JPH0156142B2 - - Google Patents

Info

Publication number
JPH0156142B2
JPH0156142B2 JP7884981A JP7884981A JPH0156142B2 JP H0156142 B2 JPH0156142 B2 JP H0156142B2 JP 7884981 A JP7884981 A JP 7884981A JP 7884981 A JP7884981 A JP 7884981A JP H0156142 B2 JPH0156142 B2 JP H0156142B2
Authority
JP
Japan
Prior art keywords
phosphorus
reactive gas
boron
substrate
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7884981A
Other languages
Japanese (ja)
Other versions
JPS57196710A (en
Inventor
Shunpei Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP7884981A priority Critical patent/JPS57196710A/en
Publication of JPS57196710A publication Critical patent/JPS57196710A/en
Publication of JPH0156142B2 publication Critical patent/JPH0156142B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Surface Treatment Of Glass (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は元素の周期律表価および価の元素
を有する反応性気体特に金属有機物または水素化
物を1気圧以下に保持された反応容器内のプラズ
マ雰囲気中に導入し、化学的に分解、反応せしめ
ることにより500℃以下に加熱された基板上に
化合物を形成せしめることを目的とするプラズ
マ気相法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves introducing a reactive gas, particularly a metal-organic substance or a hydride, having an element's periodic table value and valence into a plasma atmosphere in a reaction vessel maintained at 1 atmosphere or less, This invention relates to a plasma vapor phase method that aims to form a compound on a substrate heated to 500°C or less by chemically decomposing and reacting it.

本発明はこれまでエピタキシアル成長、減圧気
相法では作ることができなかつた低い温度すなわ
ち500℃以下、場合によつては100〜350℃の温度
にて化合物であるリン化ホウ素(BPという)
等の化合物の誘電体または半導体を形成せしめる
ことを目的としている。
The present invention is capable of producing boron phosphide (BP), which is a compound, at a low temperature, that is, below 500°C, and in some cases at a temperature of 100 to 350°C, which could not be produced by epitaxial growth or reduced pressure vapor phase method.
The purpose is to form dielectrics or semiconductors of such compounds.

従来、これらの材料は反応性気体を高温かつ超
高温度の雰囲気下においてのみ形成でき、それら
は単結晶またはエピタキシアル成長せしめる被膜
として作られていた。このためその被膜形成温度
は、700〜1300℃であり、形成された被膜も単結
晶であればあるほどよいとされていた。
Previously, these materials could only be formed in reactive gas atmospheres at high and very high temperatures, and they were made as single crystals or epitaxially grown films. For this reason, the film formation temperature is 700 to 1300°C, and it has been thought that the more monocrystalline the formed film is, the better.

しかし本発明人はかかる化合物においても
半導体は非晶質構造(以下ASという)またはシ
ヨートレンジオーダ(10〜300Å)において結晶
性または規則性を有するセミアモルフアス構造
(以下SASという)において同時に水素またはハ
ロゲンを添加することにより再結合中心、欠陥を
保償することにより半導体としての特性も維持す
ることを見い出し、さらにその作製方法としてプ
ラズマ気相法を500℃以下の温度好ましくは100〜
350℃とすることによりASまたはSASの半導体特
性を有する化合物さらに、BP等の誘電体
(BPは半導体としての特性をも有するがここでは
誘電体として記す)を水素等の再結合中心を必ず
しも必要としない構造の被膜を同様にプラズマ気
相法により500℃以下の温度で形成することがで
きた。
However, the present inventors have discovered that even in such compounds, semiconductors simultaneously contain hydrogen in an amorphous structure (hereinafter referred to as AS) or a semi-amorphous structure (hereinafter referred to as SAS) having crystallinity or regularity in the short range (10 to 300 Å). It was also discovered that by adding halogen, recombination centers and defects are guaranteed, thereby maintaining the properties of a semiconductor.Furthermore, as a manufacturing method, plasma vapor phase method is used at a temperature of 500℃ or less, preferably 100℃ or less.
At 350°C, compounds with AS or SAS semiconductor properties can be created.Furthermore, dielectrics such as BP (BP is also referred to as a dielectric here, although it also has semiconductor properties) do not necessarily require recombination centers such as hydrogen. Similarly, we were able to form a film with a non-containing structure using the plasma vapor phase method at temperatures below 500°C.

金属有機物(以下MOという)または水素化物
として具体的に用いた反応性気体(バブラ中に保
存されている場合は液体または固体でありこれら
に熱を加えさらにキヤリアスガスをふきつけるこ
とによりガス化できる反応物をも本発明では反応
性気体という)としては以下の如くである。
A reaction in which a reactive gas (liquid or solid when stored in a bubbler) specifically used as a metal-organic substance (hereinafter referred to as MO) or a hydride can be gasified by heating it and then blowing it with a carrier gas. In the present invention, these substances are also referred to as reactive gases) as follows.

MOの価反応性気体としての代表例は以下の
如くである。
Representative examples of MO as a reactive gas are as follows.

化合物 MP(℃) BP(℃) (CH3)3B −159.8 −20 (C2H5)3B −92.9 95 (i-C4H4)3B −88 188 さらに価の反応性気体としてジボラン
(B2H6)を用いることができる。
Compound MP(℃) BP(℃) (CH 3 ) 3 B −159.8 −20 (C 2 H 5 ) 3 B −92.9 95 (iC 4 H 4 ) 3 B −88 188 In addition, diborane ( B 2 H 6 ) can be used.

またMOの価の反応性気体としては 化合物 MP(℃) BP(℃) (CH3)3P −85 37.8 (C2H5)3P −88 129 さらに価の反応性気体としてフオスヒン
(PH3)を用いることができる。本発明において
は価は水素化物の気体がその使用において便利
でありきわめて実用化しやすかつた。
In addition, as a reactive gas with a valence of MO, the compound MP(℃) BP(℃) (CH 3 ) 3 P −85 37.8 (C 2 H 5 ) 3 P −88 129 Furthermore, as a reactive gas with a valence of MO, phosphin (PH 3 ) can be used. In the present invention, a hydride gas is convenient to use and is extremely easy to put into practical use.

以下に本発明の実施例を図面に従つて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

実施例 第1図は本発明のプラズマ気相法を実施するた
めの装置の概略を示す。
EXAMPLE FIG. 1 schematically shows an apparatus for carrying out the plasma vapor phase method of the present invention.

図面において被形成面を有する基板1は高周波
または直流放電によるプラズマ発生用電極2上に
配置されヒータ5により加熱される。他方の電極
(陽極)3は反応性気体のふき出しノズル11を
有し9の如く下方向にふき出させ、基板上に垂直
に蒸積させている。同時にプラズマ電界も基板1
の表面に垂直方向に配位させている。反応性気体
は導入口6よりノズル11をへて反応容器8にて
基板にふきつけられ不要物は排気口7よりロータ
リーポンプをへて排気され、さらに反応容器内を
0.001torr〜10torr、代表的には0.1〜1torrに保持
される。さらに例えば価の元素を有するMOの
反応性気体はバブラ12に充填され、キヤリアガ
スが16より流量計13をへて導入され、電子恒
温そう19により制御された温度の蒸気圧に従い
反応性気体が気化されて反応容器内に導かれる。
In the drawing, a substrate 1 having a surface to be formed is placed on an electrode 2 for generating plasma by high frequency or direct current discharge, and heated by a heater 5. The other electrode (anode) 3 has a nozzle 11 for blowing out reactive gas, and blows out the reactive gas downward as shown at 9, so that it is vaporized vertically onto the substrate. At the same time, the plasma electric field also changes to substrate 1.
is arranged perpendicularly to the surface of The reactive gas passes through the nozzle 11 from the inlet port 6 and is blown onto the substrate in the reaction vessel 8, and the unnecessary substances are exhausted from the exhaust port 7 through the rotary pump, and further inside the reaction vessel.
It is maintained between 0.001 torr and 10 torr, typically between 0.1 and 1 torr. Further, a reactive gas such as MO having a valence element is filled in a bubbler 12, a carrier gas is introduced from 16 through a flow meter 13, and the reactive gas is vaporized according to the vapor pressure at a temperature controlled by an electronic thermostat 19. and guided into the reaction vessel.

さらに価の元素を含む水素化物気体は17よ
り流量計14をへて反応容器内へ導入される。ノ
ズル11内で反応してしまう場合は、流量計14
の出口を直接反応容器8に連結した。キヤリアガ
スは水素またはヘリユームが18より流量計15
をへて導入させた。
Further, a hydride gas containing a valent element is introduced from 17 through a flow meter 14 into the reaction vessel. If a reaction occurs within the nozzle 11, the flow meter 14
The outlet of was directly connected to reaction vessel 8. The carrier gas is hydrogen or helium from 18 to flowmeter 15.
It was introduced after

実施例 2 実施例1の装置を用い(C2H53Bをバブラに充
填した。バブラはステンレス製であり、さらにフ
オスヒンを17より水素にて希釈して導入した。
16よりのキヤリアガスは水素またはヘリユーム
を用いた。
Example 2 Using the apparatus of Example 1, (C 2 H 5 ) 3 B was filled into a bubbler. The bubbler was made of stainless steel, and phosphine diluted with hydrogen from 17 was introduced.
The carrier gas from No. 16 was hydrogen or helium.

基板の温度を100〜500℃特に300℃とした時
13.56MHzの周波数の高周波(10〜150W)にて基
板上にBPまたはBとPの化合物を作ることがで
きた。従来は800〜1600℃で形成されていたが、
それよりも400〜600℃も低い温度で作ることがで
きるため、ガラス基板上に被膜を機械摩耗防止用
として作ることができ、サーマルプリンター等の
機械保護膜としてきわめてすぐれたものであつ
た。
When the substrate temperature is 100 to 500℃, especially 300℃
We were able to create BP or a compound of B and P on the substrate using high frequency (10 to 150 W) at a frequency of 13.56 MHz. Conventionally, it was formed at 800-1600℃,
Since it can be produced at a temperature 400 to 600°C lower than that, it is possible to produce a film on a glass substrate to prevent mechanical wear, making it an excellent film for protecting machines such as thermal printers.

以上の説明より明らかな如く、本発明は価の
元素特に族と価の元素族とを反応せしめる
ことにより化合物を500℃以下の温度で作る
ことができ、特に誘電体;半導体ともにASまた
はSASとさせることができた。そしてそれらは
この実施例に示されたもののみではなく本発明の
思想をさらに発展させることができることはいう
までもない。
As is clear from the above explanation, the present invention allows compounds to be produced at temperatures below 500°C by reacting valence elements, particularly groups, and valence elements, and in particular to dielectrics; both semiconductors and AS or SAS. I was able to do it. It goes without saying that they are not limited to those shown in this embodiment, and the idea of the present invention can be further developed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するためのプラズマ
CVD装置の概要を示す。
Figure 1 shows a plasma for carrying out the present invention.
An overview of the CVD equipment is shown.

Claims (1)

【特許請求の範囲】 1 元素周期律表価のホウ素元素を有する反応
性気体および価のリン元素を有する反応性気体
を1気圧以下に保持された反応容器内のプラズマ
雰囲気中に導入し化学的に活性化、分解反応せし
めることにより基板上に、BP(リン化ホウ素)ま
たはB(ホウ素)とP(リン)の化合物を機械摩耗
防止用保護膜として形成せしめることを特徴とす
るプラズマ気相法。 2 特許請求の範囲第1項において、価のホウ
素を有する反応性気体としてのジボラン、トリメ
チルホウ素((CH33B)、トリエチルホウ素
((C2H53B)、または((i−C4H93B)とV価の
リンを有する反応性気体としてフオスヒン、トリ
メチルリン((CH33P)またはトリエチルリン
((C2H53P)とによりリン化ホウ素を形成するこ
とを特徴とするプラズマ気相法。 3 特許請求の範囲第1項において、基板はサー
マルヘツドを構成し、かかる基板上に機械保護膜
としてBP(リン化ホウ素)またはB(ホウ素)ま
たはP(リン)の化合物を100〜500℃の温度で形
成することを特徴とするプラズマ気相法。
[Scope of Claims] A reactive gas having a boron element having a valence of 1 and a reactive gas having a phosphorus element having a valence of 1 are introduced into a plasma atmosphere in a reaction vessel maintained at 1 atmosphere or less, and chemical A plasma vapor phase method characterized by forming BP (boron phosphide) or a compound of B (boron) and P (phosphorus) on a substrate as a protective film for preventing mechanical wear by activating and causing a decomposition reaction. . 2. Claim 1 states that diborane, trimethylboron ((CH 3 ) 3 B), triethylboron ((C 2 H 5 ) 3 B), or ((i -C 4 H 9 ) 3 B) and boron phosphide with phosphin, trimethyl phosphorus ((CH 3 ) 3 P) or triethyl phosphorus ((C 2 H 5 ) 3 P) as a reactive gas with V-valent phosphorus. A plasma vapor phase method characterized by the formation of 3 In claim 1, the substrate constitutes a thermal head, and a compound of BP (boron phosphide) or B (boron) or P (phosphorus) is coated on the substrate as a mechanical protective film at 100 to 500°C. A plasma vapor phase method characterized by formation at high temperatures.
JP7884981A 1981-05-25 1981-05-25 Plasma vapor phase method Granted JPS57196710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7884981A JPS57196710A (en) 1981-05-25 1981-05-25 Plasma vapor phase method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7884981A JPS57196710A (en) 1981-05-25 1981-05-25 Plasma vapor phase method

Publications (2)

Publication Number Publication Date
JPS57196710A JPS57196710A (en) 1982-12-02
JPH0156142B2 true JPH0156142B2 (en) 1989-11-29

Family

ID=13673268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7884981A Granted JPS57196710A (en) 1981-05-25 1981-05-25 Plasma vapor phase method

Country Status (1)

Country Link
JP (1) JPS57196710A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128179A (en) * 1986-11-18 1988-05-31 Sumitomo Electric Ind Ltd Method and apparatus for synthesizing hard boron nitride
JP2814061B2 (en) * 1994-11-07 1998-10-22 株式会社半導体エネルギー研究所 Semiconductor device manufacturing method
EP2886515A1 (en) * 2013-12-23 2015-06-24 Université Pierre et Marie Curie (Paris 6) Production of boron phosphide by reduction of boron phosphate with an alkaline metal

Also Published As

Publication number Publication date
JPS57196710A (en) 1982-12-02

Similar Documents

Publication Publication Date Title
US4501769A (en) Method for selective deposition of layer structures consisting of silicides of HMP metals on silicon substrates and products so-formed
JPH01162326A (en) Manufacture of beta-silicon carbide layer
JPH01264993A (en) Method and apparatus for epitaxial growth of atom layer
JPH05202476A (en) Copper complex with which selective vapor deposition of copper thin film can be done, its method for vapor phase deposition and method for selective etching of thin film
JPH08232069A (en) Method and apparatus for sublimating solid substance
US5036022A (en) Metal organic vapor phase epitaxial growth of group III-V semiconductor materials
JPH0260210B2 (en)
US5061514A (en) Chemical vapor deposition (CVD) process for plasma depositing silicon carbide films onto a substrate
JP2654790B2 (en) Vapor phase epitaxy
JPH0156142B2 (en)
JPH02217473A (en) Forming method of aluminum nitride film
JPS621565B2 (en)
JP2568224B2 (en) Gas-phase chemical reaction material supply method
JPS61234531A (en) Formation of silicon oxide
JP2504611B2 (en) Vapor phase growth equipment
JPH03274275A (en) Device for forming thin film utilizing organometallic gas
CA1313343C (en) Metal organic vapor phase epitaxial growth of group iii-v semiconductor materials
JPH09296269A (en) Forming method of copper thin film
JPS60169563A (en) Manufacture and device for telluride metal
JPS5956574A (en) Formation of titanium silicide film
JP4123319B2 (en) Method for producing p-type cubic silicon carbide single crystal thin film
JP2605928B2 (en) A. Method for selective formation of thin film
JPH04262530A (en) Chemical vapor growth apparatus
JPH07335643A (en) Film forming method
JPS6136371B2 (en)