JPS6187342A - Nitriding method of si by multiple-beam projection - Google Patents

Nitriding method of si by multiple-beam projection

Info

Publication number
JPS6187342A
JPS6187342A JP59209164A JP20916484A JPS6187342A JP S6187342 A JPS6187342 A JP S6187342A JP 59209164 A JP59209164 A JP 59209164A JP 20916484 A JP20916484 A JP 20916484A JP S6187342 A JPS6187342 A JP S6187342A
Authority
JP
Japan
Prior art keywords
substrate
laser
nitride film
excimer laser
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59209164A
Other languages
Japanese (ja)
Inventor
Nahomi Aoto
青砥 なほみ
Eiji Igawa
英治 井川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59209164A priority Critical patent/JPS6187342A/en
Publication of JPS6187342A publication Critical patent/JPS6187342A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To obtain an Si/Si nitride film, the interface of which has a small interface level and into which hydrogen atoms hardly mix, through a direct nitriding at a low temperature of Si by projecting a CO2 laser while projecting an XeBr excimer laser, an XeCl excimer laser, an XeF excimer laser or an UV lamp. CONSTITUTION:An Si substrate 11 is heated at 800 deg.C or lower by a heater 12. The inside of a device is filled with nitrogen molecules 14 introduced from a gas introducing pipe 13 at 1atm. at that time. The Si substrate 11 in such a device is irradiated by infrared laser beams 17 emitted from a CO2 laser 15 through an infrared transmitting window 16. The Si substrate is irradiated simultaneously by ultraviolet laser beams (308nm, 352nm or 282nm) 110 emitted from an excimer laser 18 through an ultraviolet transmitting window 19, and the surface of the Si substrate 11 is nitrified.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子デバイス製造プロセスに用いるSi窒化
誤形成法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a Si nitridation error formation method used in an electronic device manufacturing process.

(従来技術) 従来Si 窒化FIX ハ、一般的K CV D 法(
R,C,G。
(Prior art) Conventional Si nitriding FIX c. General K CV D method (
R, C, G.

Swann、 R,R,Mehta and T、P、
Cauge、ジャーナ/l/−オプ・エレクトロケミカ
ル・ソサエティー(J、E−1ectrochem、S
oc、) l 14巻1967年713ページ)ニー;
−111△Ir+M’−y−y”、/”17nN−/1
1T’D−−A−−−1r’+r)Wons 1der
 、ジャーナル・オプ9エレクトロケミカル・ソサエデ
4− (J、 Electrochemi、 Soc、
)125巻1978争99ページ)によって生成されて
いる。
Swann, R.R., Mehta and T.P.
Cauge, J./l/- Op Electrochemical Society (J, E-1 electrochem, S
oc,) l Vol. 14, 1967, p. 713) Ni;
-111△Ir+M'-y-y", /"17nN-/1
1T'D--A--1r'+r) Wons 1der
, Journal Op 9 Electrochemical Society 4- (J, Electrochemi, Soc.
) Volume 125, 1978, page 99).

(発明が解決しようとする問題点) これ等の方法では、化学反応によってSi窒化物をSi
基板上に堆積させるが、この過程においてはSi基板表
面の吸着物あるいはSi窒化膜伺着初期の中間生成物が
Si/Si窒化膜界面に残され、界面準位が形成される
。このだめ、Si基板に直接窒化膜を付着させゲート絶
縁膜とすると界面特性が不安定になるなど安定な電気的
特性を持つ界面が得られなかった。さらに、特にプラズ
マCVD法では窒化膜中に水素原子が混入し、膜質が不
良であった。
(Problem to be solved by the invention) In these methods, Si nitride is converted into Si by a chemical reaction.
It is deposited on the substrate, and in this process, adsorbed substances on the surface of the Si substrate or intermediate products at the initial stage of adhesion of the Si nitride film are left at the Si/Si nitride film interface, and an interface state is formed. Unfortunately, if a nitride film is directly attached to the Si substrate to form a gate insulating film, the interface characteristics become unstable and an interface with stable electrical characteristics cannot be obtained. Furthermore, particularly in the plasma CVD method, hydrogen atoms were mixed into the nitride film, resulting in poor film quality.

またSi基板を直接熱窒化させる試みにおいては、窒化
温度が1200℃以上と高いため、Si基板中の不純物
プロファイルの変化を招いてしまうという欠点があった
。(S、Yamazaki、 Y、Kato and 
1.T−aniguchi、ジャパニーズ・ジャーナル
・オブ・アプライド・フィジクス(TDn−T−Ann
l nhvc )g s1967年408ページ)。
Further, in attempts to directly thermally nitride a Si substrate, the nitriding temperature is as high as 1200° C. or higher, which has the drawback of causing a change in the impurity profile in the Si substrate. (S, Yamazaki, Y, Kato and
1. T-aniguchi, Japanese Journal of Applied Physics (TDn-T-Ann
lnhvc)g s1967 p.408).

本発明は、このような従来の欠点を除去せしめ、Siの
窒化膜形成において、 Si/Si窒化膜界面に界面準
位が少なく、また窒化膜内に水素原子の混入が少ない窒
化膜をSiの低温直接窒化によって得るための方法を提
供することを目的とする。
The present invention eliminates such conventional drawbacks, and in forming a Si nitride film, a nitride film with fewer interface states at the Si/Si nitride film interface and less hydrogen atoms mixed into the nitride film is used. The purpose is to provide a method for obtaining by low temperature direct nitriding.

(問題点を解決するだめの手段) 本発明は、窒素ガス、アンモニアガスまたはヒドラジン
ガスニ囲気中にあシ、ヒーターで加熱されているSiの
表面に対して、■2レーザーを照射すると同時に、Xe
Brエキシマレーザ−光、 XeC1エキシマレーザ−
光またはXeFエキシマレーザ−光またはUVランプ光
を照射し、Si基板の加熱を従来の直接窒化法よシも低
く抑えながら、Si/Si窒化膜界面準位がCVD・プ
ラズマCVD窒化膜形成法、直接窒化法よシも少なくま
た膜中に水素原子の混入が少ない窒化膜を得る方法であ
る。
(Means for Solving the Problem) The present invention is based on the following method: (2) Simultaneously irradiating the surface of Si which is heated with a heater in an atmosphere of nitrogen gas, ammonia gas or hydrazine gas; Xe
Br excimer laser light, XeC1 excimer laser
A CVD/plasma CVD nitride film formation method that suppresses the heating of the Si substrate to a lower level than the conventional direct nitriding method by irradiating light, XeF excimer laser light, or UV lamp light, and reducing the Si/Si nitride film interface state. This is a method for obtaining a nitride film with less hydrogen atoms mixed in the film than the direct nitriding method.

以下に本発明を具体的に説明する。The present invention will be specifically explained below.

本発明は上述の方法を取ることによシ、従来技術の問題
点を解決した。真空装置内を窒素ガスまたはアンモニア
ガスまたはヒドラジ/ガス智囲気で満たし、この中に置
かれているSi基板をヒーターによって加熱する。この
ようなSi基板に対し、CO2レーザーから出た赤外レ
ーザービームを赤外透過窓を通して照射する。この赤外
レーザービームの波長は、5i−N結合の振動エネルギ
ー11.9pmに近くなるように10 pm以上とする
。なおCO2レーザーの波長は、CWでは9.12〜1
1.01 p m、パルスでは11.14〜11.97
μmが可能である。
The present invention solves the problems of the prior art by taking the above-mentioned method. The inside of the vacuum apparatus is filled with nitrogen gas, ammonia gas, or hydrazine/gas atmosphere, and the Si substrate placed therein is heated by a heater. Such a Si substrate is irradiated with an infrared laser beam emitted from a CO2 laser through an infrared transmission window. The wavelength of this infrared laser beam is set to 10 pm or more so that the vibrational energy of the 5i-N bond is close to 11.9 pm. In addition, the wavelength of CO2 laser is 9.12 to 1 in CW.
1.01 p m, pulsed 11.14-11.97
μm is possible.

赤外レーザービームの照射によ)、形成されたSt窒化
膜中での5i−N結合の撮縮にエネルギーが与えられ窒
化膜中のN13;(子の移動が促進されるため、界面で
の窒化反応が加速される。同時に、エキシルレーザーか
ら出た紫外レーザービームまたはUVランプ光から出た
紫外光を、紫外線透過窓を通してSi基板に照射する。
(by irradiation with an infrared laser beam), energy is given to the contraction of 5i-N bonds in the formed St nitride film, and the movement of N13 in the nitride film is promoted, so that the The nitriding reaction is accelerated.At the same time, an ultraviolet laser beam from an Exil laser or ultraviolet light from a UV lamp is irradiated onto the Si substrate through the ultraviolet transmission window.

紫外レーザービームは、XeClエキシマレーザ−光(
39gnm )またはXeFエキシマレーザ−光(35
2nm)またはXeBrエキシ”TV−ブー光(282
、m)である。UVランプ光は、Xe−Hgラブを用い
た場合、200〜420 nmである。これらの紫外レ
ーザービームまたはUVランプの波長でSiは高い吸収
係数(15〜20X10’cm−1)を持つ。
The ultraviolet laser beam is XeCl excimer laser light (
39gnm) or XeF excimer laser light (35gnm)
2nm) or
, m). The UV lamp light is 200-420 nm when using Xe-Hg lab. At the wavelengths of these ultraviolet laser beams or UV lamps, Si has a high absorption coefficient (15-20 x 10'cm-1).

このため照射した紫外レーザービームまたはUVランプ
光は、Si/Si窒化膜界面のSiで強く吸収される。
Therefore, the irradiated ultraviolet laser beam or UV lamp light is strongly absorbed by the Si at the Si/Si nitride film interface.

この吸収によってSiの電子状態が励起されるため、界
面でのN原子との反応が促進される。
Since the electronic state of Si is excited by this absorption, the reaction with N atoms at the interface is promoted.

まだ、Siにエネルギーが与えられているために結晶欠
陥による界面準位が形成されにくい。さらに窒化膜を堆
積させるCVD法と異なり、直接窒化法であるために、
水素原子が膜中に混入しにくい。
Since energy is still given to Si, interface states due to crystal defects are difficult to form. Furthermore, unlike the CVD method that deposits a nitride film, since it is a direct nitriding method,
Hydrogen atoms are difficult to mix into the film.

このように、赤外レーザービームと紫外レーザービーム
まだはUv−)ノブ光を同時にSi表面に照射すること
によシ、従来の直接窒化法よりも低温で、Si/Si窒
化膜の界面準位が少なくまた膜中の水素原子の混入が少
ない直接窒化膜を形成することが可能となる。
In this way, by simultaneously irradiating the Si surface with an infrared laser beam and an ultraviolet laser beam (not yet Uv-) knob light, the interface state of the Si/Si nitride film can be improved at a lower temperature than the conventional direct nitriding method. It becomes possible to form a direct nitride film with less hydrogen atoms and less hydrogen atoms mixed into the film.

(実施例) 第1図に本発明の実施例を示す。Si基板11をの時装
置内はガス導入管13から導入された窒素分子14で1
気圧に満たされている。このような装置中のSi基板1
1に対し、CO2レーザ−15から出た赤外レーザービ
ーム17を、赤外線透過窓16を通して照射する。また
同時に、エキシマレーザー、8から出た紫外レーザービ
ーム(308n−または352 nmまたは282n−
)110を、紫外透過窓°19を通して照射して、Si
基板11の表面の窒化を行う。
(Example) FIG. 1 shows an example of the present invention. When the Si substrate 11 is loaded, the inside of the device is filled with nitrogen molecules 14 introduced from the gas introduction pipe 13.
filled with atmospheric pressure. Si substrate 1 in such a device
1, an infrared laser beam 17 emitted from a CO2 laser 15 is irradiated through an infrared transmission window 16. At the same time, an ultraviolet laser beam (308n- or 352nm or 282n-
) 110 through an ultraviolet transmission window 19 to
The surface of the substrate 11 is nitrided.

第2図中23に本発明の方法でN2中で5000A”窒
化した場合の試料について、ESRで測定したSi/S
i窒化膜界面の欠陥量を示す。図中21で示す従来のC
VD法によりNH3、S i H4、N2中テ形成した
窒化膜の場合に比べ、その欠陥量が大幅に減少している
。また22で示す従来の直接熱、窒化法により N2中
で形成した窒化膜の場合に比べ、窒化温度が低い。
23 in Figure 2 shows the Si/S measured by ESR for the sample nitrided at 5000 A'' in N2 by the method of the present invention.
i indicates the amount of defects at the nitride film interface. Conventional C shown as 21 in the figure
The amount of defects is significantly reduced compared to the case of a nitride film formed in NH3, SiH4, and N2 by the VD method. Furthermore, the nitriding temperature is lower than that of the nitride film formed in N2 by the conventional direct heat nitriding method shown in 22.

第3図中33及び34に、本発明の方法でNH3中で基
板温度800℃で窒化した場合の試料につい5i−H結
合、N−H結合の吸光度をそれぞれ示す。
33 and 34 in FIG. 3 show the absorbance of the 5i-H bond and the N-H bond, respectively, for the sample which was nitrided in NH3 at a substrate temperature of 800 DEG C. by the method of the present invention.

これらはIRスペクトルから求めたものである。These were determined from the IR spectrum.

本発明の方法による吸光度33.34を従来のプラズマ
CVD法によシ形成した窒化膜の場合の5i−H結合、
N−H結合の吸光度を示す31,32と比較すると、本
発明による方が吸光度が小さく、窒化膜中の水素原子量
が少ないことがわかる。
The 5i-H bond in the case of a nitride film formed by the conventional plasma CVD method has an absorbance of 33.34 according to the method of the present invention,
When compared with 31 and 32 which show the absorbance of N--H bond, it can be seen that the absorbance of the present invention is smaller and the amount of hydrogen atoms in the nitride film is smaller.

(発明の効果) 以上に述べた通り、本発明によれば、Si/Si窒化膜
界面の欠陥量を少なくするとともに、Si窒化膜中の水
素原子の混入を抑え、かつ従来の直接窒化法よシも低い
温度でSiの直接窒化による窒化膜を形成することが可
能となシ、本発明方法を電子デバイスプロセス中に用い
て、優れた効果を得ることができる。
(Effects of the Invention) As described above, according to the present invention, the amount of defects at the Si/Si nitride film interface is reduced, hydrogen atoms are suppressed from being mixed into the Si nitride film, and compared to the conventional direct nitriding method. Furthermore, since it is possible to form a nitride film by direct nitriding of Si at a low temperature, the method of the present invention can be used in an electronic device process to obtain excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す略示図、第2図は従来の
CVD法、直接窒化法及び本発明の方法を用いて窒化を
行った場合のSi/Si窒化膜界面の欠陥量を表すES
Rスペクトルを示す図、第3図は従来のプラズマCVD
法及び本発明の方法を用いて窒化した場合の窒化膜のR
Iスペクトルより求めた5i−H及びN−H結合の吸光
度を示す図である。 11・・・・・・si、H板、12・・面基板加熱ヒー
ター、13・・・・・・ガス導入口、14・・・・・・
窒素分子、15・・・・・・CO2レーザ−,16・・
・・・・赤外線透過窓17・・・・・・赤外レーザービ
ーム、18・・・・・・エキシマレーザー、19・・・
・・・紫外線透過窓、110・・・・・・紫外レーザー
ビーム篤2図 、6.「、z°ゝ
Fig. 1 is a schematic diagram showing an embodiment of the present invention, and Fig. 2 shows the amount of defects at the Si/Si nitride film interface when nitriding is performed using the conventional CVD method, direct nitriding method, and the method of the present invention. ES representing
A diagram showing the R spectrum, Figure 3 is a conventional plasma CVD
R of the nitride film when nitrided using the method and the method of the present invention
It is a figure which shows the absorbance of 5i-H and N-H bonds calculated|required from I spectrum. 11...si, H plate, 12...face substrate heater, 13...gas inlet, 14...
Nitrogen molecule, 15...CO2 laser, 16...
...Infrared transmission window 17...Infrared laser beam, 18...Excimer laser, 19...
...Ultraviolet transmission window, 110...Ultraviolet laser beam beam 2, 6. 「、z°ゝ

Claims (1)

【特許請求の範囲】[Claims] (1)窒素ガス、アンモニアガスまたはヒドラジンガス
雰囲気中にあるSiの表面に、CO_2レーザーを照射
すると同時にXeBrエキシマレーザー、XeClエキ
シマレーザー、XeFエキシマレーザーまたはUVラン
プを照射してSi表面を窒化することを特徴とする多重
ビーム照射Si窒化法。
(1) Nitriding the Si surface by irradiating the surface of Si in a nitrogen gas, ammonia gas, or hydrazine gas atmosphere with a CO_2 laser and simultaneously with a XeBr excimer laser, XeCl excimer laser, XeF excimer laser, or UV lamp. A multiple beam irradiation Si nitriding method characterized by:
JP59209164A 1984-10-05 1984-10-05 Nitriding method of si by multiple-beam projection Pending JPS6187342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59209164A JPS6187342A (en) 1984-10-05 1984-10-05 Nitriding method of si by multiple-beam projection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59209164A JPS6187342A (en) 1984-10-05 1984-10-05 Nitriding method of si by multiple-beam projection

Publications (1)

Publication Number Publication Date
JPS6187342A true JPS6187342A (en) 1986-05-02

Family

ID=16568381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59209164A Pending JPS6187342A (en) 1984-10-05 1984-10-05 Nitriding method of si by multiple-beam projection

Country Status (1)

Country Link
JP (1) JPS6187342A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160024A (en) * 1987-12-16 1989-06-22 Fujitsu Ltd Formation of silicon nitride film
JPH01173623A (en) * 1987-12-26 1989-07-10 Fujitsu Ltd Nitriding of oxide
JPH01175237A (en) * 1987-12-28 1989-07-11 Fujitsu Ltd Formation of oxynitride film
JPH07321061A (en) * 1994-10-03 1995-12-08 Sony Corp Manufacture of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160024A (en) * 1987-12-16 1989-06-22 Fujitsu Ltd Formation of silicon nitride film
JPH01173623A (en) * 1987-12-26 1989-07-10 Fujitsu Ltd Nitriding of oxide
JPH01175237A (en) * 1987-12-28 1989-07-11 Fujitsu Ltd Formation of oxynitride film
JPH07321061A (en) * 1994-10-03 1995-12-08 Sony Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
Inoue et al. Low temperature growth of SiO2 thin film by double-excitation photo-CVD
US4581249A (en) Photochemical vapor deposition method
US4581248A (en) Apparatus and method for laser-induced chemical vapor deposition
US4678536A (en) Method of photochemical surface treatment
US4495218A (en) Process for forming thin film
TW200406503A (en) Methods for producing silicon nitride films and silicon oxynitride films by thermal chemical vapor deposition
Bergonzo et al. Low pressure photodeposition of silicon nitride films using a xenon excimer lamp
JPH1098032A (en) Formation of thin film and thin film forming device
JPS6187342A (en) Nitriding method of si by multiple-beam projection
JPS5982732A (en) Manufacture for semiconductor device
JPH06151421A (en) Formation of silicon nitride thin film
JPH03274275A (en) Device for forming thin film utilizing organometallic gas
US4628862A (en) Photochemical vapor deposition apparatus
JPS60190566A (en) Preparation of silicon nitride
JPS61216449A (en) Method and apparatus for forming pattern thin-film
Linnen et al. Mechanism of the photochemically induced reaction between Ga (CH3) 3 and HN3 and the deposition of GaN films
JPS61224318A (en) Device and method for formation of vapor-phase thin film
JP2545777B2 (en) Interface modification method of insulator layer
JPS6187341A (en) Oxidation and nitriding device for surface of silicon irradiated with beam
JPH03225827A (en) Manufacture of insulating film
RU2040072C1 (en) Method for production of thin films of silicon dioxide
Hess IR and UV laser-induced chemical vapor deposition: Chemical mechanism for a-Si: H and Cr (O, C) film formation
JPH0580245B2 (en)
JPS6052579A (en) Optical nitride film forming device
JP3947791B2 (en) Formation of fluorine-doped silicon oxide film by light irradiation