JPS61198733A - Method of forming thin-film - Google Patents

Method of forming thin-film

Info

Publication number
JPS61198733A
JPS61198733A JP60039425A JP3942585A JPS61198733A JP S61198733 A JPS61198733 A JP S61198733A JP 60039425 A JP60039425 A JP 60039425A JP 3942585 A JP3942585 A JP 3942585A JP S61198733 A JPS61198733 A JP S61198733A
Authority
JP
Japan
Prior art keywords
film
substrate
wavelength
light
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60039425A
Other languages
Japanese (ja)
Inventor
Hitoshi Ito
仁 伊藤
Takahiko Moriya
守屋 孝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60039425A priority Critical patent/JPS61198733A/en
Priority to KR1019860000755A priority patent/KR900001237B1/en
Priority to US06/832,875 priority patent/US4699801A/en
Priority to EP86301440A priority patent/EP0194109A3/en
Publication of JPS61198733A publication Critical patent/JPS61198733A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/38Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions
    • H01L21/383Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions using diffusion into or out of a solid from or into a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Abstract

PURPOSE:To obtain a thin-film having the excellent quality of film at a low temperature through a CVD method under the irradiation of beams having a wavelength of 400nm-1,000nm. CONSTITUTION:An Si substrate 2 with a clean surface is placed on a boat 3 and carried into a furnace 1, the inside of the furnace is evacuated, N2 is introduced, and a substrate temperature is controlled 16 at 300-600 deg.C under fixed pressure. Parallel beams from a xenon lamp 9 are filtered 13, and beams having a wavelength of 400-1,000nm are projected onto the substrate 2. SiO2C8 H20 is introduced, bonds are excited to the state of vibrations, a reaction is promoted, and an SiO2 film is shaped through thermal decomposition. The introduction of a raw material gas is stopped after a fixed time, the lamp is put out and heating 15 is also stopped, and the substrate 2 is cooled in N2, and extracted. According to the method, the SiO2 film can be formed through a decompression CVD method at a low temperature of 400 deg.C or lower.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は薄膜形成方法に係り、特に光を用いた化学的気
相成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a thin film forming method, and particularly to a chemical vapor deposition method using light.

〔従来技術およびその問題点〕[Prior art and its problems]

半導体技術の進歩と共に、超LSIをはじめ、半導体装
置の高集積化か進められてきている。
As semiconductor technology advances, semiconductor devices, including ultra-LSIs, are becoming more highly integrated.

半導体回路の高集積化は素子の微細化によって実現され
るため、微細かつ高精度なパターン形成技術と共に均一
で良好な薄膜の形成技術が重要視されるようになってき
ている。
Since higher integration of semiconductor circuits is achieved by miniaturizing elements, importance has been placed on techniques for forming fine and highly accurate patterns as well as techniques for forming uniform and good thin films.

実用化されている薄膜形成方法の1つに化学的気相成長
法(CVD法)があるが、これは形成させようとする薄
膜材料を構成する元系からなる1種またはそれ以上の化
合物および/又は単体のガスを基板上に供給し、気相又
は基板表面での化学反応により所望の薄膜を成長せしめ
る方法であり、これには常圧CVD法、減圧CVD法、
プラズマCVD法等が含まれる。これらの方法のうち常
圧CVD法は常圧(760Torr)で薄膜を形成する
ため堆積速度は速い。しかし、気相反応を起し易く、反
応室内全体を加熱することはできないため、反応室内部
に基板を直接均一に加熱するための手段を配置せねばな
らない。従って、大量の基板を同時に装填することがで
きず、生産性が悪い。又堆積温度の制御が難しいため脱
揮の均一性が悪い等の欠点がある。
One of the methods for forming thin films that has been put into practical use is the chemical vapor deposition method (CVD method). This is a method in which a desired thin film is grown by supplying/or a single gas onto a substrate and by chemical reaction in the gas phase or on the substrate surface.This method includes atmospheric pressure CVD, low pressure CVD,
This includes plasma CVD methods and the like. Among these methods, the atmospheric pressure CVD method forms a thin film at normal pressure (760 Torr), so the deposition rate is fast. However, since gas phase reactions tend to occur and it is not possible to heat the entire reaction chamber, it is necessary to arrange a means for directly and uniformly heating the substrate inside the reaction chamber. Therefore, a large number of substrates cannot be loaded at the same time, resulting in poor productivity. Furthermore, since it is difficult to control the deposition temperature, there are drawbacks such as poor devolatilization uniformity.

また減圧CVD法は〜I Torrの減圧下で薄膜を形
成する方法であるため、堆積速度は遅(・が基板を密に
装填でさ、同時に大量の基板を処理でき、生産性に&れ
ている。
In addition, since the low-pressure CVD method forms a thin film under a reduced pressure of ~1 Torr, the deposition rate is slow. There is.

しかしながら、これらの方法はいずれも、薄膜形成を行
なう化学反応の推進に熱エネルギーを用いるため形成温
度か高く、例えばシランの熱分解で多結晶シリコン膜を
形成する場合で600〜800℃、二トラエチルオルソ
シリケーl−(8104C,H2o、 TE01)の熱
分解で二酸化硅素膜を形成する場合で650〜SOO℃
である。
However, since all of these methods use thermal energy to promote the chemical reaction that forms the thin film, the formation temperature is high. 650 to SOO℃ when forming a silicon dioxide film by thermal decomposition of ethyl orthosilicate l-(8104C, H2o, TE01)
It is.

このため、これらの方法で形成される薄膜は、優れた長
所を持ちなから、用途か限られ、例えはアルミニウムを
用いた多層配線の層間絶縁膜にTEO8熱分解による二
酸化シリコン膜を用いることはできない。
For this reason, although the thin films formed by these methods do not have any excellent advantages, their applications are limited. For example, it is not possible to use a silicon dioxide film produced by thermal decomposition of TEO8 as an interlayer insulating film for multilayer wiring using aluminum. Can not.

一万、プラズマCVD法は、減圧下で電気的エネルギー
を反応性ガスに与えてプラズマ状態にし、化学的に活性
な励起分子・原子、イオン、ラジカル等を作り出すこと
により化学反応を促進させ、基板上に薄膜を形成する方
法であり、低温化が可能である。しかし例えは、シラン
(S IH4)十窒素(N2)混合ガスからプラズマC
VD法によって窒化シリコン(SisN4)膜を形成す
ると、シリコン(St )と窒素(N)との組成か化学
量論比からすれやずく、膜質が悪くなったり、水素ラジ
カルが下地層に損傷を与えたり、又水素を膜中にとり込
み易く、熱歪等による膜の劣化を生じ易い等の欠点かあ
る。
In the plasma CVD method, electrical energy is applied to a reactive gas under reduced pressure to create a plasma state, which promotes chemical reactions by creating chemically active excited molecules/atoms, ions, radicals, etc. This is a method of forming a thin film on top, and it is possible to lower the temperature. However, for example, plasma C from a silane (S IH4) ten nitrogen (N2) mixed gas
When a silicon nitride (SisN4) film is formed by the VD method, the composition or stoichiometric ratio of silicon (St) and nitrogen (N) may deteriorate, resulting in poor film quality or hydrogen radicals damaging the underlying layer. In addition, there are drawbacks such as hydrogen being easily incorporated into the film and film deterioration due to thermal distortion etc.

そこで、近年、薄膜形成に元工浄ルキーを使用する光C
VD法の研究が盛んに行なわれている。例えは、出力5
0WのCW炭酸ガスレーザ(C02レーザ)の波長10
,6μmの発振光を用いて局所的に基板を加熱し、四塩
化硅素(St(J4)を原料カスとし又多結晶シリコン
膜を形成したり、又、弗化アルゴン(ArF )、弗化
クリプトン(KrF )等のエキシマレーザを用いて光
解離を行ない、多結晶シリコン展を形成1−る方法か提
案されている。これらはいずれも大出力レーザをスポッ
ト光源として用いるものであるため、生産性に乏しく実
用化には至っていない。
Therefore, in recent years, optical C
Research on the VD method is being actively conducted. For example, output 5
Wavelength 10 of 0W CW carbon dioxide laser (C02 laser)
, 6 μm oscillation light is used to locally heat the substrate to form a polycrystalline silicon film using silicon tetrachloride (St (J4)) as a raw material scrap, or argon fluoride (ArF), krypton fluoride, etc. A method has been proposed for forming polycrystalline silicon by photodissociation using an excimer laser such as (KrF).Since these methods all use a high-output laser as a spot light source, productivity is low. However, it has not been put into practical use due to lack of performance.

また、低・高圧水銀灯を用い、反応性ガス中に微量の水
?a (Hg )を添加して光増感反応な起し、二酸化
シリコン(Sin、l)や窒化シリコン(s i3 N
4)膜を形成した例もある。これは、添加したHgか水
銀灯からの波長2537Aの光を吸収し、Hg(3P工
)の励起状態になり、反応性ガスと衝突してエネルギー
移動を起すことで薄膜形成のためのエネルギー授受がな
され化学反応が進行するようにしたもので、この場合は
重合域である水銀Hgが薄膜中にとりこまれるという問
題があった。
Also, using low and high pressure mercury lamps, trace amounts of water can be detected in the reactive gas. A (Hg) is added to cause a photosensitization reaction, and silicon dioxide (Sin, l) and silicon nitride (s i3 N
4) There are also examples where a film was formed. This absorbs light with a wavelength of 2537A from the added Hg or mercury lamp, becomes an excited state of Hg (3P), and collides with the reactive gas to cause energy transfer, thereby transferring and receiving energy for forming a thin film. In this case, there was a problem that mercury Hg, which is the polymerization region, was incorporated into the thin film.

上述したように、これら従来の光CVD法は、高エネル
ギーな短波長光(λ(350mm)を利用し、原料ガス
の光分解を生せしめるかもしくは、基板加熱のために大
出力の光源を利用するかのいずれかであった。
As mentioned above, these conventional photoCVD methods either use high-energy short-wavelength light (λ (350 mm)) to cause photolysis of the raw material gas, or use a high-output light source to heat the substrate. It was either that.

〔発明の目的〕[Purpose of the invention]

本発明は、前記実情に鑑みてなされたもので低温でかつ
膜質の良好な薄膜を形成することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to form a thin film with good film quality at a low temperature.

〔発明の概要〕[Summary of the invention]

、そこで、本発明では、化学的気相成長法による薄膜の
形成に際し、波長400nm〜11000nの光を薄膜
形成面に照射するようにしている。
Therefore, in the present invention, when forming a thin film by chemical vapor deposition, the surface on which the thin film is to be formed is irradiated with light having a wavelength of 400 nm to 11000 nm.

すなわち、波長400nm〜11000nの光を照射す
ることにより、原料ガスの結合手を振動状態に励起し、
反応の促進をはかるようにしている。
That is, by irradiating light with a wavelength of 400 nm to 11000 nm, the bonds of the source gas are excited into a vibrational state,
I'm trying to accelerate the reaction.

ところで、照射光の波長域をλ(350nmとした場合
、反応ガスは電子励起状態になり光分解を生じて気相反
応を起こしやすい。また、λ(1000nm  とした
場合は、反応ガスの結合手を振動状態に励起することは
不可能である。
By the way, when the wavelength range of the irradiation light is set to λ (350 nm), the reaction gas enters an electronically excited state and photodecomposition is likely to occur, causing a gas phase reaction. Also, when the wavelength range of the irradiation light is set to λ (1000 nm), the bonding hands of the reaction gas It is impossible to excite it into a vibrational state.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、低温下で良質の薄膜を高速に形成する
ことか可能となる。
According to the present invention, it is possible to form high-quality thin films at high speed at low temperatures.

この方法は、常圧CVD法においても減圧CVD法にお
いても適用可能であるが、特に、常圧CVD法において
は均一な膜厚・膜質となるような薄膜の形成は困難であ
ったのに対し、本発明の方法によれば、膜厚および膜質
の均一な薄膜形成が可能となる。
This method can be applied to both normal pressure CVD and low pressure CVD, but it is particularly difficult to form a thin film with uniform thickness and quality in normal pressure CVD. According to the method of the present invention, it is possible to form a thin film with uniform thickness and quality.

また、光照射を用いた本発明の方法による効果は、低温
下での薄膜形成において特に著しい。
Further, the effect of the method of the present invention using light irradiation is particularly remarkable in forming a thin film at low temperatures.

〔発明の実施例」 以下、本発明の実施例を図面を参照しつつ詳細に説明す
る。
[Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、本発明実施例の方法で用いられる化学的気相
成長装置の概略図である。
FIG. 1 is a schematic diagram of a chemical vapor deposition apparatus used in the method of the embodiment of the present invention.

この装置は、長さIm1内径25cmの石英製の反応炉
lと、該反応炉内で薄膜を形成すべき基板2を支持する
ためのボート3と、該基板2の両側から光照射を行なう
ように該反応炉の外側に配設された第1および第2の光
学系4,5と、該反応炉1内を所望の温度に加熱制御す
る温度制御系6と、排気系7およびガス供給系8とから
なり、基板2に所定波長域の光照射を行なうことにより
反応ガスを振動状態に励起しつつ、化学的気相成長法に
より薄膜を形成するようにしたものである。
This device consists of a quartz reactor l with a length Im1 and an inner diameter of 25 cm, a boat 3 for supporting a substrate 2 on which a thin film is to be formed in the reactor, and a boat 3 for irradiating light from both sides of the substrate 2. first and second optical systems 4 and 5 disposed outside the reactor, a temperature control system 6 for heating and controlling the inside of the reactor 1 to a desired temperature, an exhaust system 7 and a gas supply system. 8, in which a thin film is formed by chemical vapor deposition while exciting a reactive gas into a vibrational state by irradiating the substrate 2 with light in a predetermined wavelength range.

前記第1および第2の光学系は、夫々第1および第2の
クセノンランプからなる第1および第2の光源9,10
と、第1および第2の集光用のレンズ11.12と、波
長選択用の第1および第2の干渉フィルタ13.14と
からなり、出力成長を適宜選択可能なように構成されて
いる。
The first and second optical systems include first and second light sources 9 and 10, each consisting of a first and second xenon lamp.
, first and second focusing lenses 11.12, and first and second interference filters 13.14 for wavelength selection, and is configured so that output growth can be selected as appropriate. .

また、前記温度制御系6は、該反応炉の周囲に配設され
た3ゾーンシステムの加熱器15と、温度制御器16と
からなり、反応炉内の温度制御を行なうように構成され
ている、 更に、ガス供給系8は第1および第2のストップパルプ
17.18を介して反応炉に接続されており、第1およ
び第2のストップパルプ17゜18の開閉操作によって
反応炉に供給するTEOSガスおよび窒素(N、)ガス
の量を制御するガス制御器19を具えている。
Further, the temperature control system 6 includes a three-zone system heater 15 disposed around the reactor and a temperature controller 16, and is configured to control the temperature inside the reactor. Furthermore, the gas supply system 8 is connected to the reactor via first and second stop pulps 17, 18, and is supplied to the reactor by opening and closing operations of the first and second stop pulps 17, 18. A gas controller 19 is provided to control the amounts of TEOS gas and nitrogen (N,) gas.

更にまた、反応炉の両端には光学研暦された石英からな
る第1および第2の窓が0リングシールによって装着さ
れており、夫々第1および第2の光学系からの照射光の
透過が可能である。
Furthermore, first and second windows made of optically polished quartz are installed at both ends of the reactor with O-ring seals to prevent the transmission of the irradiated light from the first and second optical systems, respectively. It is possible.

そして第1の窓は開閉可能な入口22にとりつけられた
状態となっており、該入口22の開閉により、基板の出
し入れがなされる。23は圧力計、24はリーク用自動
弁、25はバックフィル用ガスラインである。
The first window is attached to an entrance 22 that can be opened and closed, and substrates can be taken in and taken out by opening and closing the entrance 22. 23 is a pressure gauge, 24 is an automatic leak valve, and 25 is a backfill gas line.

次に、この装置を用いてTEO8熱分解により二酸化シ
リコン膜を形成する方法について説明する。
Next, a method of forming a silicon dioxide film by thermal decomposition of TEO8 using this apparatus will be described.

ます、基板2として第2図(a)に示す如く、単結晶シ
リコン基板2を用い、適当な表面清浄化処理を施した後
、ボート3に載置し、入口22から反応炉l内に搬入す
る。
First, as shown in FIG. 2(a), a single crystal silicon substrate 2 is used as the substrate 2, and after an appropriate surface cleaning treatment, it is placed on a boat 3 and carried into the reactor l through the inlet 22. do.

次いで、排気糸7を駆動し、反応炉内を真空排気した後
、第1のストップパルプ17を開き、N2ガスを流し、
圧力計23の指示値か所定の値となったところで加熱器
15を駆動し、基板温度をモニターしながら温度制御器
16によって設置温度300〜800℃になるよう制御
する。
Next, the exhaust line 7 is driven to evacuate the inside of the reactor, and then the first stop pulp 17 is opened and N2 gas is caused to flow.
When the indicated value of the pressure gauge 23 reaches a predetermined value, the heater 15 is driven, and the temperature controller 16 controls the installation temperature to 300 to 800° C. while monitoring the substrate temperature.

この後、第1のクセノンランプ9を点灯し、第1の集光
レンズ11によって平行光線にした後、第1の干渉フィ
ルタ13で波長選別し、波長λ=400〜600 nm
の光を基板20表面に照射する。
After that, the first xenon lamp 9 is turned on, the first condensing lens 11 converts the light into parallel light, the first interference filter 13 selects the wavelength, and the wavelength λ=400 to 600 nm.
The surface of the substrate 20 is irradiated with light.

そして、温度安定性を確認した後、第2のストップパル
プ18を開いて、TEOSガスを所定時間導入し、第2
図(b)に示す如(、二酸化シリコン膜100を形成す
る。
After confirming the temperature stability, the second stop pulp 18 is opened, TEOS gas is introduced for a predetermined period of time, and the second stop pulp 18 is opened.
As shown in Figure (b), a silicon dioxide film 100 is formed.

TEOSガスの導入を停止した後、第1のクセノンラン
プ9を消灯し、加熱器15の駆動を停止して、N、雰囲
気中で冷却し、基板2を反応、炉からとり出す。
After stopping the introduction of the TEOS gas, the first xenon lamp 9 is turned off, the driving of the heater 15 is stopped, and the substrate 2 is cooled in a nitrogen atmosphere, and the substrate 2 is taken out from the reactor.

このようにして形成された二酸化シリコン膜は、従来の
光を照射しない場合と比較して、400〜800℃で同
一時間内に2〜ioo倍の膜厚となった。すなわち、2
〜100倍の堆積速度を得ることかできる。また膜厚お
よび膜質も極めて均一で良好なものとなっている。
The silicon dioxide film thus formed became 2 to 100 times thicker within the same time at 400 to 800° C. compared to the conventional case without irradiation with light. That is, 2
~100 times faster deposition rates can be obtained. Furthermore, the film thickness and film quality are extremely uniform and good.

また、従来の減圧CVD法では400℃の低温での二酸
化シリコン膜の形成は不可能であったが、本発明の方法
によれは、可uF4である。
Further, although it has been impossible to form a silicon dioxide film at a low temperature of 400° C. using the conventional low pressure CVD method, it is possible to form a silicon dioxide film using the method of the present invention.

なお、実施例においては、基板の表面側から光照射を行
なう場合について説明したが、本発明の他の実施例とし
て、第2のクセノンランプ10のみを点灯し、基板の裏
面側から光照射を行なうようにしてもよい。すなわち、
例えは、第3図(a)に示す如く、表面に接続孔201
を有するようにシリコンの熱酸化膜202の形成された
単結晶7リコン基板200’i基板2として用い、第3
図(b)に示す如く基板200の裏面側から波長λ=4
00〜600 ntnの光照射を行ないつつ、前記実施
例と同様に二酸化シリコン膜203を形成する。このと
き、単結晶シリコン基&200は波長λ=400〜60
0nmの光を透過するか、熱酸化膜202はこの元を透
過しないため、基板表面の熱酸化膜の存在しない部分す
なわち接続孔201内に露呈する単結晶シリコン基板の
表向での6反応ガスの励起か行なわれ、この部分での膜
の堆積速度か選択的に高められ、その結果、段差の小さ
い平坦な表面形状を得ることか可能となる。
In the embodiment, a case has been described in which light irradiation is performed from the front side of the substrate, but as another embodiment of the present invention, only the second xenon lamp 10 is turned on and light irradiation is performed from the back side of the substrate. You may do so. That is,
For example, as shown in FIG. 3(a), there are connection holes 201 on the surface.
A single crystal silicon substrate 200'i on which a silicon thermal oxide film 202 is formed so as to have a silicon thermal oxide film 202 is used as the substrate 2.
As shown in Figure (b), the wavelength λ=4 from the back side of the substrate 200.
A silicon dioxide film 203 is formed in the same manner as in the previous embodiment while performing light irradiation of 00 to 600 ntn. At this time, the single crystal silicon base &200 has a wavelength λ = 400 to 60
The thermal oxide film 202 transmits 0 nm light, or the thermal oxide film 202 does not transmit this source. Excitation is performed to selectively increase the film deposition rate in this area, and as a result, it is possible to obtain a flat surface shape with small steps.

更に他の実施例として、第1および第2の光学系を両方
駆動し、夫々波長の異なる元を照射するようにしてもよ
い。すなわち、第3図(a)に示したような基板を用い
、第4図に示す如く、基板の表面側から反応ガスを振動
状態に励起するような波長λ1の光を照射すると共に、
裏面側からは、前記他の実施例で用いたのと同様に、単
結晶シリコンは透過するが熱酸化膜は透過しないような
波長λ2の光を照射する。これにより、選択的にかつ高
速で接続孔内に二酸化シリコン膜を形成せしめ得、平坦
な表面形状の二酸化シリコン膜の更に短時間での形成が
可能となる。
In yet another embodiment, both the first and second optical systems may be driven to irradiate sources with different wavelengths. That is, using a substrate as shown in FIG. 3(a), as shown in FIG. 4, light of a wavelength λ1 that excites the reaction gas into a vibrational state is irradiated from the surface side of the substrate, and
From the back side, as in the other embodiments described above, light with a wavelength λ2 that transmits through single crystal silicon but not through the thermal oxide film is irradiated. As a result, a silicon dioxide film can be selectively and rapidly formed within the connection hole, and a silicon dioxide film with a flat surface can be formed in a shorter time.

なお、上記実施例においては、TEO8熱分解による二
酸化シリコン族の形成について示したか、この他モノシ
ラン熱分解による多結晶シリコン膜の形成、モノシラ/
とアンモニアからの窒化シリコン膜の形成、インブチル
アルミニウム・トリメチルアルミニウム・三塩化アルミ
ニウム・三臭化アルミニウムを用いたアルミニウム膜の
形成およびシラ/を添加することによるアルミニウム合
金膜の形成、六弗化タングステン・五塩化タングステン
・水素からのタングステン膜の形成およびシランを添加
することによるタングステンシリサイド膜の形成、モリ
ブデン膜、チタン膜の形成、モリブデンンリサイド膜、
チタンシリサイド膜の形成等、他の°薄膜形成に際して
も本発明の方法は適用可能である。
In addition, in the above examples, the formation of silicon dioxide group by TEO8 thermal decomposition was shown, and in addition, formation of polycrystalline silicon film by monosilane thermal decomposition, monosilane/
Formation of silicon nitride film from and ammonia, formation of aluminum film using inbutylaluminum, trimethylaluminum, aluminum trichloride, aluminum tribromide, and formation of aluminum alloy film by adding sila/, tungsten hexafluoride・Formation of tungsten film from tungsten pentachloride and hydrogen, formation of tungsten silicide film by adding silane, formation of molybdenum film, titanium film, molybdenum silicide film,
The method of the present invention can also be applied to the formation of other thin films, such as the formation of titanium silicide films.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明実施例の方法に用いられる化学的気相
成長@置の概要図、第2図(a)および(b)は不発明
実施例の薄膜形成工程を示す図、第3図(a)および(
b)は本発明の他の実施例のM−膜形成工程を示す図、
第4図は本発明の更に他の実施例の薄膜形成工程を示す
図である。 1・・・反応炉、2・・・基板、3・・・ボート、4・
・・第1の光学系、5・・・第2の光学系、6・・・温
度制御系、7・・・排気系、8・・・ガス供給系、9・
・・第1の光源、lO・−・i@2の光源、11・・・
第1の集光用レンズ、12・・−第2の集光用レンズ、
13・・・第1の干渉用フィルタ、14・・・第2の干
渉用フィルタ、15・・・加熱器、16・・・温度制御
器、17・・・第1のストップパルプ、18・・・第2
のストップバルブ、19・・・ガス制御器、20・・・
第1の窓、21・・・第2の窓、22・・・入口、23
・・・圧力計、24・・・リーク用自動弁、25・・・
バックフィル用カスライン、100・・・二酸化シリコ
ン膜、200・・・単結晶シリコン基板、201・・・
接続孔、202・・・熱酸化膜、203・・・二酸化シ
リコン膜。 第2図(Q) 第2図(b) 第3図((1) λ
FIG. 1 is a schematic diagram of the chemical vapor deposition @ system used in the method of the embodiment of the invention, FIGS. 2(a) and (b) are diagrams showing the thin film forming process of the embodiment of the invention, and FIG. Figures (a) and (
b) is a diagram showing the M-film forming process of another embodiment of the present invention;
FIG. 4 is a diagram showing a thin film forming process according to still another embodiment of the present invention. 1... Reactor, 2... Substrate, 3... Boat, 4...
... first optical system, 5 ... second optical system, 6 ... temperature control system, 7 ... exhaust system, 8 ... gas supply system, 9.
・・First light source, lO・−・i@2 light source, 11...
First condensing lens, 12...-Second condensing lens,
13... First interference filter, 14... Second interference filter, 15... Heater, 16... Temperature controller, 17... First stop pulp, 18...・Second
stop valve, 19... gas controller, 20...
First window, 21... Second window, 22... Entrance, 23
...Pressure gauge, 24...Automatic leak valve, 25...
Backfill scrap line, 100... silicon dioxide film, 200... single crystal silicon substrate, 201...
Connection hole, 202... thermal oxide film, 203... silicon dioxide film. Figure 2 (Q) Figure 2 (b) Figure 3 ((1) λ

Claims (1)

【特許請求の範囲】 化学的気相成長法によって基板上に薄膜を形成するに際
し、 前記基板上に波長400nm〜1000nmの光を照射
するようにしたことを特徴とする薄膜形成方法。
[Scope of Claim] A method for forming a thin film, characterized in that when forming a thin film on a substrate by chemical vapor deposition, the substrate is irradiated with light having a wavelength of 400 nm to 1000 nm.
JP60039425A 1985-02-28 1985-02-28 Method of forming thin-film Pending JPS61198733A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60039425A JPS61198733A (en) 1985-02-28 1985-02-28 Method of forming thin-film
KR1019860000755A KR900001237B1 (en) 1985-02-28 1986-02-04 Semiconductor device manufacturing method
US06/832,875 US4699801A (en) 1985-02-28 1986-02-26 Semiconductor device
EP86301440A EP0194109A3 (en) 1985-02-28 1986-02-28 Method for producing a semiconductor device using a chemical vapour deposition step

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60039425A JPS61198733A (en) 1985-02-28 1985-02-28 Method of forming thin-film

Publications (1)

Publication Number Publication Date
JPS61198733A true JPS61198733A (en) 1986-09-03

Family

ID=12552634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60039425A Pending JPS61198733A (en) 1985-02-28 1985-02-28 Method of forming thin-film

Country Status (2)

Country Link
JP (1) JPS61198733A (en)
KR (1) KR900001237B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238024A (en) * 1988-03-17 1989-09-22 Koujiyundo Kagaku Kenkyusho:Kk Manufacture of oxide film for semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4592373B2 (en) * 2004-09-30 2010-12-01 株式会社トリケミカル研究所 Method for forming conductive molybdenum nitride gate electrode film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238024A (en) * 1988-03-17 1989-09-22 Koujiyundo Kagaku Kenkyusho:Kk Manufacture of oxide film for semiconductor device

Also Published As

Publication number Publication date
KR900001237B1 (en) 1990-03-05
KR860006835A (en) 1986-09-15

Similar Documents

Publication Publication Date Title
US5650013A (en) Layer member forming method
KR100809759B1 (en) Method of forming oxynitride film and system for carrying out the same
US6786997B1 (en) Plasma processing apparatus
JPH02225399A (en) Method for epitaxial growth and apparatus therefor
JPH02258689A (en) Method for forming crystalline thin film
JPS61198733A (en) Method of forming thin-film
JPS6141763A (en) Thin film manufacturing apparatus
JPS59129774A (en) Selective formation of nitrided film
JPS60260125A (en) Selective formation of semiconductor substrate
JPS6050168A (en) Production of thin solid film by photo cvd method
JPH08262251A (en) Film forming device for optical waveguide
JPS6187342A (en) Nitriding method of si by multiple-beam projection
JPS59129773A (en) Selective formation of oxidized film
JPS61119028A (en) Photo-chemical vapor deposition equipment
JPS59147435A (en) Formation of silicon oxide film
JPS61288431A (en) Manufacture of insulating layer
JP3554032B2 (en) Film formation method from low-temperature condensed phase
JPH02239184A (en) Method and apparatus for vapor growth by photoexcitation
JPS6383276A (en) Photochemical vapor growth device
JPH0357189B2 (en)
JPS60216556A (en) Manufacture of semiconductor of semiconductor device
JPS62160713A (en) Photoexcitation film forming equipment
JPH0598447A (en) Photo assisted cvd device
JPH0464221A (en) Forming method of thin-film
JPS6222426A (en) Forming device for deposited film