JPS61208213A - Photochemical vapor deposition apparatus - Google Patents

Photochemical vapor deposition apparatus

Info

Publication number
JPS61208213A
JPS61208213A JP4909485A JP4909485A JPS61208213A JP S61208213 A JPS61208213 A JP S61208213A JP 4909485 A JP4909485 A JP 4909485A JP 4909485 A JP4909485 A JP 4909485A JP S61208213 A JPS61208213 A JP S61208213A
Authority
JP
Japan
Prior art keywords
gas
light
reaction chamber
reactive gas
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4909485A
Other languages
Japanese (ja)
Inventor
Hiromi Kumagai
熊谷 浩洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP4909485A priority Critical patent/JPS61208213A/en
Publication of JPS61208213A publication Critical patent/JPS61208213A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation

Abstract

PURPOSE:To prevent contamination of the optically transparent member in the reaction chamber by flowing a reactive gas over the side of the material to be processed in the reaction chamber, and also passing a nonreactive gas over the surface side of the optically transparent member. CONSTITUTION:A semiconductor wafer 8 on which a thin film will be formed is so placed on the holding section 10 that the thin film forming side is directed to the reaction chamber 6, and the lid member 12 is mounted on the upper side 2 to realize a sealed state. Subsequently the light source 36 is driven to apply light to the heat storage member 18 via an optically transparent member 20 and keep the wafer 8 at a particular temperature. Then internal air of the chamber 6 is exhausted to introduce a reactive gas 64, first and second nonreactive gases 66, 68 into the chamber 6 and pass a laser light 93, followed by irradiation of the wafer 8 with light emitted from the light source 60. Then a particular thin film is formed on the surface of the wafer 8 as the result of the reaction of the gas 64 with the light 93 and the light emitted from the source 60. As the first nonreactive gas 66 passes at a high speed over the surface of the member 40, adhesion of dust to the surface of the member 40, which accompanies the photochemical vapor phase reaction, is inhibited and contamination is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体ウェーハなどの被処理材の表面に薄
膜を形成するために用いる光気相成長装置に係り、特に
、反応室の壁面に設置された光透過部材の汚れ防止に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical vapor phase epitaxy device used to form a thin film on the surface of a processed material such as a semiconductor wafer, and in particular, relates to an optical vapor phase epitaxy device used to form a thin film on the surface of a processing target material such as a semiconductor wafer. This invention relates to preventing stains on installed light transmitting members.

〔従来の技術〕[Conventional technology]

たとえば、半導体ウェーハに光と特定の反応ガスにより
その表面に薄膜を形成する光CVD(Chemical
 Vapor Deposition)装置では、半導
体ウェーハを反応室に設置し、その表面に特定の反応ガ
スを作用させるとともに、反応室外から特定の波長の光
を作用させている。
For example, photoCVD (Chemical
In a vapor deposition system, a semiconductor wafer is placed in a reaction chamber, and a specific reaction gas is applied to the surface of the semiconductor wafer, and light of a specific wavelength is applied from outside the reaction chamber.

このような光CQD装置において、光源は反応室外社設
置し、その光源からの光を反応室内に導くために反応室
の壁面部に窓を形成し、その窓を石英ガラスなどの光透
過部材で遮蔽している。
In such an optical CQD device, a light source is installed outside the reaction chamber, and a window is formed on the wall of the reaction chamber to guide light from the light source into the reaction chamber, and the window is made of a light-transmitting member such as quartz glass. It is shielded.

この光透過部材は、反応室内の光気相反応などによって
汚れ、その汚れによってその光透過率が低下すると、半
導体ウェーハに形成される薄膜の膜厚が変化する原因に
なる。
This light transmitting member becomes contaminated due to a photovapor phase reaction in the reaction chamber, and when its light transmittance decreases due to the contamination, this causes a change in the thickness of a thin film formed on a semiconductor wafer.

従来、このような光透過部材の汚れ対策としてその表面
の洗浄やその表面に油を塗るなどの方法が取られている
Conventionally, methods such as cleaning the surface of the light transmitting member or applying oil to the surface have been taken as measures against staining of such a light transmitting member.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、光透過部材の洗浄作業は、相当の時間を
要するため、気相成長処理の能率を低下させる。また、
油を塗る方法は洗浄作業の回数を少なくする点で有利で
あるが、油層によって反応光の短波長成分が吸収され、
光気相成長速度を低下させる原因になり、これもその作
業を低下させる原因になっている。
However, cleaning the light transmitting member requires a considerable amount of time, which reduces the efficiency of the vapor phase growth process. Also,
The method of applying oil is advantageous in that it reduces the number of cleaning operations, but the short wavelength component of the reaction light is absorbed by the oil layer,
This causes a decrease in the photovapor phase growth rate, which also causes a decrease in the operation.

そこで、この発明は、反応室の光透過部材の汚れを防止
しようとするものである。
Therefore, the present invention aims to prevent the light transmitting member of the reaction chamber from becoming dirty.

〔問題点を解決するための手段〕 すなわち、この発明は、反応室の壁面に光透過部材を設
置し、光源からの光を前記光透過部材を介して前記反応
室内の被処理材に照射するようにした光気相成長装置に
おいて、前記反応室の被処理材側に反応ガスを流通させ
るとともに、前記光透過部材の表面側に非反応ガスを通
過させることを特徴とするものである。
[Means for Solving the Problems] That is, in the present invention, a light transmitting member is installed on the wall surface of a reaction chamber, and light from a light source is irradiated onto a material to be treated in the reaction chamber through the light transmitting member. The optical vapor phase growth apparatus is characterized in that a reactive gas is allowed to flow to the side of the material to be treated in the reaction chamber, and a non-reactive gas is allowed to pass to the surface side of the light transmitting member.

〔作 用〕[For production]

したがって、この発明は、半導体ウェーハなどの被処理
材側には反応ガスを流通させるとともに、光透過部材の
反応ガス接触表面側には高速の非反応ガスを通過させ、
光透過部材への反応ガスを伴う光気相反応による汚れの
付着を阻止している。
Therefore, the present invention allows a reactive gas to flow through the side of the material to be processed such as a semiconductor wafer, and at the same time allows a high-speed non-reactive gas to pass through the reactive gas contacting surface side of the light transmitting member.
This prevents stains from adhering to the light-transmitting member due to a photovapor phase reaction involving a reactive gas.

〔実施例〕〔Example〕

以下、この発明の実施例を図面を参照して詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図はこの発明の光気相成長装置の実施例を示してい
る。
FIG. 1 shows an embodiment of the optical vapor phase growth apparatus of the present invention.

第1図において、上側部材2と下側部材4との接合によ
り光気相成長用の反応室6が形成されている。
In FIG. 1, a reaction chamber 6 for optical vapor phase growth is formed by joining an upper member 2 and a lower member 4.

この実施例では、被処理材として、たとえば半導体ウェ
ーハ8を用いており、上側部材2には、その半導体ウェ
ーハ8を支持する保持部1oが形成され、半導体ウェー
ハ8は、保持部10に薄膜を形成すべき面を反応室6側
に向けて支持される。
In this embodiment, a semiconductor wafer 8, for example, is used as the material to be processed, and the upper member 2 is formed with a holding part 1o that supports the semiconductor wafer 8. It is supported with the surface to be formed facing the reaction chamber 6 side.

上側部材2の上側には、蓋部材12が上側部材2と分離
可能に設置され、半導体ウェーハ8はこの蓋部材12を
開閉操作して着脱される。そして、上側部材2と蓋部材
12との間は、上側部材2の上面の凹部14に設置され
た0リング16によって気密状態に保持されるとともに
、図示していない圧接手段によって圧接状態に保持され
る。
A lid member 12 is installed above the upper member 2 so as to be separable from the upper member 2, and the semiconductor wafer 8 is attached or removed by opening and closing the lid member 12. The space between the upper member 2 and the lid member 12 is maintained in an airtight state by an O-ring 16 installed in the recess 14 on the upper surface of the upper member 2, and is also maintained in a pressure contact state by a pressure contact means (not shown). Ru.

半導体ウェーハ8に臨む蓋部材12の中心部には、半導
体ウェーハ8をその裏面側から均等に加熱する加熱手段
としてのタングステンやグラファイトなどからなる蓄熱
部材18が取り付けられるとともに、その上側には石英
ガラスなどからなる光透過部材20が設置されている。
A heat storage member 18 made of tungsten, graphite, etc. is attached to the center of the lid member 12 facing the semiconductor wafer 8 as a heating means for uniformly heating the semiconductor wafer 8 from the back side, and a heat storage member 18 made of tungsten, graphite, etc. is attached to the upper side of the heat storage member 18. A light transmitting member 20 made of the like is installed.

そして、蓄熱部材18と光透過部材20との間には、蓋
部材12の側面から上側部材2の保持部10の開口21
に至るガス通路23が形成されており、このガス通路2
3には光透過部材20の汚れの付着を防止するための不
活性ガス25が通流されて反応室6の内部に導かれてい
る。
Between the heat storage member 18 and the light transmitting member 20, an opening 21 of the holding portion 10 of the upper member 2 is inserted from the side surface of the lid member 12.
A gas passage 23 is formed leading to the gas passage 2.
An inert gas 25 for preventing dirt from adhering to the light transmitting member 20 is passed through the reaction chamber 3 and led into the reaction chamber 6 .

蓋部材12の上側には加熱用光源を設置するための筺体
22が設置され、上側部材2および光透過部材20と光
源用筐体22との間は、光源用筺体22側の凹部24.
26に設置された○リング28.30を介して密封され
るとともに、固定ボルト32.34によって固定され、
光源用筐体22の内部には光源36が設置されている。
A housing 22 for installing a heating light source is installed on the upper side of the lid member 12, and a recess 24.
It is sealed via the ○ ring 28.30 installed in 26, and is fixed by the fixing bolt 32.34,
A light source 36 is installed inside the light source housing 22.

下側部材4には半導体ウェーハ8に光を照射する光照射
窓38が形成され、この光照射窓38は、石英ガラスな
どからなる光透過部材4oで遮蔽されている。
A light irradiation window 38 for irradiating light onto the semiconductor wafer 8 is formed in the lower member 4, and this light irradiation window 38 is shielded by a light transmission member 4o made of quartz glass or the like.

また、下側部材4には、下側部材4と光透過部材40と
の間の気密を保持する0リング42.44を支持する密
閉枠46が固定ボルト48.50で固定されている。こ
の密閉枠°46の下側には、光の透過を開閉する開閉装
置52の案内枠54が取り付けられ、この案内枠54の
内部には、プランジャ56によって開閉操作される遮蔽
板58が移動自在に取り付けられている。この開閉装置
52の下側には、特定の波長の光を放つ光源60が設置
されている。
Furthermore, a sealing frame 46 that supports O-rings 42 and 44 that maintain airtightness between the lower member 4 and the light transmitting member 40 is fixed to the lower member 4 with fixing bolts 48 and 50. A guide frame 54 of an opening/closing device 52 that opens and closes the transmission of light is attached to the lower side of this sealed frame 46, and a shielding plate 58 that is opened and closed by a plunger 56 is movable inside this guide frame 54. is attached to. A light source 60 that emits light of a specific wavelength is installed below the opening/closing device 52.

そして、反応室6の側壁部には、特定のガス源から供給
される反応ガス64、不活性ガスからなる第1の非反応
ガス66および第2の非反応ガス68を個別に反応室6
内に供給するガス供給孔70.72.74が形成され、
このガス供給孔70.72.74の反応室6側の開口部
には、反応室6に反応ガス64、第1および第2の非反
応ガス66.68の独立した層流を形成するための整流
ノズル76が設置されている。整流ノズル76は、ガス
供給孔70.72.74に独立して連通し、かつ供給ガ
ス64.66.68の圧力を調整する圧力調整部78に
、供給ガス64.66.68を反応室6内に独立して噴
射する3つの噴射部80を結合したものである。圧力調
整部78は、ガス供給孔70.72.74と同径の通路
82にその径より大きく拡開して圧力調整室84を形成
したものであり、供給ガス64.66.68の圧力を上
げて通流速度を低下させ、噴射部80に供給する。噴射
部80は、圧力調整部78の圧力調整室84の前面に0
.2鰭程度の複数の細隙を独立して形成したものである
A reaction gas 64 supplied from a specific gas source, a first non-reaction gas 66 and a second non-reaction gas 68 made of an inert gas are individually supplied to the side wall of the reaction chamber 6.
Gas supply holes 70, 72, 74 are formed,
The opening of the gas supply hole 70, 72, 74 on the reaction chamber 6 side is provided with a hole for forming an independent laminar flow of the reaction gas 64 and the first and second non-reactive gases 66, 68 in the reaction chamber 6. A rectifying nozzle 76 is installed. The rectification nozzle 76 independently communicates with the gas supply holes 70.72.74 and supplies the supply gas 64.66.68 to the reaction chamber 6 to a pressure adjustment section 78 that adjusts the pressure of the supply gas 64.66.68. This is a combination of three injection parts 80 that independently inject into the air. The pressure adjustment section 78 has a passage 82 having the same diameter as the gas supply hole 70, 72, 74, and is expanded larger than the diameter thereof to form a pressure adjustment chamber 84, and adjusts the pressure of the supply gas 64, 66, 68. The flow rate is lowered by increasing the flow rate, and the flow rate is then supplied to the injection section 80. The injection unit 80 has a zero pressure in front of the pressure adjustment chamber 84 of the pressure adjustment unit 78.
.. It has multiple independent slits about the size of two fins.

また、反応室6のガス出口側には、整流ノズル86が設
置され、この整流ノズル86の背面側の下側部材4には
、通流ガス64.66.68の圧力を高めて流れを層状
に維持するため、ガスの下流側に立ち上がる傾斜面88
が形成されているとともに、この傾斜面88の終端側に
は各ガス64.66.68を合流させて排気する排出口
90が形成されている。この排出口90には、ポンプな
どの排気装置が連結されており、一定の排気圧92を作
用させるものとする。
Further, a rectifying nozzle 86 is installed on the gas outlet side of the reaction chamber 6, and a lower member 4 on the back side of the rectifying nozzle 86 increases the pressure of the flowing gas 64, 66, 68 to form a laminar flow. An inclined surface 88 rising on the downstream side of the gas
A discharge port 90 is formed on the terminal end side of this inclined surface 88 for merging and exhausting the respective gases 64, 66, and 68. An exhaust device such as a pump is connected to this exhaust port 90, and a constant exhaust pressure 92 is applied thereto.

そして、反応室6の内部には、反応ガス64、第1およ
び第2の非反応ガス66.68の層流が形成されるとと
もに、この層流に対して直交する方向に特定の波長を持
つレーザ光93が供給されている。この場合、反応ガス
64は、レーザ光93と関連して半導体ウェーハ8に薄
膜を成長させ、第1の非反応ガス66は、光透過部材4
0に対する塵埃の付着を阻止するために、光透過部材4
0の表面部を高速度で通過させ、第2の非反応ガス68
は、反応ガス64と第1の非反応ガス66とを分離する
ため、低速度で通過させるものとする。
A laminar flow of the reactant gas 64 and the first and second non-reacting gases 66 and 68 is formed inside the reaction chamber 6, and the flow has a specific wavelength in the direction perpendicular to the laminar flow. Laser light 93 is supplied. In this case, the reactive gas 64 grows a thin film on the semiconductor wafer 8 in association with the laser beam 93, and the first non-reactive gas 66 causes the light-transmitting member 4 to grow a thin film.
In order to prevent dust from adhering to the light transmitting member 4
The second non-reactive gas 68
is passed at a low speed in order to separate the reactive gas 64 and the first non-reactive gas 66.

第2図および第3図は、整流ノズル76の単一の噴射部
80を示しており、反応ガス64、第1および第2の非
反応ガス66.68を独立して噴射させるために、無数
の長方形状の細隙94を形成し、この細隙94の上下縁
部にガスの流通側に整流片96を突出させたものである
。なお、98は固定孔である。
FIGS. 2 and 3 show a single injection section 80 of the rectifying nozzle 76, which has multiple injectors 80 for independently injecting the reactant gas 64 and the first and second non-reacting gases 66,68. A rectangular slit 94 is formed, and rectifying pieces 96 are made to protrude from the upper and lower edges of this slit 94 toward the gas flow side. Note that 98 is a fixing hole.

また、第4図および第5図は、整流ノズル86を示して
おり、この整流ノズル86には、前記細隙94より大き
い間隔の細隙100を形成するとともに、同様の整流片
102を設けたものである。
Further, FIGS. 4 and 5 show a rectifying nozzle 86, in which a slit 100 having a larger interval than the slit 94 is formed and a similar rectifying piece 102 is provided. It is something.

なお、104は固定孔である。Note that 104 is a fixing hole.

以上の構成に基づき、その動作を説明する。The operation will be explained based on the above configuration.

図示していない開閉手段によって、蓋部材12は上側部
材2から外され、薄膜を形成すべき半導体ウェーハ8を
上側部材2の保持部10に薄膜を形成すべき面を反応室
6側にして載置される。そして、蓋部材12を上側部材
2に取り付け、密閉状態に保持する。
The lid member 12 is removed from the upper member 2 by an opening/closing means (not shown), and the semiconductor wafer 8 on which the thin film is to be formed is placed on the holding part 10 of the upper member 2 with the surface on which the thin film is to be formed facing the reaction chamber 6. placed. Then, the lid member 12 is attached to the upper member 2 and kept in a sealed state.

この状態において、光源36を駆動し、光源36からの
光は、光透過部材20を経て蓄熱部材18に照射され、
その照射光による熱が蓄熱部材18に保持される。この
熱は、半導体ウェーハ8を余熱し、半導体ウェーハ8は
特定の温度に保持される。
In this state, the light source 36 is driven, and the light from the light source 36 is irradiated onto the heat storage member 18 through the light transmission member 20.
Heat generated by the irradiation light is retained in the heat storage member 18. This heat preheats the semiconductor wafer 8, and the semiconductor wafer 8 is maintained at a specific temperature.

次に、光源60を駆動するとともに、反応室6の内部の
空気を除き、反応室6に反応ガス64、第1および第2
の非反応ガス66.68を通流させ、かつレーザ光93
を通過させる。
Next, while driving the light source 60, the air inside the reaction chamber 6 is removed, and the reaction chamber 6 is filled with the first and second reaction gases 64.
A non-reactive gas 66,68 is passed through the laser beam 93.
pass.

そして、プランジャ56を矢印A方向に引き、開閉装置
52の遮蔽板58を特定の時間だけ開いて半導体ウェー
ハ8に光源60からの光を照射する。この結果、半導体
ウェーハ8の表面には、反応ガス64、レーザ光93お
よび光源60からの照射光によって、特定の薄膜が形成
される。
Then, the plunger 56 is pulled in the direction of arrow A, the shielding plate 58 of the opening/closing device 52 is opened for a specific period of time, and the semiconductor wafer 8 is irradiated with light from the light source 60. As a result, a specific thin film is formed on the surface of the semiconductor wafer 8 by the reaction gas 64, the laser beam 93, and the irradiation light from the light source 60.

このような光気相成長において、”反応室6には反応ガ
ス64とともに第1および第2の非反応ガス66.68
が各ガス供給孔70.72.74に特定のガス源から独
立して供給され、整流ノズル76の圧力調整部78で圧
力が調整された後、噴射部80に供給されることにより
、それぞれ独立した流れを持つ層流として供給されてい
る。この場合、ガス64.66.68の下流側には、整
流ノズル86とともに圧力調整部としての傾斜面88が
設けられているため、圧力の上昇によって下流側におい
ても層流が維持される。すなわち、反応室6には、反応
ガス64、第1および第2の非反応ガス66.68が互
いに独立した通流路を持つ層流が得られ、互いに交じり
合うことがない。
In such optical vapor phase growth, first and second non-reactive gases 66 and 68 are placed in the reaction chamber 6 along with the reaction gas 64.
is supplied to each gas supply hole 70, 72, 74 independently from a specific gas source, and after the pressure is adjusted by the pressure adjustment part 78 of the rectification nozzle 76, it is supplied to the injection part 80, so that each gas is supplied independently from a specific gas source. It is supplied as a laminar flow with a certain flow. In this case, on the downstream side of the gas 64, 66, 68, an inclined surface 88 as a pressure adjustment part is provided together with a rectifying nozzle 86, so that a laminar flow is maintained on the downstream side due to the increase in pressure. That is, in the reaction chamber 6, a laminar flow is obtained in which the reaction gas 64 and the first and second non-reactive gases 66, 68 have mutually independent passages, and do not mix with each other.

そして、光透過部材40の表面側には、第1の非反応ガ
ス66が高速度で通過するため、光透過部材40の表面
に光気相反応に伴う塵埃の付着が阻止され、光透過部材
40の汚れが防止できる。
Since the first non-reactive gas 66 passes through the surface side of the light transmitting member 40 at a high speed, the adhesion of dust accompanying the optical gas phase reaction to the surface of the light transmitting member 40 is prevented, and the light transmitting member 40 stains can be prevented.

この結果、光透過部材40の光透過率の低下を抑制でき
、半導体ウェーハ8に形成される薄膜の膜厚の変動を抑
えることができる。
As a result, a decrease in the light transmittance of the light transmitting member 40 can be suppressed, and variations in the thickness of the thin film formed on the semiconductor wafer 8 can be suppressed.

このような第1の非反応ガス66の通流において、反応
ガス64との間に低速の第2の非反応ガス68を介在さ
せ、しかも、整流ノズル76によって各ガス64.66
.68の分離が良好になる結果、反応ガス64に対する
第1の非反応ガス66の影響は全く無く、安定した光気
相成長処理を実現できる。
In the flow of the first non-reactive gas 66, a low-velocity second non-reactive gas 68 is interposed between the first non-reactive gas 64 and the reactant gas 64, and each gas 64,66 is
.. As a result, the first non-reactive gas 66 has no influence on the reactive gas 64, and a stable photo-vapor phase growth process can be realized.

なお、実施例では被処理材として半導体ウェーハを用い
たが、この発明の光気相成長装置では半導体ウェーハ以
外の金属材料やその他の被処理材に薄膜を形成すること
ができる。
In the embodiment, a semiconductor wafer was used as the material to be processed, but the optical vapor phase growth apparatus of the present invention can form a thin film on a metal material or other material to be processed other than the semiconductor wafer.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、反応室に光を
導く光透過部材の表面側に反応ガスと平行して高速の非
反応ガスを通流させるため、光透過部材に対する塵埃の
付着が阻止でき、光透過率の低下を抑制できるので、半
導体ウェーハなどの被処理材に形成される膜厚の変動を
抑えることができるとともに、安定した信頬性の高い光
気相成長処理を実現できる。
As explained above, according to the present invention, since a high-speed non-reactive gas flows in parallel with the reactive gas on the surface side of the light-transmitting member that guides light into the reaction chamber, dust adhesion to the light-transmitting member is prevented. This makes it possible to suppress the decrease in light transmittance, thereby suppressing fluctuations in film thickness formed on processing materials such as semiconductor wafers, and realizing stable and highly reliable photovapor phase growth processing. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の光気相成長装置の実施例を示す断面
図、第2図は第1の整流ノズルを示す平面図、第3図は
第2図の■−■線に沿う断面図、第4図は第2の整流ノ
ズルを示す平面図、第5図は第4図のV−V線に沿う断
面図である。 6・・・反応室、8・・・被処理材としての半導体ウェ
ーハ、40・・・光透過部材、60・・・光源、64・
・・反応ガス、66.68・・・非反応ガス、76.8
6・・・整流ノズル、78・・・圧力調整部、88・・
・圧力調整手段としての傾斜面。
FIG. 1 is a sectional view showing an embodiment of the photovapor phase growth apparatus of the present invention, FIG. 2 is a plan view showing the first rectifying nozzle, and FIG. 3 is a sectional view taken along the line ■-■ in FIG. 2. , FIG. 4 is a plan view showing the second rectifying nozzle, and FIG. 5 is a sectional view taken along line V-V in FIG. 4. 6... Reaction chamber, 8... Semiconductor wafer as processed material, 40... Light transmitting member, 60... Light source, 64...
... Reactive gas, 66.68 ... Non-reactive gas, 76.8
6... Rectification nozzle, 78... Pressure adjustment section, 88...
- Inclined surface as a means of pressure adjustment.

Claims (3)

【特許請求の範囲】[Claims] (1)反応室の壁面に光透過部材を設置し、光源からの
光を前記光透過部材を介して前記反応室内の被処理材に
照射するようにした光気相成長装置において、前記反応
室の被処理材側に反応ガスを流通させるとともに、前記
光透過部材の表面側に非反応ガスを通過させることを特
徴とする光気相成長装置。
(1) In a photo-vapor phase growth apparatus, a light transmitting member is installed on a wall surface of a reaction chamber, and light from a light source is irradiated onto a material to be treated in the reaction chamber through the light transmitting member. A photovapor phase growth apparatus characterized in that a reactive gas is allowed to flow to the side of the material to be processed, and a non-reactive gas is allowed to pass to the surface side of the light transmitting member.
(2)前記反応ガスと前記非反応ガスとの間に非反応ガ
スを通流させることを特徴とする特許請求の範囲第1項
に記載の光気相成長装置。
(2) The optical vapor phase growth apparatus according to claim 1, characterized in that a non-reactive gas is caused to flow between the reactive gas and the non-reactive gas.
(3)前記反応室のガス供給部に圧力調整手段を持つ整
流ノズルを設置して前記反応ガスおよび前記非反応ガス
を独立して供給するとともに、前記反応室のガス下流側
に圧力調整部を設け、前記反応ガスおよび前記非反応ガ
スの独立した層流が得られるようにしたことを特徴とす
る特許請求の範囲第1項に記載の光気相成長装置。
(3) A rectifying nozzle having a pressure adjustment means is installed in the gas supply section of the reaction chamber to supply the reaction gas and the non-reaction gas independently, and a pressure adjustment section is installed on the gas downstream side of the reaction chamber. 2. The optical vapor phase epitaxy apparatus according to claim 1, wherein the reactant gas and the non-reactive gas are provided with independent laminar flows.
JP4909485A 1985-03-12 1985-03-12 Photochemical vapor deposition apparatus Pending JPS61208213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4909485A JPS61208213A (en) 1985-03-12 1985-03-12 Photochemical vapor deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4909485A JPS61208213A (en) 1985-03-12 1985-03-12 Photochemical vapor deposition apparatus

Publications (1)

Publication Number Publication Date
JPS61208213A true JPS61208213A (en) 1986-09-16

Family

ID=12821505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4909485A Pending JPS61208213A (en) 1985-03-12 1985-03-12 Photochemical vapor deposition apparatus

Country Status (1)

Country Link
JP (1) JPS61208213A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5711815A (en) * 1993-08-18 1998-01-27 Tokyo Electron Limited Film forming apparatus and film forming method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187033A (en) * 1981-05-12 1982-11-17 Seiko Epson Corp Vapor phase chemical growth device
JPS5895818A (en) * 1981-12-02 1983-06-07 Ushio Inc Forming method for film
JPS5975621A (en) * 1982-10-22 1984-04-28 Mitsubishi Electric Corp Film forming device using photochemical reaction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187033A (en) * 1981-05-12 1982-11-17 Seiko Epson Corp Vapor phase chemical growth device
JPS5895818A (en) * 1981-12-02 1983-06-07 Ushio Inc Forming method for film
JPS5975621A (en) * 1982-10-22 1984-04-28 Mitsubishi Electric Corp Film forming device using photochemical reaction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5711815A (en) * 1993-08-18 1998-01-27 Tokyo Electron Limited Film forming apparatus and film forming method

Similar Documents

Publication Publication Date Title
US4800105A (en) Method of forming a thin film by chemical vapor deposition
US5215588A (en) Photo-CVD system
US4895107A (en) Photo chemical reaction apparatus
JP2756573B2 (en) Quartz glass reaction tube for MOCVD equipment
US6090211A (en) Apparatus and method for forming semiconductor thin layer
KR20000069146A (en) Chemical vapor deposition apparatus
SE8200235L (en) METHOD AND APPARATUS FOR CHEMICAL STATEMENT OF MOVIES ON SILICONE DISC
JPS6210277A (en) Apparatus for adhering substance to substrate
JP3126787B2 (en) Film forming method and film forming apparatus
JPS5766625A (en) Manufacture of film
GB2162369A (en) Apparatus for forming semiconductor crystal
JPS61208213A (en) Photochemical vapor deposition apparatus
CA2051214C (en) Vacuum film forming apparatus
KR850001974B1 (en) Improved photochemical vapor deposition apparatus and method
JP3361804B2 (en) CCVD reactor system
JPH0518452B2 (en)
JPH0544825B2 (en)
JP3174787B2 (en) Optical CVD equipment
JPS6377111A (en) Light-irradiated vapor growth apparatus
JPS6178436A (en) Optical exciting process apparatus
JPS6118123A (en) Thin film forming apparatus
JP2022159671A (en) Semiconductor manufacturing apparatus and method for manufacturing semiconductor device
JPS6231125A (en) Dry etching device
JPS62143419A (en) Vacuum treatment device
JPH0258824A (en) Cvd apparatus