JPH0118149B2 - - Google Patents

Info

Publication number
JPH0118149B2
JPH0118149B2 JP61252369A JP25236986A JPH0118149B2 JP H0118149 B2 JPH0118149 B2 JP H0118149B2 JP 61252369 A JP61252369 A JP 61252369A JP 25236986 A JP25236986 A JP 25236986A JP H0118149 B2 JPH0118149 B2 JP H0118149B2
Authority
JP
Japan
Prior art keywords
reaction
gas
low
insulating film
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61252369A
Other languages
Japanese (ja)
Other versions
JPS63105970A (en
Inventor
Kazuo Maeda
Toku Tokumasu
Toshihiko Fukuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Japan Inc
Original Assignee
Applied Materials Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Japan Inc filed Critical Applied Materials Japan Inc
Priority to JP25236986A priority Critical patent/JPS63105970A/en
Publication of JPS63105970A publication Critical patent/JPS63105970A/en
Publication of JPH0118149B2 publication Critical patent/JPH0118149B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は基板表面上にSiO2、PSGあるいは
BPSG膜等の絶縁膜を形成する気相成長方法に関
するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention provides SiO 2 , PSG or
This invention relates to a vapor phase growth method for forming an insulating film such as a BPSG film.

(従来の技術) CVD(Chemical Vapor Deposition)法は、配
線の終了したデバイス上に絶縁保護膜を形成する
場合などに広く実用化されている。
(Prior Art) The CVD (Chemical Vapor Deposition) method is widely put into practical use, such as when forming an insulating protective film on a device where wiring has been completed.

このような絶縁膜を形成する場合においては、
アルミニウム配線等を高熱から保護するために、
反応温度はできる限り低温(400℃程度)である
ことが望ましい。
When forming such an insulating film,
To protect aluminum wiring etc. from high heat,
It is desirable that the reaction temperature be as low as possible (about 400°C).

ところで発明者は、気相成長反応を低温でおこ
なわせるべく、反応中に基板表面に向けて紫外線
を照射する方法を開発し、既に特許出願してい
る。
By the way, the inventor has developed a method of irradiating the substrate surface with ultraviolet rays during the reaction in order to carry out the vapor phase growth reaction at a low temperature, and has already applied for a patent.

この方法によれば、反応ガスが紫外線によつて
励起されることにより、低温でも反応が進行す
る。また反応ガスが有機シラン系の場合には、起
こる反応がほとんど完全な表面反応となり、気相
中での反応が抑えられることによりパーテイクル
の発生が抑止され、また均一な厚さの絶縁膜が得
られるという利点がある。
According to this method, the reaction gas is excited by ultraviolet rays, so that the reaction proceeds even at low temperatures. In addition, when the reaction gas is an organic silane type, the reaction that occurs is almost a complete surface reaction, suppressing the reaction in the gas phase, suppressing the generation of particles, and making it possible to obtain an insulating film with a uniform thickness. It has the advantage of being able to

(発明が解決しようとする問題点) しかしながら上記従来の気相成長方法にあつて
も次のような問題点があることが判明した。
(Problems to be Solved by the Invention) However, it has been found that even the above conventional vapor phase growth method has the following problems.

すなわち、上記従来の方法においては、反応が
低温で進行する故に、得られた絶縁膜中に未分解
の基や水分が入り込み、絶縁膜の品質を低下させ
ている。
That is, in the conventional method described above, since the reaction proceeds at a low temperature, undecomposed groups and moisture enter the obtained insulating film, degrading the quality of the insulating film.

たとえばSiH4−O2の反応ガス系では300℃から
絶縁膜の形成が可能だが、第1図のFTIRスペク
トルからも明らかなように、絶縁膜中に多くの水
分やOH基を含んでいる。
For example, with a SiH 4 -O 2 reactive gas system, it is possible to form an insulating film at temperatures as low as 300°C, but as is clear from the FTIR spectrum in Figure 1, the insulating film contains a large amount of water and OH groups.

また有機シランのテトラエトキシシランの反応
ガス系では、得られた絶縁膜中に未分解の−
OH、−H、−Rなどの基を含んでいて絶縁膜の品
質を低下させている。
In addition, in the reaction gas system of organic silane tetraethoxysilane, undecomposed -
It contains groups such as OH, -H, and -R, which deteriorates the quality of the insulating film.

そこで本発明は上記問題点を解消すべくなされ
たものであり、その目的とするところは、低温で
の反応を可能にすると共に、未分解解の基や水分
のない高品質の絶縁膜を得ることのできる気相成
長方法を提供するにある。
Therefore, the present invention was made to solve the above problems, and its purpose is to enable the reaction at low temperatures and to obtain a high-quality insulating film that is free of undecomposed groups and moisture. The purpose of the present invention is to provide a vapor phase growth method that can be used.

(発明の概要) 上記目的による本発明では、無機シランあるい
は有機シランを主体とする原料ガスの酸化反応に
より、基板表面にSiO2、PSG等の絶縁膜を形成
させる気相成長方法において、 反応前、反応中および反応後に基板表面に向け
て紫外線を照射することを特徴としている。
(Summary of the Invention) In the present invention for the above-mentioned purpose, in a vapor phase growth method for forming an insulating film such as SiO 2 or PSG on a substrate surface by an oxidation reaction of a raw material gas mainly composed of inorganic silane or organic silane, , which is characterized by irradiating the substrate surface with ultraviolet rays during and after the reaction.

上記のように本発明においては、反応中のみで
なく、反応前および反応後においても基板表面に
紫外線を照射するのである。
As described above, in the present invention, the substrate surface is irradiated with ultraviolet rays not only during the reaction, but also before and after the reaction.

まず反応前に基板表面に紫外線を照射すること
によつて基板表面に結合している−OH等の各種
基あるいは水分が分解して揮散し、基板表面が清
浄化される。
First, by irradiating the substrate surface with ultraviolet rays before the reaction, various groups such as -OH or moisture bonded to the substrate surface are decomposed and volatilized, thereby cleaning the substrate surface.

次いで反応ガスを、適宜なヒーターによつて加
熱されている基板上に導入すると共に、反応容器
外部から紫外線を基板に向けて照射する。これに
よつて反応ガスが光励起され、低温で反応が進行
し、従来と同様に基板上に必要な絶縁膜が形成さ
れる。
Next, a reaction gas is introduced onto the substrate which is heated by a suitable heater, and ultraviolet rays are irradiated from outside the reaction vessel toward the substrate. As a result, the reactive gas is optically excited, the reaction proceeds at a low temperature, and a necessary insulating film is formed on the substrate as in the conventional method.

また基板表面に有機物が付着していたり、反応
ガス中に不純物として有機物が混入いている場合
には、酸化雰囲気中への紫外線照射によつて発生
する発生気の酸素(O)によつてこれら有機物は
酸化され、H2O、CO2になつて排出される。
In addition, if organic substances are attached to the substrate surface or organic substances are mixed as impurities in the reaction gas, these organic substances may be removed by the oxygen (O) generated in the gas generated by ultraviolet irradiation into the oxidizing atmosphere. is oxidized and becomes H 2 O and CO 2 and is discharged.

次に反応容器中を排気し(あるいは不活性ガス
を導入し)て、絶縁膜が形成されている基板表面
上に紫外線を照射する。これによつて結合してい
る−OH等の各種基および水分が分散して揮散
し、絶縁膜の品質が向上する。
Next, the inside of the reaction vessel is evacuated (or an inert gas is introduced), and the surface of the substrate on which the insulating film is formed is irradiated with ultraviolet rays. As a result, various bonded groups such as -OH and moisture are dispersed and volatilized, improving the quality of the insulating film.

第2図はSiH4−O2の反応ガス系を用い、反応
温度300℃〜400℃で、かつ上記のように反応前、
反応中、反応後に基板表面に紫外線を照射して得
られた絶縁膜のFTIRスペクトルを示す。同図か
ら明らかなように、第1図に示される−OH基お
よびH2Oの吸収帯が消失している。
Figure 2 shows a reaction gas system of SiH 4 -O 2 used at a reaction temperature of 300°C to 400°C, and as described above before the reaction.
The FTIR spectra of the insulating film obtained by irradiating the substrate surface with ultraviolet rays during and after the reaction are shown. As is clear from the figure, the -OH group and H2O absorption bands shown in Figure 1 have disappeared.

なお、本発明における反応ガス系は無機シラン
系、有機シラン系のいずれでも有効である。
The reactive gas system used in the present invention may be either an inorganic silane system or an organic silane system.

以下に具体的な実施例を示す。 Specific examples are shown below.

(実施例) 実施例 1 まず反応ガスを導入する前に、反応容器外部か
ら反応容器中の基板表面に低圧Hgランプ(波長
184.9nm、254.0nm)で紫外線を3.0分間照射し
た。
(Example) Example 1 First, before introducing the reaction gas, a low-pressure Hg lamp (wavelength
184.9 nm, 254.0 nm) was irradiated with ultraviolet light for 3.0 minutes.

次に SiH4を25℃、35c.c./分、N2Oを700c.c./分、キ
ヤリアガスとしてN2ガスを2600c.c./分で反応容
器中に導入し、低圧Hgランプで反応容器外部か
ら基板上を照射し、反応温度400℃で反応させた
ところ、SiO2皮膜が700Å/分で得られた。
Next, SiH 4 was introduced into the reaction vessel at 25°C at 35 c.c./min, N 2 O at 700 c.c./min, N 2 gas was introduced as a carrier gas at 2600 c.c./min, and a low-pressure Hg lamp was used. When the substrate was irradiated from outside the reaction vessel and reacted at a reaction temperature of 400°C, a SiO 2 film was obtained at a rate of 700 Å/min.

次いで反応容器中を排気し、さらに低温Hgラ
ンプでウエハー上を3.0分間照射した。
Next, the inside of the reaction vessel was evacuated, and the wafer was further irradiated with a low-temperature Hg lamp for 3.0 minutes.

得られた絶縁膜のFTIRスペクトルを調べたと
ころ、−OH基、H2Oによる吸収帯は全く見られ
なかつた。
When the FTIR spectrum of the obtained insulating film was examined, no absorption bands due to -OH groups or H2O were observed.

実施例 2 まず反応ガスを導入する前に、反応容器外部か
ら反応容器中の基板表面に低圧Hgランプ(波長
184.9nm、254.0nm)で紫外線を、3.0分間照射し
た。
Example 2 First, before introducing the reaction gas, a low-pressure Hg lamp (wavelength
Ultraviolet light (184.9 nm, 254.0 nm) was irradiated for 3.0 minutes.

次に SiH4を25℃、30c.c./分、NOを700c.c./分、キ
ヤリアガスとしてN2ガスを2500c.c./分で反応容
器中に導入し、低圧Hgランプで反応容器外部か
ら基板上を照射し、反応温度400℃で反応させた
ところ、SiO2皮膜が800Å/分で得られた。
Next, SiH 4 was introduced into the reaction vessel at 25℃ at 30 c.c./min, NO at 700 c.c./min, and N 2 gas was introduced as a carrier gas at 2500 c.c./min. When the substrate was irradiated from the outside and reacted at a reaction temperature of 400°C, a SiO 2 film was obtained at a rate of 800 Å/min.

次いで反応容器中を排気し、さらに低圧Hgラ
ンプでウエハー上を3.0分間照射した。
Next, the reaction vessel was evacuated, and the wafer was further irradiated with a low-pressure Hg lamp for 3.0 minutes.

得られた絶縁膜のFTIRスペクトルを調べたと
ころ、−OH基、H2Oによる吸収帯は全く見られ
なかつた。
When the FTIR spectrum of the obtained insulating film was examined, no absorption bands due to -OH groups or H2O were observed.

実施例 3 まず反応ガスを導入する前に、反応容器外部か
ら反応容器中の基板表面に低圧Hgランプ(波長
184.9nm、254.0nm)で紫外線を5.0分間照射し
た。
Example 3 First, before introducing the reaction gas, a low-pressure Hg lamp (wavelength
Ultraviolet light (184.9 nm, 254.0 nm) was irradiated for 5.0 minutes.

次に SiH4を25℃、400c.c./分、NO2を600c.c./分、
キヤリアガスとしてN2ガスを2500c.c./分で反応
容器中に導入し、低圧Hgランプで反応容器外部
から基板上を照射し、反応温度400℃で反応させ
たところ、SiO2皮膜が1200Å/分で得られた。
Next, SiH 4 at 25℃, 400 c.c./min, NO 2 at 600 c.c./min,
N 2 gas was introduced into the reaction vessel as a carrier gas at 2500c.c./min, and the substrate was irradiated from outside the reaction vessel with a low-pressure Hg lamp. When the reaction was carried out at a reaction temperature of 400℃, a SiO 2 film of 1200Å/min was formed. Got it in minutes.

次いで反応容器中を排気し、さらに低圧Hgラ
ンプでウエハー上を5.0分間照射した。
Next, the inside of the reaction vessel was evacuated, and the wafer was further irradiated with a low-pressure Hg lamp for 5.0 minutes.

得られた絶縁膜のFTIRスペクトルを調べたと
ころ、−OH基、H2Oによる吸収帯は全く見られ
なかつた。
When the FTIR spectrum of the obtained insulating film was examined, no absorption bands due to -OH groups or H2O were observed.

実施例 4 まず反応ガスを導入する前に、反応容器外部か
ら反応容器中の基板表面に低圧Hgランプ(波長
184.9nm、254.0nm)で紫外線を3.0分間照射し
た。
Example 4 First, before introducing the reaction gas, a low-pressure Hg lamp (wavelength
184.9 nm, 254.0 nm) was irradiated with ultraviolet light for 3.0 minutes.

次に SiH4を25℃、35c.c./分、N2Oを700c.c./分、1
%濃度のPH3を20c.c./分、キヤリアガスとして
N2ガスを2000c.c./分で反応容器中に導入し、低
圧Hgランプで反応容器外部から基板上を照射し、
反応温度400℃で反応させたところ、PSG皮膜が
650Å/分で得られた。
Next, SiH 4 at 25℃, 35c.c./min, N 2 O at 700c.c./min, 1
% concentration of PH 3 at 20c.c./min as carrier gas.
N2 gas was introduced into the reaction vessel at 2000 c.c./min, and the substrate was irradiated from outside the reaction vessel with a low-pressure Hg lamp.
When the reaction was carried out at a reaction temperature of 400℃, the PSG film was
Obtained at 650 Å/min.

次いで反応容器中を排気し、さらに低圧Hgラ
ンプでウエハー上を5.0分間照射した。
Next, the inside of the reaction vessel was evacuated, and the wafer was further irradiated with a low-pressure Hg lamp for 5.0 minutes.

得られた絶縁膜のFTIRスペクトルを調べたと
ころ、−OH基、H2Oによる吸収帯は全く見られ
なかつた。
When the FTIR spectrum of the obtained insulating film was examined, no absorption bands due to -OH groups or H2O were observed.

実施例 5 まず反応ガスを導入する前に、反応容器外部か
ら反応容器中の基板表面に低圧Hgランプ(波長
184.9nm、254.0nm)で紫外線を3.0分間照射し
た。
Example 5 First, before introducing the reaction gas, a low-pressure Hg lamp (wavelength
184.9 nm, 254.0 nm) was irradiated with ultraviolet light for 3.0 minutes.

次に SiH4を25℃、35c.c./分、CO2を900c.c./分、キ
ヤリアガスとしてN2ガスを2000c.c./分で反応容
器中に導入し、低圧Hgランプで反応容器外部か
ら基板上を照射し、反応温度400℃で反応させた
ところ、SiO2皮膜が700Å/分で得られた。
Next, SiH 4 was introduced into the reaction vessel at 25°C at 35 c.c./min, CO 2 at 900 c.c./min, and N 2 gas was introduced as a carrier gas at 2000 c.c./min, and the reaction was carried out using a low-pressure Hg lamp. When the substrate was irradiated from outside the container and reacted at a reaction temperature of 400°C, a SiO 2 film was obtained at a rate of 700 Å/min.

次いで反応容器中を排気し、さらに低圧Hgラ
ンプでウエハー上を5.0分間照射した。
Next, the inside of the reaction vessel was evacuated, and the wafer was further irradiated with a low-pressure Hg lamp for 5.0 minutes.

得られた絶縁膜のFTIRスペクトルを調べたと
ころ、−OH基、H2Oによる吸収帯は全く見られ
なかつた。
When the FTIR spectrum of the obtained insulating film was examined, no absorption bands due to -OH groups or H2O were observed.

実施例 6 まず反応ガスを導入する前に、反応容器外部か
ら反応容器中の基板表面に低圧Hgランプ(波長
184.9nm、254.0nm)で紫外線を3.0分間照射し
た。
Example 6 First, before introducing the reaction gas, a low-pressure Hg lamp (wavelength
184.9 nm, 254.0 nm) was irradiated with ultraviolet light for 3.0 minutes.

次に テトラエトキシシランを80℃、600c.c./分、O2
ガスを600c.c./分、キヤリアガスとしてN2ガスを
0.8/分で反応容器中に導入し、低圧Hgランプ
で反応容器外部から基板上を照射し、反応温度
400℃で反応させたところ、SiO2皮膜が1000Å/
分で得られた。
Next, add tetraethoxysilane at 80℃, 600c.c./min, O 2
Gas at 600c.c./min, N2 gas as carrier gas
The substrate was introduced into the reaction vessel at a rate of 0.8/min, and the substrate was irradiated from outside the reaction vessel with a low-pressure Hg lamp to maintain the reaction temperature.
When reacted at 400℃, the SiO 2 film was 1000Å/
Got it in minutes.

次いで反応容器中を排気し、さらに低圧Hgラ
ンプでウエハー上を3.0分間照射した。
Next, the reaction vessel was evacuated, and the wafer was further irradiated with a low-pressure Hg lamp for 3.0 minutes.

得られた絶縁膜のFTIRスペクトルを調べたと
ころ、−OH基、H2Oによる吸収帯は全く見られ
なかつた。
When the FTIR spectrum of the obtained insulating film was examined, no absorption bands due to -OH groups or H2O were observed.

実施例 7 まず反応ガスを導入する前に、反応容器外部か
ら反応容器中の基板表面に低圧Hgランプ(波長
184.9nm、254.0nm)で紫外線を3.0分間照射し
た。
Example 7 First, before introducing the reaction gas, a low pressure Hg lamp (wavelength
184.9 nm, 254.0 nm) was irradiated with ultraviolet light for 3.0 minutes.

次に テトラエトキシシランを80℃、600c.c./分、O2
ガスを600c.c./分、有機リンを200c.c./分、キヤリ
アガスとしてN2ガスを0.8/分で反応容器中に
導入し、低圧Hgランプで反応容器外部から基板
上を照射し、反応温度400℃で反応させたところ、
PSG皮膜が1000Å/分で得られた。
Next, add tetraethoxysilane at 80℃, 600c.c./min, O 2
Gas was introduced into the reaction vessel at 600 c.c./min, organic phosphorus at 200 c.c./min, and N 2 gas was introduced as a carrier gas at 0.8/min into the reaction vessel, and the substrate was irradiated from outside the reaction vessel with a low-pressure Hg lamp. When the reaction was carried out at a reaction temperature of 400℃,
PSG coatings were obtained at 1000 Å/min.

次いで反応容器中を排気し、さらに低圧Hgラ
ンプでウエハー上を3.0分間照射した。
Next, the reaction vessel was evacuated, and the wafer was further irradiated with a low-pressure Hg lamp for 3.0 minutes.

得られた絶縁膜のFTIRスペクトルを調べたと
ころ、−OH基、H2Oによる吸収帯は全く見られ
なかつた。
When the FTIR spectrum of the obtained insulating film was examined, no absorption bands due to -OH groups or H2O were observed.

なお以上の各実施例においてパーテイクルの発
生もみられず、ステツプカバリツジも良好であつ
た。
In each of the above examples, no particles were observed and step coverage was good.

(発明の効果) 以上のように本発明方法によるときは、反応
前、反応中、反応後を通じて基板表面に紫外線を
照射することによつて、低温で反応を進行させる
ことができるのみならず、−OH基等の各種基お
よび水分の結合のない良質な絶縁膜を提供しうる
という著効を奏する。
(Effects of the Invention) As described above, when using the method of the present invention, by irradiating the substrate surface with ultraviolet rays before, during, and after the reaction, not only can the reaction proceed at a low temperature, but also It has the remarkable effect of providing a high-quality insulating film free from binding of various groups such as -OH groups and moisture.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はSiH4−O2の反応ガス系を用いて従来
方法によつて得られたSiO2膜のFTIRスペクトル
図、第2図はSiH4−O2の反応ガス系を用いて本
発明方法によつて得られたSiO2膜のFTIRスペク
トル図を示す。
Figure 1 is an FTIR spectrum diagram of a SiO 2 film obtained by the conventional method using a SiH 4 -O 2 reaction gas system, and Figure 2 is an FTIR spectrum diagram of an SiO 2 film obtained using the SiH 4 -O 2 reaction gas system. An FTIR spectrum diagram of the SiO 2 film obtained by the method is shown.

Claims (1)

【特許請求の範囲】 1 無機シランあるいは有機シランを主体とする
原料ガスの酸化反応により、基板表面にSiO2
PSG等の絶縁膜を形成させる気相成長方法にお
いて、 反応前、反応中および反応後に基板表面に向け
て紫外線を照射することを特徴とする気相成長方
法。
[Claims] 1. SiO 2 ,
A vapor phase growth method for forming an insulating film such as PSG, which is characterized by irradiating the substrate surface with ultraviolet rays before, during and after the reaction.
JP25236986A 1986-10-23 1986-10-23 Vapor growth method Granted JPS63105970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25236986A JPS63105970A (en) 1986-10-23 1986-10-23 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25236986A JPS63105970A (en) 1986-10-23 1986-10-23 Vapor growth method

Publications (2)

Publication Number Publication Date
JPS63105970A JPS63105970A (en) 1988-05-11
JPH0118149B2 true JPH0118149B2 (en) 1989-04-04

Family

ID=17236342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25236986A Granted JPS63105970A (en) 1986-10-23 1986-10-23 Vapor growth method

Country Status (1)

Country Link
JP (1) JPS63105970A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697158A (en) * 1991-09-12 1994-04-08 Semiconductor Energy Lab Co Ltd Optical vapor-phase reaction method
KR0131062B1 (en) 1992-08-27 1998-04-14 순페이 야마자끼 Fabrication method for film-like semiconductor device
JP3065825B2 (en) 1992-10-21 2000-07-17 株式会社半導体エネルギー研究所 Laser treatment method
JP3455171B2 (en) 2000-08-30 2003-10-14 宮崎沖電気株式会社 Method for manufacturing interlayer insulating film by vacuum ultraviolet light CVD

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028235A (en) * 1983-07-26 1985-02-13 Nec Corp Manufacture of semiconductor device
JPS61163634A (en) * 1985-01-16 1986-07-24 Ushio Inc Method for surface treatment by discharge lamp
JPS61163633A (en) * 1985-01-16 1986-07-24 Ushio Inc Method for surface treatment by discharge lamp

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028235A (en) * 1983-07-26 1985-02-13 Nec Corp Manufacture of semiconductor device
JPS61163634A (en) * 1985-01-16 1986-07-24 Ushio Inc Method for surface treatment by discharge lamp
JPS61163633A (en) * 1985-01-16 1986-07-24 Ushio Inc Method for surface treatment by discharge lamp

Also Published As

Publication number Publication date
JPS63105970A (en) 1988-05-11

Similar Documents

Publication Publication Date Title
US4702936A (en) Gas-phase growth process
US4495218A (en) Process for forming thin film
EP0005491B1 (en) Process for the preparation of low temperature silicon nitride films by photochemical vapor deposition
EP0572704B1 (en) Method for manufacturing a semiconductor device including method of reforming an insulating film formed by low temperature CVD
KR100627098B1 (en) Method of forming low dielectric constant insulating film
JPH10107028A (en) Method and device for forming dielectric film
JP3120302B2 (en) Method for manufacturing silicon oxide film of semiconductor device
KR100266060B1 (en) Formation of thick silica film
JPH0118149B2 (en)
JPH0219189B2 (en)
JPH036653B2 (en)
Niwano et al. Ultraviolet‐Induced Deposition of SiO2 Film from Tetraethoxysilane Spin‐Coated on Si
Sekine et al. The reaction of copper and calcium dipivaloylmethanates (Cu (DPM) 2 and Ca (DPM) 2) with hydroxyls on oxide surface
JP4149031B2 (en) Coating liquid for forming low dielectric constant silica-based film and substrate with low dielectric constant film
JP3443978B2 (en) Method of forming low dielectric film
JPS6177695A (en) Vapor growth method
JPS6125213B2 (en)
US4628862A (en) Photochemical vapor deposition apparatus
JPH0360918B2 (en)
JPH05190537A (en) Modifying method for silicon oxide film of semiconductor device
Ermakova et al. Carbon‐rich plasma‐deposited silicon oxycarbonitride films derived from 4‐(trimethylsilyl) morpholine as novel single‐source precursor
JPH0987848A (en) Production of bismuth layer ferroelectric thin film
JP2681481B2 (en) Method of forming silicon oxide film
JPS6221868B2 (en)
JPH01152631A (en) Formation of sixoynz insulating film