JP4149031B2 - Coating liquid for forming low dielectric constant silica-based film and substrate with low dielectric constant film - Google Patents

Coating liquid for forming low dielectric constant silica-based film and substrate with low dielectric constant film Download PDF

Info

Publication number
JP4149031B2
JP4149031B2 JP13972398A JP13972398A JP4149031B2 JP 4149031 B2 JP4149031 B2 JP 4149031B2 JP 13972398 A JP13972398 A JP 13972398A JP 13972398 A JP13972398 A JP 13972398A JP 4149031 B2 JP4149031 B2 JP 4149031B2
Authority
JP
Japan
Prior art keywords
silica
resin
dielectric constant
film
phenyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13972398A
Other languages
Japanese (ja)
Other versions
JPH11323259A (en
Inventor
島 昭 中
松 通 郎 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP13972398A priority Critical patent/JP4149031B2/en
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to PCT/JP1999/002017 priority patent/WO1999055789A1/en
Priority to EP20070002273 priority patent/EP1790703B1/en
Priority to KR1019997012205A priority patent/KR100600630B1/en
Priority to KR1020067009944A priority patent/KR100600631B1/en
Priority to EP19990913676 priority patent/EP0992556B1/en
Priority to US09/446,686 priority patent/US6562465B1/en
Priority to TW88106468A priority patent/TWI221159B/en
Publication of JPH11323259A publication Critical patent/JPH11323259A/en
Application granted granted Critical
Publication of JP4149031B2 publication Critical patent/JP4149031B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の技術分野】
本発明は、比誘電率が3以下と小さく、しかもマイクロフォトリソグラフィ加工に優れた絶縁膜を形成できるような低誘電率シリカ系被膜形成用塗布液、およびこのような低誘電率シリカ系被膜が形成された基材に関する。
【0002】
【発明の技術的背景】
半導体装置の高集積化に伴い、多層配線を有する0.3ミクロンルール以下の半導体装置においては、金属配線間隔が狭くなるため、静電誘導による金属配線のインピーダンスが増大し、応答速度の遅れ、消費電力の増大が懸念されている。このため、半導体基板とアルミニウム配線層などの金属配線層との間、あるいは金属配線層間に設けられる層間絶縁膜の比誘電率をできるだけ小さくすることが必要である。
【0003】
上記のような目的で用いられている層間絶縁膜は、一般にCVD法などの気相成長法または被膜形成用塗布液を用いて絶縁膜を形成する塗布法によって基板上に形成されている。
【0004】
しかしながら、CVD法などの気相成長法では得られるシリカ系被膜の比誘電率がフッ素ドープシリカ膜の3.5が限界と言われており、3以下のシリカ系被膜を形成することは難しい。
【0005】
また、ポリアリール樹脂、フッ素添加ポリイミド樹脂やフッ素系樹脂などのCVD被膜やこれらの塗布液を用いて形成される被膜は、比誘電率が2前後となるが、被塗布面との密着性が悪く、また、微細加工に用いるレジスト材料との密着性も悪く、耐薬品性、耐酸素プラズマ性に劣るなどの欠点もある。
【0006】
従来から用いられているアルコキシシランの部分加水分解物からなるシリカ系被膜形成用塗布液では、比誘電率2.5の被膜が得られるが、被塗布面との密着性が悪いという欠点がある。
【0007】
本発明者らはシリカ微粒子とハロゲン化シランまたはその加水分解物との反応物を含有する低誘電率シリカ系被膜形成用塗布液を用いて形成される被膜は比誘電率が3以下と小さく、しかも被塗布面との密着性、機械的強度、耐アルカリ性などの耐薬品性に優れ、同時に耐クラック性に優れていることを見出し、これを出願している(特願平8-299684号)。
【0008】
さらに本発明者らは研究を重ねた結果、上記のような従来の被膜では、マイクロフォトリソグラフィ加工時のプラズマエッチングやレジスト剥離時の酸素プラズマによる膜質の劣化が被膜への水分再吸着を引き起こし、被膜の誘電率を増大させたり、密着性や耐薬品性、耐クラック性を劣化させることが判明した。
【0009】
すなわち、被膜形成成分としてアルコキシシランまたはハロゲン化シランの加水分解物あるいはシリカ系微粒子を含む従来の塗布液からシリカ系被膜を形成すると、Si原子に結合した水素原子、フッ素原子、有機基あるいはシリカ微粒子の粒子間空孔による被膜中のSi-O-Si結合の架橋密度の低減により、低誘電率被膜が得られるものの、これらの官能基はプラズマ耐性に乏しく、マイクロフォトリソグラフィ加工時の膜質劣化が生じ、安定した低誘電率被膜が得られないことがあった。
【0010】
【発明の目的】
本発明は、上記のような従来技術における問題点を解決しようとするものであって、比誘電率が3以下と小さく、しかもマイクロフォトリソグラフィ加工に優れた絶縁膜を形成できるような低誘電率シリカ系被膜形成用塗布液、およびこのような低誘電率シリカ系被膜が形成された基材を提供することを目的としている。
【0011】
【発明の概要】
本発明に係る低誘電率シリカ系被膜形成用塗布液は、
(i)フェニル基を有するシリカ系微粒子と、(ii)酸化分解性樹脂を含有し、
かつフェニル基を有するシリカ系微粒子と酸化分解性樹脂との重量比(フェニル基を有するシリカ系微粒子/酸化分解性樹脂)が、0.5〜5の範囲にあることを特徴としている。
【0012】
前記フェニル基を有するシリカ系微粒子は、下記一般式(I)で示されるアルコキシシランの1種または2種以上を加水分解、または加水分解後、熟成して得られたシリカ微粒子の少なくとも一部の表面に下記一般式(II)で示されるフェニル基含有アルコキシシランおよび/または下記一般式(III)で示されるフェニル基含有クロロシランから選ばれた1種または2種以上の加水分解物を結合させて得られたものであることが好ましい。
【0013】
nSi(OR1)4-n (I)
p2 qSi(OR1)4-(p+q) (II)
p2 qSiX'4-(p+q) (III)
(式中、Xは水素原子、フッ素原子または炭素数1〜8のアルキル基、フッ素置換アルキル基、アリール基またはビニル基を表し、R1は水素原子または炭素数1〜8のアルキル基、アリール基またはビニル基を表し、R2はフェニル基を表し、X'は塩素原子を表す。また、nは0〜3の整数、pは0〜3の整数、qは1〜3の整数である。なお、p+qは4以下の整数である。)
前記シリカ微粒子調製時の加水分解温度、または熟成温度は、180℃以上であることが好ましい。
【0014】
前記酸化分解性樹脂は、有機溶媒に溶解可能で、かつ室温から500℃までの酸素中の焼成、または、紫外線、赤外線、電子線、X線、酸素プラズマなどの照射により酸化分解する樹脂が好ましい。
【0015】
本発明に係る低誘電率被膜付基材は、以上の塗布液を用いて形成された被膜を酸素中での焼成あるいは紫外線、赤外線、電子線、X線、酸素プラズマなどの照射により酸化分解して多孔質にした低誘電率シリカ系被膜を有することを特徴としている。
【0016】
【発明の具体的説明】
以下、本発明に係る低誘電率シリカ系被膜形成用塗布液および低誘電率被膜付基材について具体的に説明する。
【0017】
[低誘電率シリカ系被膜形成用塗布液]
本発明に係る低誘電率シリカ系被膜形成用塗布液は、(i)フェニル基を有するシリカ系微粒子と、(ii)酸化分解性樹脂とを、フェニル基を有するシリカ系微粒子と酸化分解性樹脂との重量比(フェニル基を有するシリカ系微粒子/酸化分解性樹脂)で0.5〜5の範囲となるように含有している。
【0018】
(i) フェニル基を有するシリカ系微粒子
フェニル基を有するシリカ系微粒子は、一般式(I)で示されるアルコキシシランの1種または2種以上と水、有機溶媒およびアンモニアの存在下で加水分解、または加水分解後、熟成させることにより得られたシリカ微粒子を後述する一般式(II)で示されるフェニル基含有アルコキシシランおよび/または一般式(III)で示されるフェニル基含有クロロシランから選ばれた1種または2種以上と反応させることにより得られる。この場合、シリカ微粒子の調製法としては、従来より公知の方法を採用することができる。
【0019】
nSi(OR1)4-n (I)
式中、Xは水素原子、フッ素原子または炭素数1〜8のアルキル基、フッ素置換アルキル基、アリール基またはビニル基を表し、R1は水素原子または炭素数1〜8のアルキル基、アリール基またはビニル基を表す。また、nは0〜3の整数である。)
上記式(I)で示されるアルコキシシランの具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、テトラオクチルシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、トリメトキシシラン、トリエトキシシラン、トリイソプロポキシシラン、フルオロトリメトキシシラン、フルオロトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジメトキシシラン、ジエトキシシラン、ジフルオロジメトキシシラン、ジフルオロジエトキシシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシランなどが挙げられる。
【0020】
有機溶媒としは、アルコール類、ケトン類、エーテル類、エステル類などが挙げられ、より具体的には、例えばメタノール、エタノール、プロパノール、ブタノールなどのアルコール類、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、メチルセロソルブ、エチルセロソルブ、プロピレングリコールモノプロピルエーテルなどのグリコールエーテル類、エチレングリコール、プロピレングリコール、ヘキシレングリコールなどのグリコール類、酢酸メチル、酢酸エチル、乳酸メチル、乳酸エチルなどのエステル類が用いられる。
【0021】
触媒としては、アンモニアの他に、アミン、アルカリ金属水素化物、第4級アンモニウム化合物、アミン系カップリング剤などの塩基性化合物などを用いることもできる。
【0022】
このようなシリカ微粒子の調製法をさらに詳細に説明すると、例えば、水-アルコール混合溶媒を撹拌しながら、この混合溶媒にアルコキシシランおよびアンモニア水を添加し、反応させる。
【0023】
この時、水はアルコキシシランを構成するSi-OR1基1モル当たり0.5〜50モル、好ましくは1〜25モルとなるような量で用いられることが望ましい。また、アンモニアは、アルコキシシランをSiO2換算したときに、アルコキシシラン1モルに対し、0.01〜1モル、好ましくは0.05〜0.8モルとなるような量で配合されることが望ましい。
【0024】
アルコキシシランの加水分解・重縮合反応は、180℃以上、好ましくは200℃以上で、オートクレーブなどの耐熱耐圧容器を用いて行うことが好ましい。さらに、この後、同一温度またはより高い温度で熟成してもよい。上記の反応温度および/または熟成温度は、高い方がアルコキシシランの重縮合がより促進され、シリカ微粒子内部が緻密となる。このような温度で加水分解反応、熟成を行うと、シリカ微粒子がより一層緻密となり、粒子自体の吸湿性が低下すると同時に粒子表面の残留官能基も少なくなる。
【0025】
また、例えば撹拌下の水-アルコール混合溶媒にエチレングリコールなどの高沸点の溶媒を添加して、アルコキシシランの加水分解を行い、シリカ微粒子を生成、成長させてもよい。このような高沸点の溶媒をアルコキシシランの加水分解時に添加しておくと、アルコキシ基のエステル交換反応が起こり、高沸点溶媒がシリカ粒子内部に取り込まれ、密度の低い多孔質のシリカ微粒子が得られる。
【0026】
また、本発明では、上記以外にシリカ微粒子として、アルカリ金属珪酸塩等をイオン交換したり、加水分解したりすることによって得られるシリカゾルなども用いることができる。さらには、アルミノケイ酸塩からなるゼオライトからアルミニウムを除去したような多孔質ゼオライトからなる微粒子も用いることができる。
【0027】
以上のようなシリカ微粒子は、平均粒径が30〜1000Å、好ましくは50〜500Åの範囲内にあることが好ましい。この範囲の平均粒径の微粒子であれば、均一な粒径のものであっても、粒径の異なる2種以上の微粒子の混合物であっても良い。この粒径が30Å未満では、これより製造される塗布液を塗布して得られるシリカ系被膜の低誘電率化が困難となり、一方、1000Åを越えるとマイクロフォトリソグラフィ工程での微細加工時に欠陥を生じやすい。また、粒子の形状は、球形であっても、異形であってもよい。
【0028】
本発明で用いられるフェニル基を有するシリカ系微粒子は、上記のシリカ微粒子を下記一般式(II)で示されるフェニル基含有アルコキシシランおよび/または下記一般式(III)で示されるフェニル基含有クロロシランと反応させることにより得られる。
【0029】
p2 qSi(OR1)4-(p+q) (II)
p2 qSiX'4-(p+q) (III)
式中、Xは水素原子、フッ素原子または炭素数1〜8のアルキル基、フッ素置換アルキル基、アリール基またはビニル基を表し、R1は水素原子または炭素数1〜8のアルキル基、アリール基またはビニル基を表し、R2はフェニル基を表し、Xは塩素原子を表す。なお、フェニル基には炭素数1〜8のアルキル基が置換されていてもよい。
【0030】
また、nは0〜3の整数、pは0〜3の整数、qは1〜3の整数である。なお、p+qは4以下の整数である。
このようなアルコキシシランまたはクロロシランの具体例としては、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、フェニルメチルジメトキシシラン、フェニルメチルジエトキシシラン、フェニルジメチルエトキシシラン、フェニルジメチルアセトキシシラン、フェニルトリクロロシラン、フェニルメチルジクロロシラン、フェニルエチルジクロロシラン、フェニルジメチルクロロシラン、フェニルメチルクロロシラン、フェニルジクロロシランなどが挙げられる。
【0031】
本発明では、これらのフェニル基含有アルコキシシランおよび/またはフェニル基含有アルコキシシランは、加水分解物を用いてもよい。
なお、シリカ微粒子とフェニル基含有アルコキシシランおよび/またはフェニル基含有アルコキシシランとの反応においては、シリカ微粒子の成長あるいは新たなシリカ微粒子の生成は起こらず、シリカ微粒子の表面で、このシリカ微粒子とフェニル基含有アルコキシシランおよび/またはフェニル基含有クロロシランとの表面反応が起こり、表面にフェニル基を有するシリカ系微粒子が得られる。
【0032】
本発明で用いられるフェニル基を有するシリカ系微粒子は、上記のようにして得られたシリカ微粒子とフェニル基含有アルコキシシランおよびフェニル基含有クロロシランから選ばれた1種または2種以上を混合して反応させるが、両者の混合割合は、SiO2に換算して、シリカ微粒子1重量部あたり、0.01重量部〜0.3重量部、好ましくは0.05重量部〜0.2重量部であることが望ましい。
【0033】
フェニル基含有アルコキシシランおよび/またはフェニル基含有クロロシランの量が0.01重量部より少ないと、シリカ系微粒子表面のフェニル基の量が少なくなり、得られるシリカ系被膜は耐酸化性に劣り、吸湿しやすくなる傾向がある。また、0.3重量部より多いと、シリカ微粒子との表面反応に関与しない余剰のフェニル基含有アルコキシシランまたはフェニル基含有クロロシランが残存し、これより製造される塗布液を塗布して得られるシリカ系被膜は、被塗布面との密着性、機械的強度、塗布性などが悪くなることがある。
【0034】
上記フェニル基を有するシリカ系微粒子を調製する際のシリカ微粒子とフェニル基含有アルコキシシランまたはフェニル基含有クロロシランとの反応には、通常、水、有機溶媒、触媒が用いられる。
【0035】
用いられる水は、フェニル基含有アルコキシシランを構成するSi-OR1またはフェニル基含有クロロシランを構成するSi-X'基1モルあたり、0.1モル以上の量であればよい。
【0036】
有機溶媒としては、前記シリカ微粒子調製時に使用したものと同様のものが挙げられる。
触媒としては前記シリカ微粒子調製時に使用したものと同様のものに加え、酸触媒を使用することもできる。具体的には、塩酸、硝酸、硫酸などの無機酸、酢酸、シュウ酸、トルエンスルホン酸などの有機酸または金属セッケンなど水溶液中で酸性を示す化合物を用いることができる。しかしながら、触媒としては、塩基性の触媒が好ましい。
【0037】
上記のように、シリカ微粒子と、フェニル基含有アルコキシシランおよび/またはフェニル基含有クロロシラン、水、有機溶媒、触媒を混合した後、約100℃以下、好ましくは80℃以下の温度で、またこの温度条件などにより変動するが、通常、0.5〜50時間、好ましくは0.5〜15時間加熱処理を行う。
【0038】
このような加熱処理によって、シリカ微粒子の少なくとも一部の表面にフェニル基含有アルコキシシランまたはフェニル基含有クロロシランの加水分解物が結合し、フェニル基を有するシリカ系微粒子が得られる。
【0039】
酸化分解性樹脂
酸化分解性樹脂としては、有機溶媒に溶解可能で、かつ室温から500℃までの酸素中の焼成、または、紫外線、赤外線、電子線、X線、酸素プラズマなどの照射により酸化分解する特性を有する樹脂であればよい。具体的には、セルロース系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、アクリル系樹脂、ポリエーテル系樹脂、ポリオレフィン系樹脂、ポリオール系樹脂、エポキシ系樹脂などが挙げられる。
【0040】
これらのうち、特に残炭率の少ないセルロース系樹脂、アクリル系樹脂が好ましい。
また、上記酸化分解性樹脂の数平均分子量は、100〜50000、好ましくは500〜10000(ポリスチレン換算分子量)であることが望ましい。
【0041】
低誘電率シリカ系被膜形成用塗布液の調製
本発明に係る低誘電率シリカ系被膜形成用塗布液は、上記のようにして得られたフェニル基を有するシリカ系微粒子を、酸化分解性樹脂と混合させることによって調製される。このとき、前述の方法で得られた未精製のフェニル基を有するシリカ系微粒子をそのまま用いてもよいが、両者を混合させるに先立ち、あらかじめ限外濾過あるいは蒸留などの手段により分散媒の水-有機溶媒系を有機溶媒系に溶媒置換させておくことが好ましい。
【0042】
本発明に係る低誘電率シリカ系被膜形成用塗布液は、上記のようにして、まずフェニル基を有するシリカ系微粒子を調製した後、さらにこのシリカ系微粒子と酸化分解性樹脂とを混合し、必要な加熱処理などを行うことによって得られる。
【0043】
本発明で用いられる低誘電率シリカ系被膜形成用塗布液は、上記のようにして得られたフェニル基を有するシリカ系微粒子と酸化分解性樹脂とを混合し、当該シリカ微粒子の少なくとも一部の表面に酸化分解性樹脂を結合させるが、両者の混合割合は、フェニル基を有するシリカ系微粒子の重量(A)/酸化分解性樹脂の重量(B)が0.5〜5、好ましくは1〜4となるような重量比で混合・結合させることが好ましい。
【0044】
成分(A)の量が多くなると、これより製造される塗布液を塗布して得られるシリカ系被膜はフェニル基を有するシリカ系微粒子の粒子間空孔を多く含む多孔質となり、マイクロフォトリソグラフィ加工時の吸湿がおこり、次の工程で行われるCVD法やスパッタリング法による積層膜との密着性や膜質の劣化傾向がある。一方、成分(B)の量が多くなると、同様にして得られる被膜は酸化分解性樹脂成分が多いため多孔質にならず、マイクロフォトリソグラフィ加工には優れているが、酸化分解後に形成される多孔質の低誘電率シリカ系被膜の収縮が起こり、被塗布面との密着性、機械的強度などが悪くなる。
【0045】
そして、上記のようにフェニル基を有するシリカ系微粒子と酸化分解性樹脂とを混合した後、約100℃以下、好ましくは80℃以下の温度で、またこのような温度条件などにより変動するが、通常、0.5〜5時間、好ましくは0.5〜3時間加熱処理を行う。
【0046】
このような加熱処理によって、フェニル基を有するシリカ系微粒子の表面が酸化分解性樹脂で結合された、本発明に係る低誘電率シリカ系被膜形成用塗布液が得られる。
【0047】
本発明に係るシリカ系被覆形成用塗布液には、フェニル基を有するシリカ系微粒子と酸化分解性樹脂以外に、上記の一般式(I)で示されるアルコキシシランおよび/または下記の一般式(VI)で示されるハロゲン化シランまたはその加水分解物、あるいは当該加水分解物と下記の一般式(V)で示されるポリシラザンとの反応物であるポリシロキサザンが含まれていてもよい。これらのその他成分の割合は、SiO2に換算して、フェニル基を有するシリカ系微粒子1重量部あたり、0.3以下、好ましくは0.2以下とすることが望ましい。
【0048】
nSiX'4-n (IV)
【0049】
【化1】

Figure 0004149031
【0050】
式中、Xは水素原子、フッ素原子または炭素数1〜8のアルキル基、アリール基またはビニル基を表し、R2、R3、R4は水素原子または炭素数1〜8のアルキル基、アリール基またはビニル基を表し、X' はハロゲン基を表す。また、mは整数、nは0〜3の整数である。
【0051】
このような低誘電率シリカ系被膜形成用塗布液は、通常、2段階の工程を経て製膜される。
まず、上記の低誘電率シリカ系被膜形成用塗布液を基材の表面に塗布し、次いで加熱して被膜を形成する。次いで、マイクロフォトリソグラフィ工程に供して、配線やvia holeなどのパターン形成や積層膜の形成などを行った後に、室温から500℃までの酸素中の焼成、または、紫外線、赤外線、電子線、X線、酸素プラズマなどの照射して、バインダーとして含まれている酸化分解性樹脂を酸化分解する。
【0052】
このような工程で製膜することにより、シリカ系微粒子の粒子間を結合させていた部分が空孔となり、低誘電率シリカ系被膜に変化する。また、シリカ系微粒子表面に結合されたフェニル基は、耐熱性が高いため酸化されずに表面に存在している。このようなフェニル基は、撥水性を有しているためシリカ系微粒子間の空孔に水が再吸着することを防止する効果を有している。
【0053】
このため、本発明に係る低誘電率シリカ系被膜形成用塗布液を用いると、安定した低誘電率シリカ系被膜を形成することができる。
また、本発明に係る低誘電率シリカ系被膜形成用塗布液には酸化分解製樹脂が含まれているので、マイクロフォトリソグラフィ加工時のプラズマエッチングやレジスト剥離時の酸素プラズマによる膜質の劣化や被膜への水分再吸着を防止することができる。
【0054】
[低誘電率シリカ系被膜付基材]
本発明に係る被膜付基材は、上記のようにして得られた低誘電率シリカ系被膜形成用塗布液を各種の基材の表面に塗布・加熱し、次いで室温から500℃までの酸素中の焼成、または、紫外線、赤外線、電子線、X線、酸素プラズマなどの照射によりバインダーとして含まれている酸化分解性樹脂を酸化分解させることによって得られる。
【0055】
このような塗布液の塗布方法としては、スプレー法、スピンコート法、ディップコート法、ロールコート法、転写印刷法など通常の方法を採用することができる。塗布後の加熱温度は、通常、80〜400℃、好ましくは150〜300℃の範囲である。この加熱は窒素などの不活性ガス雰囲気中で行うことが好ましい。
【0056】
上記のような加熱処理を施すことによって、塗布液中の樹脂成分の重合が進み硬化するのとともに、加熱過程で重合体の溶融粘度が低下して被膜のリフロー性が増大し、得られる被膜の平坦性が向上する。
【0057】
このような本発明に係るシリカ系被膜形成用塗布液では、250℃程度まで低粘度によるリフロー性を維持している。このため、平坦性が一層向上した被膜が得られる。
【0058】
このようにして形成される低誘電率シリカ系被膜の膜厚は、被膜を形成する基材、その目的によって異なるが、例えば、半導体装置におけるシリコン基板上では通常1000〜2500Å程度であり、多層配線の配線層間の場合は通常3000〜5000Åである。
【0059】
バインダー成分である酸化分解性樹脂を酸素中で焼成、または、紫外線、赤外線、電子線、X線、酸素プラズマなどの照射により酸化分解する際には、予めマイクロフォトリソグラフィ工程に供して、配線やvia holeなどのパターン形成や積層膜の形成などを行ってもよい。このようにすれば、多孔質被膜の欠点であるマイクロフォトリソグラフィ工程での吸湿という問題を回避でき、微細加工に適した低誘電率シリカ系被膜を形成することができる。
【0060】
本発明に係る低誘電率シリカ系被膜付基材としては、具体的には半導体装置、液晶表示装置、位相シフタ付フォトマスクなどが挙げられ、特に半導体装置においては、シリコン基板上、多層配線構造の配線層間、素子表面あるいはPN接合部分などに上記低誘電率被膜が形成される。
【0061】
【発明の効果】
本発明に係る低誘電率シリカ系被膜形成用塗布液によれば、比誘電率が3以下と小さく、しかもマイクロフォトリソグラフィ加工に優れた絶縁膜を形成できる。
【0062】
また、本発明に係る低誘電率シリカ系被膜形成用塗布液から低誘電率シリカ系被膜を2段階で形成すると、マイクロフォトリソグラフィ加工時のプラズマエッチングやレジスト剥離時の酸素プラズマによる膜質の劣化や被膜への水分再吸着をさけることができる。さらに、被膜の酸化分解後には被膜形成成分として残存するフェニル基を有するシリカ系微粒子の粒子間空孔により被膜が多孔質となり、しかも表面に結合されたフェニル基が、被膜中のこの空孔への水の再吸着を防ぐ効果を有し、安定した低誘電率シリカ系被膜を形成することができる。
【0063】
さらに本発明によれば、比誘電率が3以下と小さく、しかもマイクロフォトリソグラフィ加工に優れた低誘電率シリカ系被膜を有する各種基材を得ることができる。
【0064】
【実施例】
以下、本発明を実施例により説明するが、本発明は実施例に限定されるものではない。
1.フェニル基を有するシリカ系微粒子の調製
(1) 純水139.1gとメタノール169.9gの混合溶液を60℃に保持し、これにテトラエトキシシラン(エチルシリケート-28、多摩化学工業製)の水-メタノール溶液(重量比2/8の水/メタノール混合液2450gにテトラエトキシシランを532.5g加えたもの)2982.5gおよび0.25%のアンモニア水596.4gを同時に52時間かけて添加した。添加終了後、さらにこの温度で3時間熟成した。その後、限外濾過法で未反応のテトラエトキシシラン、メタノール、アンモニアを除去すると同時に純水を加え、精製した。その後、シリカ濃度5重量%に調整し、オートクレーブ中にて300℃で、10時間、縮合反応を行い、その後、両性イオン交換樹脂(AG-501、Bio-Rad社製)で精製して、平均粒径300Åのシリカ微粒子分散液を得た。
(2) 上記のシリカ微粒子分散液を5重量%濃度に調整し、5〜10倍量のエタノールを添加した。ロータリーエバポレーターで溶媒置換を行い、濃度5重量%、水分5重量%のエタノール分散液に調整した後、フェニルトリメトキシシランをSiO2に換算してシリカ微粒子重量の10重量%加え、1重量%のアンモニア水でpHを10に調整した。50℃で15時間反応させた後、10倍量のMIBK(メチルイソブチルケトン)を添加し、ロータリーエバポレーターで溶媒置換を行い、濃度5重量%、水分0.5重量%のフェニル基を有するシリカ系微粒子のMIBK分散液を得た。
2.被膜形成用塗布液の調製
上記のようにして得られたフェニル基を有するシリカ系微粒子とエチルセルロースのエタノール溶液を表1に記載の所定の割合で混合し、50℃で1時間加熱処理した。その後、ロータリーエバポレーターで再度メチルイソブチルケトンに溶媒置換して、加熱処理により生成するアルコールや水分を完全に除去して、濃度が20重量%である被膜形成用塗布液▲1▼〜▲5▼を調製した。
【0065】
【表1】
Figure 0004149031
【0066】
【実施例1〜2、比較例1〜3】
シリカ系被膜付半導体装置の作製
被膜形成用塗布液▲1▼〜▲5▼を、それぞれ最小0.25ミクロンルールの金属配線が施された半導体基板上にスピンコート法で塗布し、80℃で3分間乾燥した。その後、窒素中で250℃、30分間焼成して被膜を形成した。これらの被膜はいずれも5000Åであった。これらの膜上にプラズマCVD法でSiO2膜を1000Å形成した。通常のマイクロフォトリソグラフィー工程に供してvia holeを形成し、RIE法により残存するレジストを除去した後、有機アミン、水でvia holeを洗浄した。バリアーメタルとしてTiNをスパッタリング法で形成し、さらにWプラグをCVD法およびCMP法で形成してviaを形成した。その後、酸素プラズマを照射し、エチルセルロースを酸化分解した。上層の金属配線を形成し、半導体装置を作成した。
【0067】
このようにして得られたそれぞれの半導体装置のシリカ系被膜の比誘電率と100個の連続したviaの導通歩留まりを測定した結果を表2に示す。
【0068】
【表2】
Figure 0004149031
【0069】
酸素プラズマ照射による膜質の劣化や洗浄時の吸湿が起こると比誘電率は高くなり、viaの導通歩留まりは低くなった。
表2の結果から、本発明に係る低誘電率シリカ系被膜は、比誘電率が小さく、また、マイクロフォトリソグラフィ加工に優れていることが認められた。すなわち、本発明による低誘電率被覆形成用塗布液を用いれば優れた半導体装置が提供できることが判明した。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a coating liquid for forming a low dielectric constant silica-based film that has a small relative dielectric constant of 3 or less and can form an insulating film excellent in micro-photolithography processing, and such a low dielectric constant silica-based film. It relates to the formed substrate.
[0002]
TECHNICAL BACKGROUND OF THE INVENTION
With the high integration of semiconductor devices, semiconductor devices with a multi-layer wiring of 0.3 micron rule or less have narrow metal wiring spacing, which increases the impedance of metal wiring due to electrostatic induction, delays in response speed, and power consumption. There is concern about the increase. For this reason, it is necessary to make the relative dielectric constant of the interlayer insulating film provided between the semiconductor substrate and the metal wiring layer such as an aluminum wiring layer or between the metal wiring layers as small as possible.
[0003]
The interlayer insulating film used for the above purpose is generally formed on a substrate by a vapor deposition method such as a CVD method or a coating method for forming an insulating film using a coating forming coating solution.
[0004]
However, in the vapor phase growth method such as the CVD method, it is said that the silica-based film obtained has a relative dielectric constant of 3.5 of the fluorine-doped silica film, and it is difficult to form a silica-based film of 3 or less.
[0005]
In addition, CVD films such as polyaryl resins, fluorine-added polyimide resins and fluorine-based resins, and films formed using these coating solutions have a relative dielectric constant of around 2, but poor adhesion to the coated surface. In addition, the adhesiveness to the resist material used for fine processing is poor, and there are also disadvantages such as poor chemical resistance and oxygen plasma resistance.
[0006]
A conventionally used coating solution for forming a silica-based film comprising a partially hydrolyzed product of alkoxysilane can provide a film having a relative dielectric constant of 2.5, but has a drawback of poor adhesion to the surface to be coated.
[0007]
The present inventors have a coating film formed by using a coating liquid for forming a low dielectric constant silica-based film containing a reaction product of silica fine particles and a halogenated silane or a hydrolyzate thereof, and has a relative dielectric constant of 3 or less, Moreover, it has been found that it has excellent chemical resistance such as adhesion to the coated surface, mechanical strength, and alkali resistance, and at the same time excellent crack resistance (Japanese Patent Application No. 8-299684). .
[0008]
Furthermore, as a result of repeated studies by the inventors, in the conventional film as described above, deterioration of the film quality due to plasma etching during micro-photolithography processing and oxygen plasma during resist removal causes moisture re-adsorption to the film, It has been found that the dielectric constant of the coating is increased and the adhesion, chemical resistance and crack resistance are deteriorated.
[0009]
That is, when a silica-based film is formed from a conventional coating solution containing a hydrolyzate of alkoxysilane or halogenated silane or silica-based fine particles as a film-forming component, hydrogen atoms bonded to Si atoms, fluorine atoms, organic groups, or silica fine particles Although low dielectric constant coatings can be obtained by reducing the cross-linking density of Si-O-Si bonds in the coatings due to the interparticle vacancies of these particles, these functional groups have poor plasma resistance, and film quality degradation during micro-photolithography processing As a result, a stable low dielectric constant film may not be obtained.
[0010]
OBJECT OF THE INVENTION
The present invention is intended to solve the above-described problems in the prior art, and has a low dielectric constant that can form an insulating film having a small relative dielectric constant of 3 or less and excellent in micro-photolithography processing. An object is to provide a coating liquid for forming a silica-based film and a substrate on which such a low dielectric constant silica-based film is formed.
[0011]
SUMMARY OF THE INVENTION
The coating liquid for forming a low dielectric constant silica-based film according to the present invention is:
(i) containing silica-based fine particles having a phenyl group, and (ii) an oxidatively decomposable resin,
In addition, the weight ratio of the silica-based fine particles having a phenyl group to the oxidatively decomposable resin (silica-based fine particles having a phenyl group / oxidatively decomposable resin) is in the range of 0.5 to 5.
[0012]
The silica-based fine particles having a phenyl group are at least part of silica fine particles obtained by hydrolyzing one kind or two or more kinds of alkoxysilanes represented by the following general formula (I), or by aging after hydrolysis. One or more hydrolysates selected from phenyl group-containing alkoxysilanes represented by the following general formula (II) and / or phenyl group-containing chlorosilanes represented by the following general formula (III) are bonded to the surface: It is preferable that it is obtained.
[0013]
XnSi (OR1)4-n              (I)
XpR2 qSi (OR1)4- (p + q)      (II)
XpR2 qSi '4- (p + q)           (III)
(Wherein X represents a hydrogen atom, a fluorine atom, an alkyl group having 1 to 8 carbon atoms, a fluorine-substituted alkyl group, an aryl group or a vinyl group; R1Represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, an aryl group or a vinyl group, and R2Represents a phenyl group, and X ′ represents a chlorine atom. N is an integer of 0 to 3, p is an integer of 0 to 3, and q is an integer of 1 to 3. P + q is an integer of 4 or less. )
The hydrolysis temperature or aging temperature at the time of preparing the silica fine particles is preferably 180 ° C. or higher.
[0014]
The oxidatively decomposable resin is preferably a resin that is soluble in an organic solvent and oxidatively decomposes by firing in oxygen from room temperature to 500 ° C. or irradiation with ultraviolet rays, infrared rays, electron beams, X-rays, oxygen plasma, or the like. .
[0015]
The substrate with a low dielectric constant film according to the present invention oxidizes and decomposes the film formed using the above coating solution by baking in oxygen or irradiation with ultraviolet rays, infrared rays, electron beams, X-rays, oxygen plasma or the like. It is characterized by having a low dielectric constant silica-based coating made porous.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the coating liquid for forming a low dielectric constant silica-based film and the substrate with a low dielectric constant film according to the present invention will be specifically described.
[0017]
[Low-dielectric-constant silica-based coating solution]
The coating liquid for forming a low dielectric constant silica-based film according to the present invention comprises (i) silica-based fine particles having a phenyl group and (ii) an oxidatively decomposable resin, and a silica-based fine particle having a phenyl group and an oxidatively decomposable resin. In a weight ratio (silica-based fine particles having a phenyl group / oxidatively decomposable resin) in a range of 0.5 to 5.
[0018]
(i) Silica-based fine particles having phenyl groups
Silica-based fine particles having a phenyl group are obtained by hydrolysis in the presence of one or more alkoxysilanes represented by the general formula (I) and water, an organic solvent and ammonia, or by aging after hydrolysis. By reacting the obtained silica fine particles with one or more selected from a phenyl group-containing alkoxysilane represented by the general formula (II) and / or a phenyl group-containing chlorosilane represented by the general formula (III) described later. can get. In this case, a conventionally known method can be employed as a method for preparing the silica fine particles.
[0019]
XnSi (OR1)4-n              (I)
In the formula, X represents a hydrogen atom, a fluorine atom or an alkyl group having 1 to 8 carbon atoms, a fluorine-substituted alkyl group, an aryl group or a vinyl group, and R1Represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, an aryl group or a vinyl group. N is an integer of 0-3. )
Specific examples of the alkoxysilane represented by the above formula (I) include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, tetraoctylsilane, methyltrimethoxysilane, methyltriethoxysilane, methyltriisoiso Propoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltriisopropoxysilane, octyltrimethoxysilane, octyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, tri Methoxysilane, triethoxysilane, triisopropoxysilane, fluorotrimethoxysilane, fluorotriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxy Orchids, diethyl dimethoxysilane, diethyl diethoxysilane, dimethoxysilane, diethoxy silane, difluoromethyl dimethoxysilane, difluoro diethoxy silane, trifluoromethyl trimethoxy silane, trifluoromethyl triethoxy silane.
[0020]
Examples of the organic solvent include alcohols, ketones, ethers, esters and the like, more specifically, alcohols such as methanol, ethanol, propanol and butanol, ketones such as methyl ethyl ketone and methyl isobutyl ketone, Glycol ethers such as methyl cellosolve, ethyl cellosolve and propylene glycol monopropyl ether, glycols such as ethylene glycol, propylene glycol and hexylene glycol, and esters such as methyl acetate, ethyl acetate, methyl lactate and ethyl lactate are used.
[0021]
As the catalyst, in addition to ammonia, basic compounds such as amines, alkali metal hydrides, quaternary ammonium compounds, and amine coupling agents can be used.
[0022]
The method for preparing such silica fine particles will be described in more detail. For example, while stirring a water-alcohol mixed solvent, alkoxysilane and aqueous ammonia are added to the mixed solvent and reacted.
[0023]
At this time, water is Si-OR constituting alkoxysilane.1It is desirable that the amount used is 0.5 to 50 mol, preferably 1 to 25 mol per mol of the group. Ammonia can also be obtained by replacing alkoxysilane with SiO.2When converted, it is desirable that the amount is 0.01 to 1 mol, preferably 0.05 to 0.8 mol per mol of alkoxysilane.
[0024]
The hydrolysis / polycondensation reaction of alkoxysilane is preferably performed at 180 ° C. or higher, preferably 200 ° C. or higher, using a heat and pressure resistant container such as an autoclave. Further, after this, aging may be performed at the same temperature or higher temperature. The higher the reaction temperature and / or the aging temperature, the more the polycondensation of alkoxysilane is promoted, and the inside of the silica fine particles becomes dense. When the hydrolysis reaction and aging are carried out at such a temperature, the silica fine particles become denser, the hygroscopicity of the particles themselves decreases, and the residual functional groups on the particle surface also decrease.
[0025]
Alternatively, silica fine particles may be generated and grown by adding a high-boiling solvent such as ethylene glycol to a water-alcohol mixed solvent under stirring to hydrolyze the alkoxysilane. If such a high boiling point solvent is added during the hydrolysis of the alkoxysilane, an ester exchange reaction of the alkoxy group occurs, and the high boiling point solvent is taken into the silica particles to obtain porous silica fine particles having a low density. It is done.
[0026]
In the present invention, besides the above, silica sol obtained by ion-exchange or hydrolysis of alkali metal silicate can be used as silica fine particles. Furthermore, fine particles made of porous zeolite obtained by removing aluminum from zeolite made of aluminosilicate can also be used.
[0027]
The silica fine particles as described above preferably have an average particle size in the range of 30 to 100 mm, preferably 50 to 500 mm. The fine particles having an average particle diameter in this range may be of a uniform particle diameter or a mixture of two or more kinds of fine particles having different particle diameters. If the particle size is less than 30 mm, it is difficult to reduce the dielectric constant of the silica-based film obtained by applying the coating liquid produced from the particle diameter. On the other hand, if the particle size exceeds 1000 mm, defects will occur during microfabrication in the micro-photolithography process. Prone to occur. The shape of the particles may be spherical or irregular.
[0028]
The silica-based fine particles having a phenyl group used in the present invention include the above-mentioned silica fine particles, a phenyl group-containing alkoxysilane represented by the following general formula (II) and / or a phenyl group-containing chlorosilane represented by the following general formula (III): It is obtained by reacting.
[0029]
XpR2 qSi (OR1)4- (p + q)      (II)
XpR2 qSi '4- (p + q)           (III)
In the formula, X represents a hydrogen atom, a fluorine atom or an alkyl group having 1 to 8 carbon atoms, a fluorine-substituted alkyl group, an aryl group or a vinyl group, and R1Represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, an aryl group or a vinyl group, and R2Represents a phenyl group, and X represents a chlorine atom. The phenyl group may be substituted with an alkyl group having 1 to 8 carbon atoms.
[0030]
N is an integer of 0 to 3, p is an integer of 0 to 3, and q is an integer of 1 to 3. P + q is an integer of 4 or less.
Specific examples of such alkoxysilane or chlorosilane include phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane, phenylmethyldimethoxysilane, phenylmethyldiethoxysilane, phenyldimethylethoxysilane, phenyldimethylacetoxysilane, phenyl Examples include trichlorosilane, phenylmethyldichlorosilane, phenylethyldichlorosilane, phenyldimethylchlorosilane, phenylmethylchlorosilane, and phenyldichlorosilane.
[0031]
In the present invention, a hydrolyzate may be used for these phenyl group-containing alkoxysilanes and / or phenyl group-containing alkoxysilanes.
In the reaction of silica fine particles with phenyl group-containing alkoxysilane and / or phenyl group-containing alkoxysilane, silica fine particles do not grow or new silica fine particles are generated. Surface reaction with the group-containing alkoxysilane and / or the phenyl group-containing chlorosilane occurs, and silica-based fine particles having a phenyl group on the surface are obtained.
[0032]
The silica-based fine particles having a phenyl group used in the present invention are reacted by mixing one or more selected from the silica fine particles obtained as described above, a phenyl group-containing alkoxysilane and a phenyl group-containing chlorosilane. However, the mixing ratio of both is SiO2It is desirable that it is 0.01 to 0.3 parts by weight, preferably 0.05 to 0.2 parts by weight per 1 part by weight of silica fine particles.
[0033]
If the amount of phenyl group-containing alkoxysilane and / or phenyl group-containing chlorosilane is less than 0.01 parts by weight, the amount of phenyl groups on the surface of the silica-based fine particles decreases, and the resulting silica-based coating film is poor in oxidation resistance and easily absorbs moisture. Tend to be. Further, when the amount is more than 0.3 parts by weight, surplus phenyl group-containing alkoxysilane or phenyl group-containing chlorosilane that does not participate in the surface reaction with the silica fine particles remains, and a silica-based film obtained by applying a coating solution produced therefrom May deteriorate the adhesion to the surface to be coated, the mechanical strength, the coating property, and the like.
[0034]
In the reaction of the silica fine particles with the phenyl group-containing alkoxysilane or the phenyl group-containing chlorosilane in preparing the silica-based fine particles having a phenyl group, water, an organic solvent, or a catalyst is usually used.
[0035]
The water used is Si-OR which constitutes a phenyl group-containing alkoxysilane.1Alternatively, the amount may be 0.1 mole or more per mole of Si—X ′ group constituting the phenyl group-containing chlorosilane.
[0036]
Examples of the organic solvent are the same as those used when preparing the silica fine particles.
As the catalyst, in addition to the same catalyst used in the preparation of the silica fine particles, an acid catalyst can be used. Specifically, an inorganic acid such as hydrochloric acid, nitric acid or sulfuric acid, an organic acid such as acetic acid, oxalic acid or toluenesulfonic acid, or a compound showing acidity in an aqueous solution such as metal soap can be used. However, a basic catalyst is preferable as the catalyst.
[0037]
As described above, after mixing silica fine particles with phenyl group-containing alkoxysilane and / or phenyl group-containing chlorosilane, water, organic solvent, catalyst, at a temperature of about 100 ° C. or less, preferably 80 ° C. or less, and this temperature Although it varies depending on conditions and the like, the heat treatment is usually performed for 0.5 to 50 hours, preferably 0.5 to 15 hours.
[0038]
By such heat treatment, a hydrolyzate of phenyl group-containing alkoxysilane or phenyl group-containing chlorosilane is bonded to the surface of at least a part of the silica fine particles, and silica-based fine particles having a phenyl group are obtained.
[0039]
Oxidative degradable resin
As an oxidatively decomposable resin, it is soluble in an organic solvent and has the property of being oxidatively decomposed by firing in oxygen from room temperature to 500 ° C. or irradiation with ultraviolet rays, infrared rays, electron beams, X-rays, oxygen plasma, etc. Any resin may be used. Specific examples include cellulose resins, polyamide resins, polyester resins, acrylic resins, polyether resins, polyolefin resins, polyol resins, and epoxy resins.
[0040]
Of these, cellulose resins and acrylic resins having a low residual carbon ratio are particularly preferable.
The number average molecular weight of the oxidatively decomposable resin is 100 to 50000, preferably 500 to 10,000 (polystyrene equivalent molecular weight).
[0041]
Preparation of coating solution for low dielectric constant silica coating
The coating liquid for forming a low dielectric constant silica-based film according to the present invention is prepared by mixing silica-based fine particles having a phenyl group obtained as described above with an oxidatively decomposable resin. At this time, the silica-based fine particles having an unpurified phenyl group obtained by the above-described method may be used as they are. However, prior to mixing the two, the dispersion medium water is prepared by means of ultrafiltration or distillation in advance. It is preferable to replace the organic solvent system with an organic solvent system.
[0042]
As described above, the coating liquid for forming a low dielectric constant silica-based film according to the present invention first prepares silica-based fine particles having a phenyl group, and further mixes the silica-based fine particles with an oxidatively decomposable resin. It can be obtained by performing necessary heat treatment.
[0043]
The coating liquid for forming a low dielectric constant silica-based film used in the present invention is a mixture of silica-based fine particles having a phenyl group obtained as described above and an oxidatively decomposable resin. An oxidatively decomposable resin is bonded to the surface, and the mixing ratio of the two is such that the weight of silica-based fine particles having a phenyl group (A) / weight of oxidatively decomposable resin (B) is 0.5 to 5, preferably 1 to 4. It is preferable to mix and bond at such a weight ratio.
[0044]
When the amount of the component (A) is increased, the silica-based film obtained by applying the coating solution produced therefrom becomes porous containing many interparticle voids of silica-based fine particles having phenyl groups, and is processed by micro-photolithography. Moisture absorption occurs at times, and there is a tendency of deterioration in adhesion and film quality with the laminated film by the CVD method or sputtering method performed in the next step. On the other hand, when the amount of the component (B) increases, the film obtained in the same manner is not porous because of a large amount of the oxidatively decomposable resin component, and is excellent in micro-photolithography processing, but is formed after oxidative decomposition. Shrinkage of the porous low dielectric constant silica-based coating occurs, resulting in poor adhesion to the coated surface, mechanical strength, and the like.
[0045]
Then, after mixing the silica-based fine particles having a phenyl group and the oxidatively decomposable resin as described above, the temperature is about 100 ° C. or lower, preferably 80 ° C. or lower, and varies depending on such temperature conditions. Usually, the heat treatment is performed for 0.5 to 5 hours, preferably 0.5 to 3 hours.
[0046]
By such a heat treatment, the coating liquid for forming a low dielectric constant silica-based film according to the present invention in which the surface of silica-based fine particles having a phenyl group is bonded with an oxidatively decomposable resin is obtained.
[0047]
The coating solution for forming a silica coating according to the present invention includes, in addition to silica-based fine particles having a phenyl group and an oxidatively decomposable resin, an alkoxysilane represented by the above general formula (I) and / or the following general formula (VI ) Or a hydrolyzate thereof, or polysiloxazan which is a reaction product of the hydrolyzate and polysilazane represented by the following general formula (V) may be contained. The proportion of these other components is SiO2It is desirable that it is 0.3 or less, preferably 0.2 or less, per 1 part by weight of silica-based fine particles having a phenyl group.
[0048]
XnSi '4-n                       (IV)
[0049]
[Chemical 1]
Figure 0004149031
[0050]
In the formula, X represents a hydrogen atom, a fluorine atom, an alkyl group having 1 to 8 carbon atoms, an aryl group or a vinyl group, and R2, RThree, RFourRepresents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, an aryl group or a vinyl group, and X ′ represents a halogen group. M is an integer, and n is an integer of 0 to 3.
[0051]
Such a coating liquid for forming a low dielectric constant silica-based film is usually formed through a two-step process.
First, the coating liquid for forming a low dielectric constant silica-based film is applied to the surface of the substrate, and then heated to form a film. Next, it is subjected to a micro-photolithography process to form patterns such as wiring and via holes, and a laminated film, followed by baking in oxygen from room temperature to 500 ° C., or ultraviolet rays, infrared rays, electron beams, X The oxidatively decomposable resin contained as a binder is oxidatively decomposed by irradiation with a line, oxygen plasma or the like.
[0052]
By forming the film in such a process, the portion where the particles of the silica-based fine particles are bonded becomes voids, and changes to a low dielectric constant silica-based film. Further, the phenyl group bonded to the surface of the silica-based fine particle is present on the surface without being oxidized because of its high heat resistance. Since such a phenyl group has water repellency, it has the effect of preventing water from being re-adsorbed in the pores between the silica-based fine particles.
[0053]
For this reason, when the coating liquid for forming a low dielectric constant silica-based film according to the present invention is used, a stable low dielectric constant silica-based film can be formed.
In addition, since the coating liquid for forming a low dielectric constant silica-based film according to the present invention contains an oxidative decomposition resin, film quality deterioration or coating due to plasma etching during micro-photolithography processing or oxygen plasma during resist removal It is possible to prevent moisture re-adsorption on the surface.
[0054]
[Substrate with low dielectric constant silica coating]
The coated substrate according to the present invention is obtained by applying and heating the low dielectric constant silica-based coating forming coating solution obtained as described above to the surface of various substrates, and then in room temperature to 500 ° C in oxygen. Or by oxidative decomposition of an oxidatively decomposable resin contained as a binder by irradiation with ultraviolet rays, infrared rays, electron beams, X-rays, oxygen plasma or the like.
[0055]
As a coating method of such a coating solution, a normal method such as a spray method, a spin coating method, a dip coating method, a roll coating method, or a transfer printing method can be employed. The heating temperature after coating is usually in the range of 80 to 400 ° C, preferably 150 to 300 ° C. This heating is preferably performed in an inert gas atmosphere such as nitrogen.
[0056]
By performing the heat treatment as described above, the polymerization of the resin component in the coating liquid proceeds and hardens, and the melt viscosity of the polymer decreases during the heating process, and the reflow property of the film increases, Flatness is improved.
[0057]
In such a coating solution for forming a silica-based film according to the present invention, the reflow property due to low viscosity is maintained up to about 250 ° C. For this reason, the film which further improved flatness is obtained.
[0058]
The film thickness of the low dielectric constant silica-based film thus formed varies depending on the base material on which the film is formed and its purpose. For example, it is usually about 1000 to 2500 mm on a silicon substrate in a semiconductor device. In the case of between the wiring layers, it is usually 3000 to 5000 mm.
[0059]
When the oxidatively decomposable resin as a binder component is baked in oxygen or oxidatively decomposed by irradiation with ultraviolet rays, infrared rays, electron beams, X-rays, oxygen plasma, etc., it is subjected to a micro-photolithography process in advance, and wiring and A pattern such as a via hole or a stacked film may be formed. In this way, it is possible to avoid the problem of moisture absorption in the micro-photolithography process, which is a drawback of the porous film, and to form a low dielectric constant silica-based film suitable for fine processing.
[0060]
Specific examples of the substrate with a low dielectric constant silica-based film according to the present invention include a semiconductor device, a liquid crystal display device, a photomask with a phase shifter, and the like. Particularly in a semiconductor device, a multilayer wiring structure on a silicon substrate. The low dielectric constant film is formed between the wiring layers, the element surface, or the PN junction.
[0061]
【The invention's effect】
According to the coating liquid for forming a low dielectric constant silica-based film according to the present invention, an insulating film having a relative dielectric constant as small as 3 or less and excellent in micro-photolithography processing can be formed.
[0062]
Further, when the low dielectric constant silica-based coating is formed in two stages from the low dielectric constant silica-based coating forming coating solution according to the present invention, the film quality is deteriorated by plasma etching during micro-photolithography processing or oxygen plasma during resist stripping. Water re-adsorption to the coating can be avoided. Furthermore, after the oxidative decomposition of the film, the film becomes porous due to the interparticle vacancies of the silica-based fine particles having phenyl groups remaining as a film forming component, and the phenyl groups bonded to the surface are transferred to the vacancies in the film. It is possible to form a stable low dielectric constant silica-based film.
[0063]
Furthermore, according to the present invention, it is possible to obtain various substrates having a low dielectric constant silica-based film having a small relative dielectric constant of 3 or less and excellent in micro-photolithography processing.
[0064]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to an Example.
1. Preparation of silica-based fine particles with phenyl groups
(1) Hold a mixed solution of pure water 139.1g and methanol 169.9g at 60 ° C, and add tetraethoxysilane (ethyl silicate-28, manufactured by Tama Chemical Co., Ltd.) in water-methanol solution (2/8 weight ratio water) A mixture of 2450 g of a methanol / methanol mixture and 532.5 g of tetraethoxysilane) 2982.5 g and 596.4 g of 0.25% aqueous ammonia were simultaneously added over 52 hours. After completion of the addition, the mixture was further aged at this temperature for 3 hours. Thereafter, unreacted tetraethoxysilane, methanol and ammonia were removed by ultrafiltration, and at the same time purified water was added for purification. Thereafter, the silica concentration was adjusted to 5% by weight, and the condensation reaction was performed in an autoclave at 300 ° C. for 10 hours, and then purified with an amphoteric ion exchange resin (AG-501, manufactured by Bio-Rad). A silica fine particle dispersion having a particle size of 300 mm was obtained.
(2) The silica fine particle dispersion was adjusted to a concentration of 5% by weight, and 5 to 10 times the amount of ethanol was added. The solvent was replaced with a rotary evaporator to prepare an ethanol dispersion having a concentration of 5% by weight and a water content of 5% by weight, and phenyltrimethoxysilane was then added to SiO.2In addition, 10% by weight of the silica fine particle weight was added, and the pH was adjusted to 10 with 1% by weight ammonia water. After reacting at 50 ° C. for 15 hours, add 10 times the amount of MIBK (methyl isobutyl ketone), replace the solvent with a rotary evaporator, and remove silica-based fine particles having a phenyl group with a concentration of 5% by weight and a water content of 0.5% by weight. A MIBK dispersion was obtained.
2. Preparation of coating solution for film formation
The silica-based fine particles having a phenyl group obtained as described above and an ethanol solution of ethyl cellulose were mixed at a predetermined ratio shown in Table 1, and heat-treated at 50 ° C. for 1 hour. Thereafter, the solvent is replaced with methyl isobutyl ketone again by a rotary evaporator, alcohol and water generated by heat treatment are completely removed, and coating solution (1) to (5) having a concentration of 20% by weight is formed. Prepared.
[0065]
[Table 1]
Figure 0004149031
[0066]
Examples 1-2 and Comparative Examples 1-3
Fabrication of silica-coated semiconductor devices
Coating liquids (1) to (5) for coating film formation were each applied by spin coating onto a semiconductor substrate on which metal wiring of a minimum 0.25 micron rule was applied, and dried at 80 ° C. for 3 minutes. Thereafter, it was baked in nitrogen at 250 ° C. for 30 minutes to form a film. All of these films were 5000 mm. 1000 nm of SiO2 film was formed on these films by plasma CVD. A via hole was formed in a normal micro-photolithography process, the remaining resist was removed by RIE method, and the via hole was washed with an organic amine and water. TiN was formed as a barrier metal by a sputtering method, and a W plug was formed by a CVD method and a CMP method to form a via. Thereafter, oxygen plasma was irradiated to oxidatively decompose ethylcellulose. An upper layer metal wiring was formed to produce a semiconductor device.
[0067]
Table 2 shows the results of measurement of the relative dielectric constant of the silica-based coating and the conduction yield of 100 continuous vias obtained in this manner.
[0068]
[Table 2]
Figure 0004149031
[0069]
When the film quality deteriorated due to oxygen plasma irradiation and moisture absorption during cleaning occurred, the relative dielectric constant increased and the via conduction yield decreased.
From the results in Table 2, it was confirmed that the low dielectric constant silica-based coating according to the present invention has a small relative dielectric constant and is excellent in micro-photolithography processing. That is, it has been found that an excellent semiconductor device can be provided by using the coating liquid for forming a low dielectric constant coating according to the present invention.

Claims (2)

(i)下記一般式(I)で示されるアルコキシシランの1種または2種以上を加水分解、または加水分解後、熟成して得られたシリカ微粒子の少なくとも一部の表面に下記一般式(II)で示されるフェニル基含有アルコキシシランまたは下記一般式(III)で示されるフェニル基含有クロロシランから選ばれた1種および/または2種以上の加水分解物を結合させて得られたシリカ系微粒子と、
nSi(OR1)4-n (I)
p2 qSi(OR1)4-(p+q) (II)
p2 qSiX'4-(p+q) (III)
(ここで、Xは水素原子、フッ素原子または炭素数1〜8のアルキル基、フッ素置換アルキル基、アリール基またはビニル基を表し、R1は水素原子または炭素数1〜8のアルキル基、アリール基またはビニル基を表し、R2はフェニル基を表し、X'は塩素原子を表す。また、nは0〜3の整数、pは0〜3の整数、qは1〜3の整数である。なお、p+qは4以下の整数である。)
(ii) セルローズ樹脂、ポリアミド樹脂、ポリエステル樹脂、アクリル樹脂、ポリエーテル樹脂、ポリオレフィン樹脂、ポリオール樹脂、エポキシ樹脂から選ばれる樹脂である酸化分解性樹脂とを
含む低誘電率被膜形成用塗布液を用いて形成された低誘電率多孔質被膜を有する基材であって、
該多孔質被膜が、塗布液を用いて形成された被膜を酸素中での焼成あるいは紫外線、赤外線、電子線、X線、酸素プラズマの照射により酸化分解して多孔質にした低誘電率シリカ系被膜であることを特徴とする低誘電率多孔質被膜を有する基材。
(i) One or more alkoxysilanes represented by the following general formula (I) are hydrolyzed, or at least part of the surface of silica fine particles obtained by aging after hydrolysis, and the following general formula (II And silica-based fine particles obtained by bonding one and / or two or more hydrolysates selected from a phenyl group-containing alkoxysilane represented by formula (III) or a phenyl group-containing chlorosilane represented by the following general formula (III): ,
X n Si (OR 1 ) 4-n (I)
X p R 2 q Si (OR 1 ) 4- (p + q) (II)
X p R 2 q SiX ' 4- (p + q) (III)
(Here, X represents a hydrogen atom, a fluorine atom or an alkyl group having 1 to 8 carbon atoms, a fluorine-substituted alkyl group, an aryl group or a vinyl group, and R 1 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, aryl. R 2 represents a phenyl group, X ′ represents a chlorine atom, n represents an integer of 0 to 3, p represents an integer of 0 to 3, and q represents an integer of 1 to 3. (Note that p + q is an integer of 4 or less.)
(ii) Using a coating liquid for forming a low dielectric constant film containing an oxidatively decomposable resin selected from a cellulose resin, a polyamide resin, a polyester resin, an acrylic resin, a polyether resin, a polyolefin resin, a polyol resin, and an epoxy resin A substrate having a low dielectric constant porous film formed by:
The low dielectric constant silica system in which the porous film is made porous by oxidizing and decomposing the film formed by using a coating solution in oxygen or by irradiation with ultraviolet rays, infrared rays, electron beams, X-rays or oxygen plasma. A substrate having a low dielectric constant porous film characterized by being a film.
(i) フェニル基を有するシリカ系微粒子と、 (ii) 酸化分解性樹脂を含有し、かつフェニル基を有するシリカ系微粒子と酸化分解性樹脂との重量比(フェニル基を有するシリカ系微粒子/酸化分解性樹脂)が、0 . 5〜5の範囲にあり、
前記フェニル基を有するシリカ系微粒子 (i) が、下記一般式 (I) で示されるアルコキシシランの1種または2種以上を加水分解、または加水分解後、熟成して得られたシリカ微粒子の少なくとも一部の表面に下記一般式 (II) で示されるフェニル基含有アルコキシシランまたは下記一般式 (III) で示されるフェニル基含有クロロシランから選ばれた1種および
/または2種以上の加水分解物を結合させて得られたものであり、
前記酸化分解性樹脂 (ii) が、セルローズ樹脂、ポリアミド樹脂、ポリエステル樹脂、アクリル樹脂、ポリエーテル樹脂、ポリオレフィン樹脂、ポリオール樹脂、エポキシ樹脂から選ばれる樹脂であることを特徴とする低誘電率被膜形成用塗布液を、基材上に塗布後加熱して被膜を形成したのち、
得られた被膜を酸素中での焼成あるいは紫外線、赤外線、電子線、X線、酸素プラズマの照射により酸化分解して多孔質することを特徴とする低誘電率多孔質被膜付基材の製造方法。
n i( OR 1 ) 4-n (I)
p 2 q i( OR 1 ) 4-(p+q) (II)
p 2 q i ' 4-(p+q) (III)
(ここで、Xは水素原子、フッ素原子または炭素数1〜8のアルキル基、フッ素置換アルキル基、アリール基またはビニル基を表し、R 1 は水素原子または炭素数1〜8のアルキル基、アリール基またはビニル基を表し、R 2 はフェニル基を表し、X ' は塩素原子を表す。また、nは0〜3の整数、pは0〜3の整数、qは1〜3の整数である。なお、p+qは4以下の整数である。)
(i) Silica-based fine particles having a phenyl group; (ii) Weight ratio of silica-based fine particles having a phenyl group and an oxidative-degradable resin containing an oxidatively decomposable resin (silica-based fine particles having a phenyl group / oxidized) decomposable resin) is in the 0. range of 5-5,
The silica-based fine particles (i) having a phenyl group are hydrolyzed at least one kind of alkoxysilane represented by the following general formula (I) , or at least of the silica fine particles obtained by aging after hydrolysis. One surface selected from a phenyl group-containing alkoxysilane represented by the following general formula (II) or a phenyl group-containing chlorosilane represented by the following general formula (III)
/ Or obtained by combining two or more hydrolysates,
Formation of a low dielectric constant film, wherein the oxidatively decomposable resin (ii) is a resin selected from cellulose resin, polyamide resin, polyester resin, acrylic resin, polyether resin, polyolefin resin, polyol resin, and epoxy resin After applying the coating liquid for coating on the substrate and heating to form a film,
A method for producing a substrate with a low dielectric constant porous film, characterized in that the obtained film is baked in oxygen or oxidized and decomposed by irradiation with ultraviolet rays, infrared rays, electron beams, X-rays or oxygen plasma to make it porous .
X n S i (OR 1) 4-n (I)
X p R 2 q S i ( OR 1) 4- (p + q) (II)
X p R 2 q S i X '4- (p + q) (III)
(Here, X represents a hydrogen atom, a fluorine atom or an alkyl group having 1 to 8 carbon atoms, a fluorine-substituted alkyl group, an aryl group or a vinyl group, and R 1 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, aryl. R 2 represents a phenyl group, X represents a chlorine atom, n represents an integer of 0 to 3, p represents an integer of 0 to 3, and q represents an integer of 1 to 3. (Note that p + q is an integer of 4 or less.)
JP13972398A 1998-04-24 1998-05-21 Coating liquid for forming low dielectric constant silica-based film and substrate with low dielectric constant film Expired - Lifetime JP4149031B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP13972398A JP4149031B2 (en) 1998-05-21 1998-05-21 Coating liquid for forming low dielectric constant silica-based film and substrate with low dielectric constant film
EP20070002273 EP1790703B1 (en) 1998-04-24 1999-04-15 Coating liquid for forming silica-based film having low dielectric constant and substrate having film of low dielectric constant coated thereon
KR1019997012205A KR100600630B1 (en) 1998-04-24 1999-04-15 Coating liquid for forming a silica-based film having low dielectric constant and substrate having film of low dielectric constant coated thereon
KR1020067009944A KR100600631B1 (en) 1998-04-24 1999-04-15 Coating liquid for forming a silica-based film having low dielectric constant and substrate having film of low dielectric constant coated thereon
PCT/JP1999/002017 WO1999055789A1 (en) 1998-04-24 1999-04-15 Coating liquid for forming silica-based film having low dielectric constant and substrate having film of low dielectric constant coated thereon
EP19990913676 EP0992556B1 (en) 1998-04-24 1999-04-15 Coating liquid for forming silica-based film having low dielectric constant and substrate having film of low dielectric constant coated thereon
US09/446,686 US6562465B1 (en) 1998-04-24 1999-04-15 Coating liquid for forming a silica-containing film with a low-dielectric constant and substrate coated with such a film
TW88106468A TWI221159B (en) 1998-04-24 1999-04-23 Coating liquid for forming low dielectric constant silica coating film and substrate with low dielectric constant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13972398A JP4149031B2 (en) 1998-05-21 1998-05-21 Coating liquid for forming low dielectric constant silica-based film and substrate with low dielectric constant film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008104568A Division JP4241879B2 (en) 2008-04-14 2008-04-14 Coating liquid for forming low dielectric constant silica-based film and substrate with low dielectric constant film

Publications (2)

Publication Number Publication Date
JPH11323259A JPH11323259A (en) 1999-11-26
JP4149031B2 true JP4149031B2 (en) 2008-09-10

Family

ID=15251906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13972398A Expired - Lifetime JP4149031B2 (en) 1998-04-24 1998-05-21 Coating liquid for forming low dielectric constant silica-based film and substrate with low dielectric constant film

Country Status (1)

Country Link
JP (1) JP4149031B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1212266C (en) 2000-04-28 2005-07-27 三井化学株式会社 Water-repellent porous silica, method for preparation thereof and use thereof
JP2007138144A (en) * 2005-10-18 2007-06-07 Hitachi Chem Co Ltd Silica-based coated film-forming composition
JP4437820B2 (en) * 2007-01-04 2010-03-24 富士通マイクロエレクトロニクス株式会社 Manufacturing method of low dielectric constant film
JP5048407B2 (en) * 2007-07-10 2012-10-17 日本ペイント株式会社 Inorganic organic composite coating composition
JP2009286935A (en) * 2008-05-30 2009-12-10 Shin-Etsu Chemical Co Ltd Organic silicon oxide fine particle and method for producing the same, composition for forming porous membrane, porous membrane and method for producing the same, as well as semiconductor device
JP5116594B2 (en) * 2008-07-29 2013-01-09 日本ペイント株式会社 Inorganic organic composite coating composition

Also Published As

Publication number Publication date
JPH11323259A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
EP1790703B1 (en) Coating liquid for forming silica-based film having low dielectric constant and substrate having film of low dielectric constant coated thereon
JP3813268B2 (en) Coating liquid for forming low dielectric constant silica-based film and substrate with low dielectric constant film
EP1026213B1 (en) Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film
EP1035183B1 (en) Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film
JP4642165B2 (en) Porous silica-based coating solution, coated substrate and short fibrous silica
JP4021131B2 (en) Coating liquid for forming low dielectric constant silica-based coating and substrate with low dielectric constant silica-based coating
EP1566416B1 (en) Coating liquid for forming amorphous silica coating film of low dielectric constant and process for producing the coating liquid
JP3073313B2 (en) Semiconductor device and manufacturing method thereof
JP3998979B2 (en) Method for forming low dielectric constant silica-based film and semiconductor substrate with low dielectric constant film
JP2851915B2 (en) Semiconductor device
JP4162060B2 (en) Coating liquid for forming low dielectric constant silica-based film and substrate with low dielectric constant film
JPH0766188A (en) Semiconductor device
JP4149031B2 (en) Coating liquid for forming low dielectric constant silica-based film and substrate with low dielectric constant film
WO2008026387A1 (en) Method of forming amorphous silica coating of low dielectric constant and amorphous silica coating of low dielectric constant obtained thereby
JP4241879B2 (en) Coating liquid for forming low dielectric constant silica-based film and substrate with low dielectric constant film
JP4241880B2 (en) Coating liquid for forming low dielectric constant silica coating
KR100444650B1 (en) Substrate with a low dielectric constant coating film and low dielectric constant coating
JP3662391B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term