JP2568224B2 - Gas-phase chemical reaction material supply method - Google Patents

Gas-phase chemical reaction material supply method

Info

Publication number
JP2568224B2
JP2568224B2 JP28056087A JP28056087A JP2568224B2 JP 2568224 B2 JP2568224 B2 JP 2568224B2 JP 28056087 A JP28056087 A JP 28056087A JP 28056087 A JP28056087 A JP 28056087A JP 2568224 B2 JP2568224 B2 JP 2568224B2
Authority
JP
Japan
Prior art keywords
gas
raw material
chemical reaction
vapor
phase chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28056087A
Other languages
Japanese (ja)
Other versions
JPH01123074A (en
Inventor
敏夫 大村
Original Assignee
株式会社ライムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ライムズ filed Critical 株式会社ライムズ
Priority to JP28056087A priority Critical patent/JP2568224B2/en
Publication of JPH01123074A publication Critical patent/JPH01123074A/en
Application granted granted Critical
Publication of JP2568224B2 publication Critical patent/JP2568224B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4488Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by in situ generation of reactive gas by chemical or electrochemical reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、気相化学反応法により薄膜又は粉体を製造
する際の原料の供給方法に関する。
TECHNICAL FIELD The present invention relates to a method for supplying raw materials when a thin film or powder is produced by a gas phase chemical reaction method.

[従来の技術及び問題点] 気相化学反応法は、通常、CVD法と呼ばれ、高純度で
均質な薄膜、粉体又はバルク材料が得られるため、半導
体装置などの電子材料、光ファイバ用母材などの光学材
料、金属材料の表面改質又はセラミックス用原料の製造
等の多方面に採用されている。かかる気相化学反応法で
は、原料となる物質又は原料と反応する物質の気体は状
態で反応炉の中に導入して原料ガスの分解又は化学反応
により目的とする化合物、金属もしくは非金属の薄膜、
粉体又はバルクを製造する方法である。
[Prior Art and Problems] The vapor-phase chemical reaction method is usually called a CVD method, and a highly pure and homogeneous thin film, powder or bulk material can be obtained. Therefore, it is used for electronic materials such as semiconductor devices and optical fibers. It is used in various fields such as surface modification of optical materials such as base materials and metal materials, or production of raw materials for ceramics. In such a gas phase chemical reaction method, a gas of a raw material or a material that reacts with the raw material is introduced into a reaction furnace in a state, and a target compound, metal or non-metal thin film is formed by decomposition or chemical reaction of the raw material gas. ,
It is a method for producing powder or bulk.

上述した原料となる物質としては、目的とする化合物
や単体の成分元素を含んだ化合物が用いられている。原
料となる物質は、常温で気体のものもあるが、液体又は
固体の物質も用いられる。気体の原料の場合には、高圧
ガス容器などから反応炉に直接供給できる。
As the above-mentioned raw material, a target compound or a compound containing a simple constituent element is used. The raw material may be a gas at room temperature, but a liquid or solid substance may also be used. In the case of a gaseous raw material, it can be directly supplied to the reaction furnace from a high pressure gas container or the like.

上記液体又は固体の物質については加熱して気体と
し、反応炉に導入する。この際、加熱された原料が充分
な蒸気圧を有する場合にはその蒸気圧の自圧によりその
まま気相化学反応の原料として用いることが可能とな
る。これに対し、蒸気圧が低い場合には不活性ガスをキ
ャリアガスとして加熱した原料物質と接触するように流
して原料物質の蒸気を押し流すことにより原料物質を含
んだ混合ガスとして反応炉に供給される。この時の原料
蒸気の供給速度は、原料物質への加熱による蒸気圧及び
キャリアガスの流量で決定される。こうした原料物質の
蒸気を含む混合ガスの供給速度を上げるには、従来より
原料物質の蒸気圧を上げる方法、又はキャリアガスの流
量を増加する方法が採用されている。
The liquid or solid substance is heated to gas and introduced into the reaction furnace. At this time, when the heated raw material has a sufficient vapor pressure, it can be used as it is as a raw material for a gas phase chemical reaction due to its own vapor pressure. On the other hand, when the vapor pressure is low, an inert gas is used as a carrier gas to flow so as to come into contact with the heated raw material, and the vapor of the raw material is pushed away to be supplied to the reactor as a mixed gas containing the raw material. It The feed rate of the raw material vapor at this time is determined by the vapor pressure by heating the raw material and the flow rate of the carrier gas. In order to increase the supply rate of the mixed gas containing the vapor of the raw material, a method of increasing the vapor pressure of the raw material or a method of increasing the flow rate of the carrier gas has been conventionally used.

上記原料物質の蒸気圧を上げる方法としては、原料の
加熱温度を高くすることが行われている。しかしなが
ら、原料物質によっては本来の物性上、蒸気圧の低いも
のがあったり、また高温で加熱した場合に蒸気とならず
に分解するものがあり、加熱温度を高くする方法は自ず
と制限される。また、装置に使用する部品類の耐熱性の
点からも高温での加熱に制限される。
As a method of increasing the vapor pressure of the raw material, the heating temperature of the raw material is increased. However, some raw materials have inherently low physical properties and have a low vapor pressure, and when they are heated at a high temperature, some of them decompose without forming vapor, so that the method of raising the heating temperature is naturally limited. Further, from the viewpoint of heat resistance of the parts used in the device, heating at high temperature is limited.

上記キャリアガスの流量を増加する方法では、ある程
度までは供給速度を上げることができる。しかしなが
ら、キャリアガスにより気化器の温度が低下したり、原
料の蒸気速度がキャリアガスの流量に追い付かずに蒸気
効率を低下させる問題があった。また、キャリアガスの
流量を増加させると原料の蒸気ではなく液滴等の形で反
応炉に供給されて生成物の均一性を低下させることもあ
る。更に、キャリアガスは一般的には気相化学反応に直
接関与しない物質であるため、原料物質の濃度を低下さ
せたり、反応の圧力を必要以上に増加させる等の問題も
生じる。
With the method of increasing the flow rate of the carrier gas, the supply rate can be increased to some extent. However, there are problems that the temperature of the vaporizer is lowered by the carrier gas, or the vapor velocity of the raw material does not catch up with the flow rate of the carrier gas and the vapor efficiency is lowered. In addition, when the flow rate of the carrier gas is increased, it may be supplied to the reaction furnace in the form of droplets or the like instead of the vapor of the raw material, and the uniformity of the product may be deteriorated. Further, since the carrier gas is generally a substance that is not directly involved in the gas phase chemical reaction, there are problems such as a decrease in the concentration of the raw material and an increase in the reaction pressure more than necessary.

一方、原料となる物質としては一般に目的とする化合
物や単体の成分元素のハロゲン化物、水素化物又は有機
基との結合を持った化合物が用いられている。ハロゲン
化物を用いる場合には、安価であるものの、その蒸気圧
が低く、その供給速度は上述した理由により制限され
る。水素化物や有機基との結合を持った化合物の中に
は、ハロゲン化物よりも蒸気圧の高い物質も存在する
が、これらの物質は高価であり、かつ反応性が高いため
取り扱いが難しいという問題があった。
On the other hand, as a raw material, a target compound, a halide of a single component element, a hydride, or a compound having a bond with an organic group is generally used. When a halide is used, it is inexpensive, but its vapor pressure is low, and its supply rate is limited for the reasons described above. Some compounds with a bond with hydrides and organic groups have higher vapor pressure than halides, but these substances are expensive and reactive and difficult to handle. was there.

本発明は、上記従来の問題点を解決すためになされた
もので、安価なハロゲン化物の原料をキャリアガスによ
り気相化学反応用装置に供給するに際し、該ハロゲン化
物原料の供給速度を向上し得る方法を提供しようとする
ものである。
The present invention has been made to solve the above conventional problems, and when supplying an inexpensive halide raw material to a vapor phase chemical reaction apparatus by a carrier gas, improves the supply rate of the halide raw material. It is meant to provide a way to get.

[問題点を解決するための手段] 本発明は、加熱したハロゲン化物にキャリアガスを通
すことによりハロゲン化物蒸気を気相化学反応用装置に
供給する方法において、前記キャリアガスに予めアルコ
ール類の蒸気を含ませることを特徴とする気相化学反応
用原料の供給方法である。
[Means for Solving the Problems] The present invention provides a method of supplying a halide vapor to a vapor phase chemical reaction apparatus by passing a carrier gas through a heated halide, wherein the vapor of alcohols is previously added to the carrier gas. The method for supplying a raw material for a gas phase chemical reaction is characterized by including:

上記ハロゲン化物は、例えば金属又は非金属の弗化
物、塩化物、臭化物、ヨウ化物であり、具体的にはB
F3、BCl3、AlCl3、SiCl4、TiCl4、MgCl2、GeCl4、ZrCl4
等を上げることができる。また、これらのハロゲン原子
の一部が他の原子と置換した化合物、例えばSiH2Cl2
も含まれる。これらのハロゲン化物を加熱する温度とし
ては、使用する原料の物性や気化器の構造、材質などに
より異なるが、−50℃から1300℃の範囲とすればよい。
The above-mentioned halide is, for example, a metal or non-metal fluoride, chloride, bromide or iodide, specifically B
F 3, BCl 3, AlCl 3 , SiCl 4, TiCl 4, MgCl 2, GeCl 4, ZrCl 4
Etc. can be raised. Also included are compounds in which some of these halogen atoms have been replaced with other atoms, such as SiH 2 Cl 2 . The temperature for heating these halides varies depending on the physical properties of the raw materials used, the structure and material of the vaporizer, etc., but may be in the range of -50 ° C to 1300 ° C.

上記キャリアガスは、原料との反応性の低い不活性ガ
スが通常使用される。具体的には、窒素、アルゴン、ヘ
リウム等を挙げることができ、場合によっては水素や酸
素を用いてもよい。
As the carrier gas, an inert gas having low reactivity with the raw material is usually used. Specifically, nitrogen, argon, helium, or the like can be given, and hydrogen or oxygen may be used depending on the case.

上記キャリアガスに予め含ませるアルコール類として
は、例えば一般式ROH(但し、式中のRは炭素数1〜20
のアルキル基、アルケニル基、アリール基を示す)にて
表されるものを挙げることができる。これらのアルコー
ル類をキャリアガスに含ませる方法としては、例えばキ
ャリアガスとアルコール類とを接触させる方法が採用さ
れる。一般的には、液体のアルコール類の中にノズルに
よりキャリアガスを噴射させるバブリング方式が採用さ
れる。この時の温度は、常温から使用するアルコール類
の沸点までとする。
Examples of the alcohols to be contained in the carrier gas in advance include, for example, the general formula ROH (wherein R is a carbon number of 1 to 20).
(Indicating an alkyl group, an alkenyl group, and an aryl group). As a method of including these alcohols in the carrier gas, for example, a method of contacting the carrier gas with the alcohols is adopted. Generally, a bubbling method in which a carrier gas is injected into a liquid alcohol by a nozzle is adopted. The temperature at this time is from room temperature to the boiling point of the alcohol used.

上記気相化学反応用装置としては、一般的なCVD反応
装置が使用され、圧力方式としては減圧又は常圧方式、
励起方式としては熱励起、プラズマ励起又は光励起など
が採用される。
As the vapor phase chemical reaction device, a general CVD reaction device is used, the pressure system is a reduced pressure or normal pressure system,
As the excitation method, thermal excitation, plasma excitation or optical excitation is adopted.

[作用] 本発明によれば、蒸気圧の低いハロゲン化物原料を従
来に比べて高い速度で供給できる。また、気相化学反応
においても通常の反応温度よりも低い温度で良好な反応
を達成できる。
[Operation] According to the present invention, a halide raw material having a low vapor pressure can be supplied at a higher rate than in the conventional case. Also, in the gas phase chemical reaction, a good reaction can be achieved at a temperature lower than the normal reaction temperature.

即ち、予めアルコール類を含ませたキャリアガスを気
化器等で加熱したハロゲン化物の原料に供給することに
よって、アルコール(ROH)が次のようにハロゲン化物
(MX)と反応してアルコキシドの生成が起こる。
That is, by supplying a carrier gas containing alcohols in advance to a halide raw material heated in a vaporizer or the like, alcohol (ROH) reacts with halide (MX) as follows to generate an alkoxide. Occur.

MXn+m・ROH→M(OR)mXn−m+m→HX 上記式でのアルコキシドの生成は、実際には完全に進
行しておらず、気相化学反応に供給される原料はハロゲ
ン化物とアルコキシドとの混合物であると考えられる。
このようなハロゲン化物とアルコキシドの蒸気の共存に
よって、気相中での成分元素の実質的濃度が高くなるた
め、ハロゲン化物の供給速度を増加できる。しかも、ハ
ロゲン化物単独に比べてより低温で分解できようにな
る。更に、気相化学反応装置に前記混合ガスを供給する
ことによって、該装置内での気相反応においての核生成
と核成長により進行する気相から固体の生成に際してア
ルコキシドがより低温で分解して核生成反応を促進する
ため、緻密な薄膜や微細な粉体の生成が可能となる。
MXn + m ・ ROH → M (OR) mXn−m + m → HX Actual formation of alkoxide in the above formula has not progressed completely, and the raw material supplied to the gas phase chemical reaction is a mixture of halide and alkoxide. Is considered to be.
The coexistence of the vapor of the halide and the alkoxide increases the substantial concentration of the constituent elements in the gas phase, and thus the supply rate of the halide can be increased. Moreover, it becomes possible to decompose at a lower temperature than the halide alone. Further, by supplying the mixed gas to the vapor phase chemical reaction apparatus, alkoxides are decomposed at a lower temperature when solid is produced from the vapor phase which progresses due to nucleation and nuclear growth in the vapor phase reaction in the apparatus. Since the nucleation reaction is promoted, a dense thin film or fine powder can be produced.

[発明の実施例] 以下、本発明の実施例を第1図を参照して詳細に説明
する。
Embodiment of the Invention Hereinafter, an embodiment of the present invention will be described in detail with reference to FIG.

まず、直径50mmの反応炉1内に配置された基板保持台
2上に10mm×10mm×2mmの寸法の石英製基板3を保持し
た後、排気管4を通して反応炉1内のガスを真空排気し
て内圧を20torrに調整し、更に電気炉5により100℃に
加熱した。つづいて、恒温槽(図示せず)により50℃に
保持され、t−ブチルアルコールが収容された第1の気
化器6にキャリアガスとしてのアルゴンを開状態の第1
バルブ7aを通して160cc/minの条件で供給してバブリン
グを行なった。ひきつづき、t−ブチルアルコールを含
むアルゴンガスを開状態の第2バルブ7bを通して電気炉
8により250℃に加熱され、塩化ジルコニウム9を収納
した石英製ボート10が配置された第2の気化器11に供給
した。次いで、第2の気化器11を通ったアルゴンガスを
前記反応炉1に供給すると共に、該反応炉1内に別系統
から水素と二酸化炭素の混合ガス(混合比1:1)を80cc/
minの条件で同時に供給して反応炉1内の基板保持台2
上の基板3に酸化ジルコニウムの薄膜を成膜した。その
結果、1時間の反応により厚さ10μmの酸化ジルコニウ
ム薄膜が形成された。
First, a quartz substrate 3 having a size of 10 mm × 10 mm × 2 mm is held on a substrate holder 2 arranged in the reactor 1 having a diameter of 50 mm, and then the gas in the reactor 1 is evacuated through an exhaust pipe 4. The internal pressure was adjusted to 20 torr and further heated to 100 ° C. by the electric furnace 5. Subsequently, the first vaporizer 6 kept at 50 ° C. in a constant temperature bath (not shown) and containing t-butyl alcohol contained argon as a carrier gas in the first open state.
Bubbling was performed through the valve 7a at a rate of 160 cc / min. Subsequently, argon gas containing t-butyl alcohol is heated to 250 ° C. by the electric furnace 8 through the second valve 7b in the open state, and is transferred to the second vaporizer 11 in which the quartz boat 10 containing the zirconium chloride 9 is arranged. Supplied. Next, the argon gas that has passed through the second vaporizer 11 is supplied to the reaction furnace 1, and a mixed gas of hydrogen and carbon dioxide (mixing ratio 1: 1) from another system is supplied to the reaction furnace 1 at 80 cc /
The substrate holder 2 in the reactor 1 is supplied simultaneously under the condition of min.
A zirconium oxide thin film was formed on the upper substrate 3. As a result, a zirconium oxide thin film having a thickness of 10 μm was formed by the reaction for 1 hour.

比較例1 第1、第2バルブ7a、7bを閉じ、キャリアガスとして
のアルゴンガス(流量160cc/min)に第3バルブ7cを通
して電気炉8により250℃に加熱され、塩化ジルコニウ
ム9を収納した石英製ボート10が配置された第2の気化
器11に直接供給した以外、実施例と同様な方法により酸
化ジルコニウムの成膜を行なった。その結果、1時間の
反応により厚さ4μmの酸化ジルコニウム薄膜が形成さ
れた。
Comparative Example 1 Quartz containing zirconium chloride 9 heated to 250 ° C. in an electric furnace 8 through the third valve 7c through argon gas (flow rate 160 cc / min) as a carrier gas with the first and second valves 7a and 7b closed. A zirconium oxide film was formed in the same manner as in the example, except that the boat 10 was directly supplied to the second vaporizer 11 in which the boat 10 was arranged. As a result, a 4 μm thick zirconium oxide thin film was formed by the reaction for 1 hour.

比較例2 第1、第2バルブ7a、7bを閉じ、キャリアガスとして
のアルゴンガスを流量250cc/minの条件で第3バルブ7c
を通して電気炉8により250℃に加熱され、塩化ジルコ
ニウム9を収納した石英製ボート10が配置された第2の
気化器11に直接供給した以外、実施例と同様な方法によ
り酸化ジルコニウムの成膜を行なった。その結果、1時
間の反応により厚さ6μmの酸化ジルコニウム薄膜が形
成された。
Comparative Example 2 The first and second valves 7a and 7b were closed, and the third valve 7c was operated under the condition that the flow rate of argon gas as a carrier gas was 250cc / min.
A zirconium oxide film was formed in the same manner as in the example, except that it was heated to 250 ° C. by the electric furnace 8 and directly supplied to the second vaporizer 11 in which the quartz boat 10 containing the zirconium chloride 9 was placed. I did. As a result, a zirconium oxide thin film having a thickness of 6 μm was formed by the reaction for 1 hour.

以上の結果から本発明のようにキャリアガス中に予め
アルコール蒸気を含ませることにより酸化ジルコニウム
の成膜速度を著しく向上できることがわかる。
From the above results, it is understood that the film formation rate of zirconium oxide can be remarkably improved by preliminarily including alcohol vapor in the carrier gas as in the present invention.

[発明の効果] 以上詳述した如く、本発明の気相化学反応用原料の供
給方法によれば安価なハロゲン化物の原料をキャリアガ
スにより気相化学反応用装置に供給するに際し、該ハロ
ゲン化物原料の供給速度を向上でき、ひいては気相化学
反応を効率よく行なうことができる等顕著な効果を有す
る。
[Effects of the Invention] As described in detail above, according to the method for supplying a vapor phase chemical reaction raw material of the present invention, when an inexpensive halide raw material is supplied to a vapor phase chemical reaction apparatus by a carrier gas, the halide It has a remarkable effect that the feed rate of the raw material can be improved, and the gas phase chemical reaction can be efficiently performed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例及び比較例に使用した成膜装置
を示す概略図である。 1……反応炉、2……基板保持台、3……石英製基板、
5、8……電気炉、6……第1の気化器、9……塩化ジ
ルコニウム、11……第2の気化器。
FIG. 1 is a schematic view showing a film forming apparatus used in Examples and Comparative Examples of the present invention. 1 ... Reactor, 2 ... Substrate holder, 3 ... Quartz substrate,
5, 8 ... Electric furnace, 6 ... First vaporizer, 9 ... Zirconium chloride, 11 ... Second vaporizer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】加熱したハロゲン化物にキャリアガスを通
すことによりハロゲン化物蒸気を気相化学反応用装置に
供給する方法において、前記キャリアガスに予めアルコ
ール類の蒸気を含ませることを特徴とする気相化学反応
用原料の供給方法。
1. A method for supplying a vapor of a halide to a vapor phase chemical reaction apparatus by passing a carrier gas through a heated halide, wherein the vapor of alcohols is contained in advance in the carrier gas. Method of supplying raw material for phase chemical reaction.
JP28056087A 1987-11-06 1987-11-06 Gas-phase chemical reaction material supply method Expired - Lifetime JP2568224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28056087A JP2568224B2 (en) 1987-11-06 1987-11-06 Gas-phase chemical reaction material supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28056087A JP2568224B2 (en) 1987-11-06 1987-11-06 Gas-phase chemical reaction material supply method

Publications (2)

Publication Number Publication Date
JPH01123074A JPH01123074A (en) 1989-05-16
JP2568224B2 true JP2568224B2 (en) 1996-12-25

Family

ID=17626737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28056087A Expired - Lifetime JP2568224B2 (en) 1987-11-06 1987-11-06 Gas-phase chemical reaction material supply method

Country Status (1)

Country Link
JP (1) JP2568224B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323376A (en) * 1991-04-22 1992-11-12 Osaka Gas Co Ltd Production of thin oxide film
JP4540144B2 (en) * 1999-04-06 2010-09-08 株式会社アルバック CVD method and vacuum processing apparatus
JPWO2014069487A1 (en) * 2012-10-31 2016-09-08 旭硝子株式会社 Thin film formation method

Also Published As

Publication number Publication date
JPH01123074A (en) 1989-05-16

Similar Documents

Publication Publication Date Title
JP5175157B2 (en) Chemicals for atomic layer deposition and atomic layer thin film deposition
JP4852527B2 (en) Low zirconium hafnium halide composition
US7348445B2 (en) Organoaluminum precursor compounds
JPH05202476A (en) Copper complex with which selective vapor deposition of copper thin film can be done, its method for vapor phase deposition and method for selective etching of thin film
US20060193984A1 (en) Organoaluminum precursor compounds
JPH08232069A (en) Method and apparatus for sublimating solid substance
EP0212691A1 (en) Low temperature chemical vapor deposition of silicon dioxide films
EP0979316A1 (en) Fluidized bed reactor to deposit a material on a surface by chemical vapour deposition, and methods of forming a coated substrate therewith
EP0617142A1 (en) Preparation of silica thin films
JPH08225395A (en) Production of diamond doped with boron
KR20180132568A (en) Precusor compositions including organo group 4 compounds and method for forming thin film using the same
US3396052A (en) Method for coating semiconductor devices with silicon oxide
JP2568224B2 (en) Gas-phase chemical reaction material supply method
KR100442963B1 (en) Method of manufacturing metal layer having high degree of purity
US20050271817A1 (en) Method for preparation of aluminum oxide thin film
Kaufmann et al. Metalorganic chemical vapour deposition of oriented ZnO films
JP4107923B2 (en) Method for producing yttrium-containing composite oxide thin film
JPS61234531A (en) Formation of silicon oxide
JP2680863B2 (en) Vapor growth method of metal oxide film
US3804664A (en) Process for chemical vapor deposition of zirconium carbide
JP2800686B2 (en) Method of forming high-purity platinum film
JP2619888B2 (en) Manufacturing method of aluminum nitride
JPH0156142B2 (en)
JP2544373B2 (en) Zirconia film and method for producing the same
JPH09287075A (en) Formation of high purity platinum thin film