06 1989-07-06 Method for manufacturing zirconia thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1174437A JPH0776090B2 (en) 1989-07-06 1989-07-06 Method for manufacturing zirconia thin film

Publications (2)

Publication Number Publication Date
JPH0340920A true JPH0340920A (en) 1991-02-21
JPH0776090B2 JPH0776090B2 (en) 1995-08-16

Family

ID=15978508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1174437A Expired - Lifetime JPH0776090B2 (en) 1989-07-06 1989-07-06 Method for manufacturing zirconia thin film

Country Status (1)

Country Link
JP (1) JPH0776090B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1132494A2 (en) * 2000-03-10 2001-09-12 Air Products And Chemicals, Inc. Deposition and annealing of multicomponent ZrSnTi and HfSnTi oxide thin films using solventless liquid mixture of precursors
JP2006346425A (en) * 2005-06-14 2006-12-28 Tsuno Takashi Nail care equipment
KR101558279B1 (en) * 2015-03-05 2015-10-13 주식회사 제논 Method for manufacturing abrasive tool removing keratin and abrasive tool removing keratin performing the same
KR20150129589A (en) 2014-05-12 2015-11-20 가부시키가이샤 도와 덴키 세이사쿠쇼 Fishing light control system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1132494A2 (en) * 2000-03-10 2001-09-12 Air Products And Chemicals, Inc. Deposition and annealing of multicomponent ZrSnTi and HfSnTi oxide thin films using solventless liquid mixture of precursors
EP1132494A3 (en) * 2000-03-10 2003-11-12 Air Products And Chemicals, Inc. Deposition and annealing of multicomponent ZrSnTi and HfSnTi oxide thin films using solventless liquid mixture of precursors
JP2006346425A (en) * 2005-06-14 2006-12-28 Tsuno Takashi Nail care equipment
KR20150129589A (en) 2014-05-12 2015-11-20 가부시키가이샤 도와 덴키 세이사쿠쇼 Fishing light control system
KR101558279B1 (en) * 2015-03-05 2015-10-13 주식회사 제논 Method for manufacturing abrasive tool removing keratin and abrasive tool removing keratin performing the same

Also Published As

Publication number Publication date
JPH0776090B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
US4421592A (en) Plasma enhanced deposition of semiconductors
JPS6364993A (en) Method for growing elemental semiconductor single crystal thin film
JPH0340920A (en) Production of thin zirconia film
JP3592218B2 (en) Manufacturing method of crystal thin film
JP2002363751A (en) Method and device for producing single crystal silicon carbide thin film
US3911176A (en) Method for vapor-phase growth of thin films of lithium niobate
US6808743B2 (en) Growth of ZnO film using single source CVD
US4609424A (en) Plasma enhanced deposition of semiconductors
JPS61234531A (en) Formation of silicon oxide
JP2568224B2 (en) Gas-phase chemical reaction material supply method
JPS6115150B2 (en)
JP2619888B2 (en) Manufacturing method of aluminum nitride
JPH059738A (en) Production of ferroelectric ceramic thin film
JPH04362017A (en) Formation of oriented ta2o5 thin film
JPH0585890A (en) Apparatus for forming thin film
EP1607498B1 (en) Method for forming oxide coating film, oxide coating film and coating film structure
Mark Single Crystal Silicon Overgrowths
JPS61136995A (en) Oxide thin film and its manufacture
Chour et al. Autostoichiometric vapor deposition: Part II. Experiment
JPH03253570A (en) Production of metal oxide by chemical vapor deposition method
JPH04300291A (en) Method for preparing diamond film
JPH04276076A (en) Chemical vapor growth method
JPH0521870Y2 (en)
JPS634069A (en) Production of thermally decomposed graphite
JPH02240918A (en) Purification of raw gas for thin film formation